metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η6-Benzene)­di­chlorido­(chloro­di­cyclo­hexyl­phosphane-κP)ruthenium(II) chloro­form monosolvate

aDivision of Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore, and bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: matthias.beller@catalysis.de

(Received 21 May 2014; accepted 4 June 2014; online 11 June 2014)

The title compound, [RuCl2(η6-C6H6)(C12H22ClP)]·CHCl3, was prepared by reaction of [RuCl2(η6-C6H6)]2 with chloro­dicyclo­hexyl­phosphane in CHCl3 at 323 K under argon. The RuII atom is surrounded by one arene ligand, two Cl atoms and a phosphane ligand in a piano-stool geometry. The phosphane ligand is linked by the P atom, with an Ru—P bond length of 2.3247 (4) Å. Both cyclo­hexyl rings at the P atom adopt a chair conformation. In the crystal, the RuII complex mol­ecule and the chloro­form solvent mol­ecule are linked by a bifurcated C—H⋯(Cl,Cl) hydrogen bond. Intra­molecular C—H⋯Cl hydrogen bonds are also observed.

Related literature

For the mol­ecular structure of Ru complexes with the related chloro­diphenyl­phosphane ligand, see: Jantscher et al. (2009[Jantscher, F., Kirchner, K. & Mereiter, K. (2009). Acta Cryst. E65, m941.]); Torres-Lubián et al. (1999[Torres-Lubián, R., Rosales-Hoz, M. J., Arif, A. M., Ernst, R. D. & Paz-Sandoval, M. A. (1999). J. Organomet. Chem. 585, 68-82.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C6H6)(C12H22ClP)]·CHCl3

  • Mr = 602.16

  • Monoclinic, P 21 /n

  • a = 7.9717 (1) Å

  • b = 16.3020 (2) Å

  • c = 18.0602 (3) Å

  • β = 91.244 (1)°

  • V = 2346.45 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 150 K

  • 0.36 × 0.22 × 0.11 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.630, Tmax = 0.859

  • 37052 measured reflections

  • 5619 independent reflections

  • 4963 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.05

  • 5619 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯Cl1 0.99 2.56 3.4080 (17) 144
C18—H18A⋯Cl1 0.99 2.74 3.5366 (17) 138
C19—H19⋯Cl1i 1.00 2.69 3.5539 (17) 144
C19—H19⋯Cl2i 1.00 2.77 3.6119 (18) 142
Symmetry code: (i) x, y, z+1.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The half-sandwich (η6–C6H6)-dichlorido(chlorodicyclohexylphosphane)ruthenium(II) complex was formed by reaction of one equivalent of [RuCl2(η6-C6H6)]2 with two equivalents of (Cy2P(1-naphthoyl)) ligand under hydrogenation conditions (CHCl3, 60 bar of H2, 353 K, 3 hrs) as a side product. The cleavage of the 1-naphthoyl group from [RuCl2(η6-C6H6)(Cy2P(1-naphthoyl)] complex forms firstly [RuCl2(η6-C6H6)(Cy2PH)] and subsequent chlorination of the dicyclohexylphosphane unit due to CHCl3 yields the title compound in poor yield. Additionally, we could not observe any trace amount of title compound by using non-chlorinated solvents such as MeOH. The substitution of hydrogen next to phosphane by chlorine coming from solvent molecules is also described for the formation of a Ru-complex with the related chlorodiphenylphosphane ligand by Torres-Lubián et al. (1999). More specifically, the title complex was formed by reaction of [RuCl2(η6-C6H6)]2 with chlorodicyclohexylphosphane in CHCl3 at 323 K under argon in 41% yield. Crystals suitable for X-ray crystal structure analysis could be obtained by crystallization from a chloroform/heptane mixture. In the 31P NMR spectrum of the complex the signal for the phosphorus was observed at 156.3 p.p.m., whereas free ligand signal appears at 128.8 p.p.m.. The title compound shows the three legged piano-stool geometry at the ruthenium centre with the arene, chlorodicyclohexylphosphane and two chlorine ligands in the coordination sphere (Fig. 1). The phosphane ligand is linked by the phosphorus with a Ru—P bond length of 2.3247 (4) Å. Both cyclohexyl rings at the phosphorus atom adopt a chair conformation. The Ru complex is co-crystallized with CHCl3.

Related literature top

For the molecular structure of Ru complexes with the related chlorodiphenylphosphane ligand, see: Jantscher et al. (2009); Torres-Lubián et al. (1999).

Experimental top

A 50 ml round bottom flask with inert gas valve was charged with 0.05 mmol (25 mg) [RuCl2(η6-C6H6)]2 and 4 ml CHCl3 under argon atmosphere. To this suspension 0.105 mmol (21 µL) chlorodicyclohexylphosphane was added and the reaction mixture was allowed to react 3 h at 323 K. A clear red brown solution has been formed and the volume was reduced carefully in high vacuum to ca 1 ml. Next 20 ml heptane was added to the reaction mixture and cooled for 1 h with ice bath. The precipitate was washed with heptane (3 × 5 ml) to yield the title compound as an orange brown solid (20 mg, 41%). Red single crystals were grown in CHCl3/heptane mixture at 245 K for 1 day. 1H NMR (300 MHz), CDCl3): δ 5.71 (s, 6H, benzene), 2.79 (m, 2H, Cy), 2.06–1.54 (m, 14H, Cy), 1.27 (br s, 6H, Cy). 13C {1H} NMR (75 MHz, CDCl3): δ 89.8 (RuPh), 40.4 (d, JPC = 9.5 Hz, PCH), 27.2, 26.9, 26.7, 26.4, 26.3, 26.0, 26.0, 25.6 (CH2). 31P {1H} NMR (121 MHz, CDCl3): δ 156.3.

Refinement top

H atoms were placed in idealized positions with C—H = 0.95–1.00 Å (CH), 0.99 Å (CH2) and refined using a riding model with Uiso(H) fixed at 1.2Ueq(C).

Structure description top

The half-sandwich (η6–C6H6)-dichlorido(chlorodicyclohexylphosphane)ruthenium(II) complex was formed by reaction of one equivalent of [RuCl2(η6-C6H6)]2 with two equivalents of (Cy2P(1-naphthoyl)) ligand under hydrogenation conditions (CHCl3, 60 bar of H2, 353 K, 3 hrs) as a side product. The cleavage of the 1-naphthoyl group from [RuCl2(η6-C6H6)(Cy2P(1-naphthoyl)] complex forms firstly [RuCl2(η6-C6H6)(Cy2PH)] and subsequent chlorination of the dicyclohexylphosphane unit due to CHCl3 yields the title compound in poor yield. Additionally, we could not observe any trace amount of title compound by using non-chlorinated solvents such as MeOH. The substitution of hydrogen next to phosphane by chlorine coming from solvent molecules is also described for the formation of a Ru-complex with the related chlorodiphenylphosphane ligand by Torres-Lubián et al. (1999). More specifically, the title complex was formed by reaction of [RuCl2(η6-C6H6)]2 with chlorodicyclohexylphosphane in CHCl3 at 323 K under argon in 41% yield. Crystals suitable for X-ray crystal structure analysis could be obtained by crystallization from a chloroform/heptane mixture. In the 31P NMR spectrum of the complex the signal for the phosphorus was observed at 156.3 p.p.m., whereas free ligand signal appears at 128.8 p.p.m.. The title compound shows the three legged piano-stool geometry at the ruthenium centre with the arene, chlorodicyclohexylphosphane and two chlorine ligands in the coordination sphere (Fig. 1). The phosphane ligand is linked by the phosphorus with a Ru—P bond length of 2.3247 (4) Å. Both cyclohexyl rings at the phosphorus atom adopt a chair conformation. The Ru complex is co-crystallized with CHCl3.

For the molecular structure of Ru complexes with the related chlorodiphenylphosphane ligand, see: Jantscher et al. (2009); Torres-Lubián et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% displacement ellipsoids. Hydrogen atoms are omitted for clarity.
(η6-Benzene)dichlorido(chlorodicyclohexylphosphane-κP)ruthenium(II) chloroform monosolvate top
Crystal data top
[RuCl2(C6H6)(C12H22ClP)]·CHCl3F(000) = 1216
Mr = 602.16Dx = 1.705 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9717 (1) ÅCell parameters from 9877 reflections
b = 16.3020 (2) Åθ = 2.3–27.9°
c = 18.0602 (3) ŵ = 1.42 mm1
β = 91.244 (1)°T = 150 K
V = 2346.45 (6) Å3Prism, orange
Z = 40.36 × 0.22 × 0.11 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5619 independent reflections
Radiation source: fine-focus sealed tube4963 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.031
Detector resolution: 8.3333 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2121
Tmin = 0.630, Tmax = 0.859l = 2323
37052 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0187P)2 + 1.4791P]
where P = (Fo2 + 2Fc2)/3
5619 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[RuCl2(C6H6)(C12H22ClP)]·CHCl3V = 2346.45 (6) Å3
Mr = 602.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9717 (1) ŵ = 1.42 mm1
b = 16.3020 (2) ÅT = 150 K
c = 18.0602 (3) Å0.36 × 0.22 × 0.11 mm
β = 91.244 (1)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5619 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4963 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.859Rint = 0.031
37052 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
5619 reflectionsΔρmin = 0.37 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2498 (2)0.37279 (11)0.04879 (10)0.0223 (4)
H10.32790.37460.00830.027*
C20.2406 (2)0.30292 (11)0.09373 (10)0.0227 (4)
H20.31810.25920.08630.027*
C30.1149 (2)0.29763 (11)0.15045 (10)0.0230 (4)
H30.10690.25010.18080.028*
C40.0024 (2)0.36315 (11)0.16134 (10)0.0231 (4)
H40.08640.35850.19700.028*
C50.0212 (2)0.43653 (11)0.11906 (10)0.0235 (4)
H50.04980.48220.12910.028*
C60.1430 (2)0.44123 (11)0.06332 (10)0.0227 (4)
H60.15520.49000.03490.027*
C70.2490 (2)0.14568 (10)0.07869 (9)0.0160 (3)
H70.34840.17410.05770.019*
C80.2460 (2)0.16860 (11)0.16112 (9)0.0211 (3)
H8A0.23810.22900.16610.025*
H8B0.14560.14420.18370.025*
C90.4035 (2)0.13820 (11)0.20233 (10)0.0238 (4)
H9A0.50320.16640.18280.029*
H9B0.39580.15180.25560.029*
C100.4238 (2)0.04591 (11)0.19335 (11)0.0276 (4)
H10A0.52800.02780.21930.033*
H10B0.32800.01740.21600.033*
C110.4316 (2)0.02332 (11)0.11175 (11)0.0260 (4)
H11A0.43990.03700.10700.031*
H11B0.53370.04760.09050.031*
C120.2773 (2)0.05349 (10)0.06779 (10)0.0205 (3)
H12A0.17710.02310.08400.025*
H12B0.29240.04210.01450.025*
C130.0709 (2)0.13975 (10)0.06377 (9)0.0161 (3)
H130.07990.07910.05650.019*
C140.0879 (2)0.15535 (10)0.11130 (10)0.0200 (3)
H14A0.18630.13180.08650.024*
H14B0.10600.21520.11660.024*
C150.0711 (2)0.11651 (12)0.18795 (10)0.0270 (4)
H15A0.06820.05610.18280.032*
H15B0.17050.13100.21900.032*
C160.0864 (3)0.14489 (13)0.22631 (10)0.0305 (4)
H16A0.07990.20470.23560.037*
H16B0.09530.11670.27460.037*
C170.2405 (2)0.12592 (12)0.17829 (10)0.0246 (4)
H17A0.34220.14530.20350.030*
H17B0.25030.06580.17150.030*
C180.2299 (2)0.16729 (10)0.10279 (9)0.0193 (3)
H18A0.22820.22760.10920.023*
H18B0.32980.15280.07200.023*
C190.4349 (2)0.38768 (11)0.85956 (10)0.0222 (4)
H190.34750.37600.89700.027*
Cl10.01613 (5)0.35589 (2)0.08323 (2)0.01901 (8)
Cl20.30706 (5)0.34441 (2)0.04619 (2)0.02103 (9)
Cl30.12314 (5)0.11221 (2)0.07235 (2)0.02052 (8)
Cl40.54297 (6)0.47752 (3)0.88609 (3)0.03089 (10)
Cl50.57325 (6)0.30361 (3)0.85639 (3)0.03164 (11)
Cl60.33498 (7)0.40171 (4)0.77265 (3)0.03799 (12)
P10.06247 (5)0.18613 (2)0.02855 (2)0.01377 (8)
Ru10.007356 (16)0.324634 (7)0.046687 (7)0.01356 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0154 (8)0.0266 (9)0.0251 (9)0.0050 (7)0.0032 (7)0.0038 (7)
C20.0166 (8)0.0240 (8)0.0279 (9)0.0015 (7)0.0095 (7)0.0046 (7)
C30.0270 (9)0.0234 (8)0.0190 (8)0.0043 (7)0.0099 (7)0.0008 (7)
C40.0251 (9)0.0275 (9)0.0170 (8)0.0056 (7)0.0010 (7)0.0062 (7)
C50.0250 (9)0.0204 (8)0.0253 (9)0.0017 (7)0.0054 (7)0.0085 (7)
C60.0232 (9)0.0191 (8)0.0260 (9)0.0067 (7)0.0067 (7)0.0004 (7)
C70.0141 (7)0.0165 (7)0.0173 (8)0.0005 (6)0.0004 (6)0.0005 (6)
C80.0222 (8)0.0236 (8)0.0176 (8)0.0027 (7)0.0016 (7)0.0017 (7)
C90.0224 (9)0.0273 (9)0.0213 (9)0.0005 (7)0.0066 (7)0.0002 (7)
C100.0218 (9)0.0260 (9)0.0344 (10)0.0004 (7)0.0097 (8)0.0074 (8)
C110.0202 (9)0.0197 (8)0.0378 (10)0.0045 (7)0.0052 (8)0.0008 (8)
C120.0206 (8)0.0159 (8)0.0248 (9)0.0015 (6)0.0029 (7)0.0004 (7)
C130.0174 (8)0.0145 (7)0.0165 (8)0.0002 (6)0.0008 (6)0.0024 (6)
C140.0196 (8)0.0189 (8)0.0213 (8)0.0024 (6)0.0035 (7)0.0011 (6)
C150.0309 (10)0.0306 (10)0.0192 (9)0.0067 (8)0.0079 (7)0.0000 (7)
C160.0403 (11)0.0340 (10)0.0171 (9)0.0065 (9)0.0011 (8)0.0025 (8)
C170.0279 (9)0.0283 (9)0.0178 (8)0.0010 (8)0.0057 (7)0.0024 (7)
C180.0196 (8)0.0216 (8)0.0168 (8)0.0000 (6)0.0015 (6)0.0015 (6)
C190.0174 (8)0.0282 (9)0.0210 (8)0.0003 (7)0.0000 (7)0.0001 (7)
Cl10.02313 (19)0.01688 (18)0.01704 (19)0.00012 (15)0.00118 (15)0.00162 (14)
Cl20.01470 (18)0.02085 (19)0.0275 (2)0.00415 (15)0.00011 (16)0.00070 (16)
Cl30.01850 (18)0.01891 (19)0.0243 (2)0.00493 (15)0.00428 (15)0.00082 (15)
Cl40.0287 (2)0.0250 (2)0.0388 (3)0.00293 (18)0.0043 (2)0.00117 (19)
Cl50.0251 (2)0.0273 (2)0.0425 (3)0.00382 (18)0.0000 (2)0.0002 (2)
Cl60.0334 (3)0.0535 (3)0.0266 (2)0.0079 (2)0.0096 (2)0.0028 (2)
P10.01298 (18)0.01378 (18)0.01459 (19)0.00112 (15)0.00104 (15)0.00075 (15)
Ru10.01285 (6)0.01339 (6)0.01447 (6)0.00015 (5)0.00123 (5)0.00095 (5)
Geometric parameters (Å, º) top
C1—C21.400 (3)C11—C121.530 (2)
C1—C61.425 (2)C11—H11A0.9900
C1—Ru12.1966 (17)C11—H11B0.9900
C1—H10.9500C12—H12A0.9900
C2—C31.420 (3)C12—H12B0.9900
C2—Ru12.1970 (17)C13—C181.530 (2)
C2—H20.9500C13—C141.535 (2)
C3—C41.406 (3)C13—P11.8334 (16)
C3—Ru12.1759 (17)C13—H131.0000
C3—H30.9500C14—C151.531 (2)
C4—C51.425 (3)C14—H14A0.9900
C4—Ru12.1668 (17)C14—H14B0.9900
C4—H40.9500C15—C161.519 (3)
C5—C61.386 (3)C15—H15A0.9900
C5—Ru12.2585 (17)C15—H15B0.9900
C5—H50.9500C16—C171.520 (3)
C6—Ru12.2705 (17)C16—H16A0.9900
C6—H60.9500C16—H16B0.9900
C7—C121.533 (2)C17—C181.525 (2)
C7—C81.536 (2)C17—H17A0.9900
C7—P11.8457 (16)C17—H17B0.9900
C7—H71.0000C18—H18A0.9900
C8—C91.528 (2)C18—H18B0.9900
C8—H8A0.9900C19—Cl61.7596 (18)
C8—H8B0.9900C19—Cl41.7602 (18)
C9—C101.522 (3)C19—Cl51.7609 (18)
C9—H9A0.9900C19—H191.0000
C9—H9B0.9900Cl1—Ru12.4036 (4)
C10—C111.522 (3)Cl2—Ru12.4110 (4)
C10—H10A0.9900Cl3—P12.0779 (6)
C10—H10B0.9900P1—Ru12.3247 (4)
C2—C1—C6120.45 (17)C15—C14—C13110.48 (14)
C2—C1—Ru171.44 (10)C15—C14—H14A109.6
C6—C1—Ru174.25 (10)C13—C14—H14A109.6
C2—C1—H1119.8C15—C14—H14B109.6
C6—C1—H1119.8C13—C14—H14B109.6
Ru1—C1—H1126.4H14A—C14—H14B108.1
C1—C2—C3119.69 (16)C16—C15—C14112.07 (15)
C1—C2—Ru171.41 (10)C16—C15—H15A109.2
C3—C2—Ru170.25 (10)C14—C15—H15A109.2
C1—C2—H2120.2C16—C15—H15B109.2
C3—C2—H2120.2C14—C15—H15B109.2
Ru1—C2—H2130.8H15A—C15—H15B107.9
C4—C3—C2119.52 (17)C15—C16—C17110.09 (15)
C4—C3—Ru170.76 (10)C15—C16—H16A109.6
C2—C3—Ru171.86 (10)C17—C16—H16A109.6
C4—C3—H3120.2C15—C16—H16B109.6
C2—C3—H3120.2C17—C16—H16B109.6
Ru1—C3—H3129.5H16A—C16—H16B108.2
C3—C4—C5120.24 (17)C16—C17—C18111.10 (15)
C3—C4—Ru171.47 (10)C16—C17—H17A109.4
C5—C4—Ru174.74 (10)C18—C17—H17A109.4
C3—C4—H4119.9C16—C17—H17B109.4
C5—C4—H4119.9C18—C17—H17B109.4
Ru1—C4—H4125.7H17A—C17—H17B108.0
C6—C5—C4119.95 (17)C17—C18—C13110.17 (14)
C6—C5—Ru172.66 (10)C17—C18—H18A109.6
C4—C5—Ru167.75 (9)C13—C18—H18A109.6
C6—C5—H5120.0C17—C18—H18B109.6
C4—C5—H5120.0C13—C18—H18B109.6
Ru1—C5—H5132.5H18A—C18—H18B108.1
C5—C6—C1119.83 (17)Cl6—C19—Cl4110.13 (10)
C5—C6—Ru171.71 (10)Cl6—C19—Cl5110.11 (10)
C1—C6—Ru168.61 (9)Cl4—C19—Cl5110.69 (9)
C5—C6—H6120.1Cl6—C19—H19108.6
C1—C6—H6120.1Cl4—C19—H19108.6
Ru1—C6—H6132.6Cl5—C19—H19108.6
C12—C7—C8111.62 (14)C13—P1—C7104.70 (7)
C12—C7—P1114.00 (11)C13—P1—Cl398.49 (5)
C8—C7—P1111.07 (11)C7—P1—Cl3100.29 (6)
C12—C7—H7106.5C13—P1—Ru1122.65 (5)
C8—C7—H7106.5C7—P1—Ru1115.50 (5)
P1—C7—H7106.5Cl3—P1—Ru1111.79 (2)
C9—C8—C7111.31 (14)C4—Ru1—C337.77 (7)
C9—C8—H8A109.4C4—Ru1—C180.04 (7)
C7—C8—H8A109.4C3—Ru1—C167.77 (7)
C9—C8—H8B109.4C4—Ru1—C268.03 (7)
C7—C8—H8B109.4C3—Ru1—C237.89 (7)
H8A—C8—H8B108.0C1—Ru1—C237.15 (7)
C10—C9—C8110.91 (15)C4—Ru1—C537.51 (7)
C10—C9—H9A109.5C3—Ru1—C567.19 (7)
C8—C9—H9A109.5C1—Ru1—C566.15 (7)
C10—C9—H9B109.5C2—Ru1—C578.67 (7)
C8—C9—H9B109.5C4—Ru1—C666.48 (7)
H9A—C9—H9B108.0C3—Ru1—C678.92 (7)
C11—C10—C9110.42 (15)C1—Ru1—C637.15 (6)
C11—C10—H10A109.6C2—Ru1—C666.53 (7)
C9—C10—H10A109.6C5—Ru1—C635.63 (7)
C11—C10—H10B109.6C4—Ru1—P1115.27 (5)
C9—C10—H10B109.6C3—Ru1—P190.82 (5)
H10A—C10—H10B108.1C1—Ru1—P1121.93 (5)
C10—C11—C12112.06 (15)C2—Ru1—P194.15 (5)
C10—C11—H11A109.2C5—Ru1—P1152.59 (5)
C12—C11—H11A109.2C6—Ru1—P1159.01 (5)
C10—C11—H11B109.2C4—Ru1—Cl1150.91 (5)
C12—C11—H11B109.2C3—Ru1—Cl1155.05 (5)
H11A—C11—H11B107.9C1—Ru1—Cl189.32 (5)
C11—C12—C7111.57 (14)C2—Ru1—Cl1117.20 (5)
C11—C12—H12A109.3C5—Ru1—Cl1113.53 (5)
C7—C12—H12A109.3C6—Ru1—Cl188.76 (5)
C11—C12—H12B109.3P1—Ru1—Cl193.366 (15)
C7—C12—H12B109.3C4—Ru1—Cl291.20 (5)
H12A—C12—H12B108.0C3—Ru1—Cl2119.52 (5)
C18—C13—C14112.01 (14)C1—Ru1—Cl2151.36 (5)
C18—C13—P1110.18 (11)C2—Ru1—Cl2157.35 (5)
C14—C13—P1113.20 (11)C5—Ru1—Cl290.37 (5)
C18—C13—H13107.0C6—Ru1—Cl2114.49 (5)
C14—C13—H13107.0P1—Ru1—Cl286.505 (14)
P1—C13—H13107.0Cl1—Ru1—Cl285.306 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···Cl10.992.563.4080 (17)144
C18—H18A···Cl10.992.743.5366 (17)138
C19—H19···Cl1i1.002.693.5539 (17)144
C19—H19···Cl2i1.002.773.6119 (18)142
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···Cl10.992.563.4080 (17)144
C18—H18A···Cl10.992.743.5366 (17)138
C19—H19···Cl1i1.002.693.5539 (17)144
C19—H19···Cl2i1.002.773.6119 (18)142
Symmetry code: (i) x, y, z+1.
 

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJantscher, F., Kirchner, K. & Mereiter, K. (2009). Acta Cryst. E65, m941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorres-Lubián, R., Rosales-Hoz, M. J., Arif, A. M., Ernst, R. D. & Paz-Sandoval, M. A. (1999). J. Organomet. Chem. 585, 68–82.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds