organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{3-(4-Chloro­phen­yl)-5-[4-(propan-2-yl)phen­yl]-4,5-di­hydro-1H-pyrazol-1-yl}propan-1-one

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Studies in Chemistry, Industrial Chemistry Section, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 26 May 2014; accepted 4 June 2014; online 11 June 2014)

In the title compound, C21H23ClN2O, the dihedral angle between the benzene rings is 83.2 (6)°, while the mean plane of the pyrazole ring [r.m.s. deviation = 0.043 (1) Å] makes dihedral angles of 3.4 (3) and 86.2 (1)° with the benzene rings. In the crystal, a pair of weak C—H⋯O inter­actions between the benzene ring and the propan-1-one group link the mol­ecules into an inversion dimer with an R22(16) graph-set motif. In addition, a weak ππ stacking inter­action [centroid–centroid distance = 3.959 (4) Å] connects the dimers into a tape running along [201].

Related literature

For the biological activity of pyrazolines, see: Taylor et al. (1992[Taylor, E. C., Patel, H. & Kumar, H. (1992). Tetrahedron, 48, 8089-8100.]); Lombardino & Otterness (1977[Lombardino, J. G. & Otterness, I. G. (1977). J. Med. Chem. 20, 830-834.]); Manna et al. (2005[Manna, F., Chimenti, F., Fioravanti, F., Bolasco, A., Seecci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett. 15, 4632-4635.]); Samshuddin et al. (2012a[Samshuddin, S., Narayana, B., Sarojini, B. K., Yathirajan, H. S. & Ragavendra, R. (2012a). Pharma Chem. 4, 1445-1457.],b[Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Darsan Raj, C. G. & Ragavendra, R. (2012b). Med. Chem. Res. 21, 2012-2022.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Narayana et al., (2014[Narayana, B., Salian, V. V., Sarojini, B. K. & Jasinski, J. P. (2014). Acta Cryst. E70, o761-o762.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23ClN2O

  • Mr = 354.86

  • Triclinic, [P \overline 1]

  • a = 6.6042 (3) Å

  • b = 10.1188 (9) Å

  • c = 14.4806 (12) Å

  • α = 98.444 (7)°

  • β = 90.650 (6)°

  • γ = 106.542 (6)°

  • V = 916.13 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.92 mm−1

  • T = 173 K

  • 0.36 × 0.28 × 0.16 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.583, Tmax = 0.736

  • 5565 measured reflections

  • 3519 independent reflections

  • 3170 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.05

  • 3519 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.95 2.51 3.419 (2) 161
Symmetry code: (i) -x+3, -y+2, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Pyrazolines are important nitrogen containing five-membered heterocyclic compounds. Pyrazoline derivatives possess important biological activities, including antitumor (Taylor et al., 1992), immunosuppressive (Lombardino & Otterness, 1977), anticancer (Manna et al., 2005), antimicrobial, analgesic and antioxidant activities (Samshuddin et al., 2012a,b).

In the title compound, the dihedral angle between the benzene rings is 83.2 (6)°, while the pyrazole ring is separated from each of the benzene rings by 3.4 (3)° (C16–C21) and 86.2 (1)° (C7–C12), respectively (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, a weak C—H···O intermolecular interaction between the benzene ring and the propan-1-one group is observed forming dimers in an R22(16) ring-set motif (Fig. 2). In addition, a weak ππ intermolecular stacking interaction [Cg3···Cg3 (1 - x, 2 - y, 1 - z) = 3.959 (4) Å; Cg3: C16–C21] is present and influences the crystal packing.

Related literature top

For the biological activity of pyrazolines, see: Taylor et al. (1992); Lombardino & Otterness (1977); Manna et al. (2005); Samshuddin et al. (2012a,b). For standard bond lengths, see: Allen et al. (1987). For a related structure, see: Narayana et al., (2014).

Experimental top

To a mixture of (2E)-1-(4-chlorophenyl)-3-[4-(propan-2-yl)phenyl] prop-2-en-1-one (2.85 g, 0.01 mol) and hydrazine hydrate (0.5 mL, 0.01 mol) in 20 mL propionic acid was refluxed for 8 h (Fig. 3). The reaction mixture was cooled and poured into 50 mL ice-cold water. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by the slow evaporation method. (m.p.: 365–367 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95–1.00 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as a rotating group.

Structure description top

Pyrazolines are important nitrogen containing five-membered heterocyclic compounds. Pyrazoline derivatives possess important biological activities, including antitumor (Taylor et al., 1992), immunosuppressive (Lombardino & Otterness, 1977), anticancer (Manna et al., 2005), antimicrobial, analgesic and antioxidant activities (Samshuddin et al., 2012a,b).

In the title compound, the dihedral angle between the benzene rings is 83.2 (6)°, while the pyrazole ring is separated from each of the benzene rings by 3.4 (3)° (C16–C21) and 86.2 (1)° (C7–C12), respectively (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, a weak C—H···O intermolecular interaction between the benzene ring and the propan-1-one group is observed forming dimers in an R22(16) ring-set motif (Fig. 2). In addition, a weak ππ intermolecular stacking interaction [Cg3···Cg3 (1 - x, 2 - y, 1 - z) = 3.959 (4) Å; Cg3: C16–C21] is present and influences the crystal packing.

For the biological activity of pyrazolines, see: Taylor et al. (1992); Lombardino & Otterness (1977); Manna et al. (2005); Samshuddin et al. (2012a,b). For standard bond lengths, see: Allen et al. (1987). For a related structure, see: Narayana et al., (2014).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound showing the labeling scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of the title compound viewed along the a axis. Dashed lines indicate weak C—H···O intermolecular interactions between the benzene ring and the ketone group forming dimers with an R22[16] ring motif. H atoms not involved in these interactions have been removed for clarity.
[Figure 3] Fig. 3. Synthesis of the title compound.
1-{3-(4-Chlorophenyl)-5-[4-(propan-2-yl)phenyl]-4,5-dihydro-1H-pyrazol-1-yl}propan-1-one top
Crystal data top
C21H23ClN2OZ = 2
Mr = 354.86F(000) = 376
Triclinic, P1Dx = 1.286 Mg m3
a = 6.6042 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.1188 (9) ÅCell parameters from 2712 reflections
c = 14.4806 (12) Åθ = 4.6–72.1°
α = 98.444 (7)°µ = 1.92 mm1
β = 90.650 (6)°T = 173 K
γ = 106.542 (6)°Irregular, colourless
V = 916.13 (12) Å30.36 × 0.28 × 0.16 mm
Data collection top
Agilent Eos Gemini
diffractometer
3519 independent reflections
Radiation source: Enhance (Cu) X-ray Source3170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.0416 pixels mm-1θmax = 72.2°, θmin = 4.6°
ω scansh = 68
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1212
Tmin = 0.583, Tmax = 0.736l = 1417
5565 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.2126P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.133(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.31 e Å3
3519 reflectionsΔρmin = 0.27 e Å3
230 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0079 (10)
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H23ClN2Oγ = 106.542 (6)°
Mr = 354.86V = 916.13 (12) Å3
Triclinic, P1Z = 2
a = 6.6042 (3) ÅCu Kα radiation
b = 10.1188 (9) ŵ = 1.92 mm1
c = 14.4806 (12) ÅT = 173 K
α = 98.444 (7)°0.36 × 0.28 × 0.16 mm
β = 90.650 (6)°
Data collection top
Agilent Eos Gemini
diffractometer
3519 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3170 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.736Rint = 0.039
5565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3519 reflectionsΔρmin = 0.27 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09015 (7)0.80472 (5)0.39149 (3)0.04238 (19)
O11.2342 (2)0.71922 (13)0.84127 (9)0.0348 (3)
N10.9973 (2)0.77738 (13)0.75592 (9)0.0247 (3)
N20.8703 (2)0.75374 (13)0.67523 (9)0.0239 (3)
C10.7420 (2)0.82811 (16)0.68834 (11)0.0234 (3)
C20.7635 (2)0.91195 (18)0.78502 (11)0.0272 (4)
H2A0.63520.87930.81980.033*
H2B0.79001.01260.78220.033*
C30.9569 (2)0.88334 (16)0.83017 (11)0.0243 (3)
H30.91500.84050.88760.029*
C41.1291 (2)0.69830 (16)0.76809 (11)0.0249 (3)
C51.1314 (3)0.58555 (16)0.68676 (12)0.0280 (4)
H5A0.99000.51610.67690.034*
H5B1.16190.62800.62920.034*
C61.2960 (3)0.51247 (19)0.70421 (14)0.0363 (4)
H6A1.29590.44230.64980.054*
H6B1.26250.46680.75960.054*
H6C1.43610.58110.71450.054*
C71.1482 (2)1.00998 (15)0.85394 (10)0.0219 (3)
C81.2222 (3)1.10049 (17)0.78993 (11)0.0258 (3)
H81.15041.08370.73020.031*
C91.3995 (3)1.21478 (17)0.81238 (11)0.0271 (3)
H91.44861.27400.76720.033*
C101.5071 (3)1.24473 (16)0.89944 (11)0.0252 (3)
C111.4312 (3)1.15487 (17)0.96358 (11)0.0278 (4)
H111.50051.17321.02390.033*
C121.2564 (3)1.03921 (17)0.94090 (11)0.0262 (3)
H121.20950.97870.98560.031*
C131.7049 (3)1.36693 (17)0.92541 (12)0.0297 (4)
H131.72131.38780.99520.036*
C141.9003 (3)1.3267 (2)0.89069 (16)0.0432 (5)
H14A1.88691.30240.82240.065*
H14B1.91241.24630.91830.065*
H14C2.02701.40560.90910.065*
C151.6934 (3)1.49961 (19)0.89028 (16)0.0450 (5)
H15A1.81871.57660.91460.067*
H15B1.56591.52280.91190.067*
H15C1.68841.48470.82180.067*
C160.5854 (2)0.82406 (16)0.61440 (11)0.0245 (3)
C170.5637 (3)0.73309 (19)0.52963 (12)0.0315 (4)
H170.65470.67530.51890.038*
C180.4115 (3)0.7264 (2)0.46142 (12)0.0338 (4)
H180.39680.66410.40420.041*
C190.2804 (3)0.81191 (18)0.47760 (12)0.0301 (4)
C200.2989 (3)0.90336 (18)0.56024 (12)0.0294 (4)
H200.20880.96190.57020.035*
C210.4514 (2)0.90838 (17)0.62857 (11)0.0272 (4)
H210.46440.97030.68580.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0387 (3)0.0443 (3)0.0417 (3)0.0081 (2)0.0167 (2)0.0083 (2)
O10.0367 (7)0.0342 (7)0.0332 (7)0.0118 (5)0.0104 (5)0.0020 (5)
N10.0265 (7)0.0227 (6)0.0223 (6)0.0062 (5)0.0045 (5)0.0024 (5)
N20.0236 (7)0.0228 (6)0.0230 (6)0.0046 (5)0.0026 (5)0.0009 (5)
C10.0214 (7)0.0229 (7)0.0230 (7)0.0026 (6)0.0013 (6)0.0021 (6)
C20.0218 (8)0.0321 (8)0.0249 (8)0.0072 (6)0.0007 (6)0.0033 (6)
C30.0251 (8)0.0242 (7)0.0219 (7)0.0063 (6)0.0014 (6)0.0002 (6)
C40.0228 (7)0.0204 (7)0.0287 (8)0.0024 (6)0.0017 (6)0.0032 (6)
C50.0273 (8)0.0223 (7)0.0333 (9)0.0075 (6)0.0015 (6)0.0004 (6)
C60.0329 (9)0.0277 (8)0.0497 (11)0.0117 (7)0.0013 (8)0.0043 (7)
C70.0226 (7)0.0218 (7)0.0209 (7)0.0079 (6)0.0004 (6)0.0012 (5)
C80.0306 (8)0.0272 (8)0.0198 (7)0.0101 (6)0.0031 (6)0.0019 (6)
C90.0336 (9)0.0234 (7)0.0253 (8)0.0085 (6)0.0030 (6)0.0066 (6)
C100.0262 (8)0.0210 (7)0.0278 (8)0.0074 (6)0.0019 (6)0.0006 (6)
C110.0286 (8)0.0287 (8)0.0224 (8)0.0043 (7)0.0036 (6)0.0010 (6)
C120.0291 (8)0.0271 (8)0.0206 (7)0.0051 (6)0.0009 (6)0.0040 (6)
C130.0317 (9)0.0237 (8)0.0287 (8)0.0022 (7)0.0000 (7)0.0005 (6)
C140.0292 (9)0.0395 (10)0.0530 (12)0.0027 (8)0.0010 (8)0.0028 (9)
C150.0456 (11)0.0261 (9)0.0575 (13)0.0008 (8)0.0035 (9)0.0079 (8)
C160.0213 (7)0.0266 (8)0.0234 (8)0.0037 (6)0.0003 (6)0.0036 (6)
C170.0333 (9)0.0350 (9)0.0269 (8)0.0139 (7)0.0009 (7)0.0013 (7)
C180.0358 (9)0.0380 (9)0.0260 (8)0.0115 (7)0.0040 (7)0.0014 (7)
C190.0262 (8)0.0321 (9)0.0296 (8)0.0028 (7)0.0047 (6)0.0085 (7)
C200.0251 (8)0.0291 (8)0.0351 (9)0.0089 (6)0.0004 (7)0.0067 (7)
C210.0244 (8)0.0268 (8)0.0284 (8)0.0056 (6)0.0014 (6)0.0012 (6)
Geometric parameters (Å, º) top
Cl1—C191.7391 (17)C9—C101.389 (2)
O1—C41.218 (2)C10—C111.393 (2)
N1—N21.3812 (18)C10—C131.520 (2)
N1—C31.4858 (19)C11—H110.9500
N1—C41.365 (2)C11—C121.386 (2)
N2—C11.282 (2)C12—H120.9500
C1—C21.509 (2)C13—H131.0000
C1—C161.468 (2)C13—C141.529 (3)
C2—H2A0.9900C13—C151.525 (2)
C2—H2B0.9900C14—H14A0.9800
C2—C31.546 (2)C14—H14B0.9800
C3—H31.0000C14—H14C0.9800
C3—C71.515 (2)C15—H15A0.9800
C4—C51.518 (2)C15—H15B0.9800
C5—H5A0.9900C15—H15C0.9800
C5—H5B0.9900C16—C171.401 (2)
C5—C61.516 (2)C16—C211.391 (2)
C6—H6A0.9800C17—H170.9500
C6—H6B0.9800C17—C181.382 (2)
C6—H6C0.9800C18—H180.9500
C7—C81.393 (2)C18—C191.388 (3)
C7—C121.390 (2)C19—C201.382 (3)
C8—H80.9500C20—H200.9500
C8—C91.387 (2)C20—C211.389 (2)
C9—H90.9500C21—H210.9500
N2—N1—C3113.63 (12)C9—C10—C13122.90 (14)
C4—N1—N2121.84 (13)C11—C10—C13119.59 (15)
C4—N1—C3124.15 (13)C10—C11—H11119.4
C1—N2—N1108.33 (12)C12—C11—C10121.14 (15)
N2—C1—C2114.20 (14)C12—C11—H11119.4
N2—C1—C16120.84 (14)C7—C12—H12119.4
C16—C1—C2124.92 (14)C11—C12—C7121.25 (14)
C1—C2—H2A111.2C11—C12—H12119.4
C1—C2—H2B111.2C10—C13—H13107.4
C1—C2—C3102.65 (13)C10—C13—C14110.30 (14)
H2A—C2—H2B109.2C10—C13—C15113.48 (15)
C3—C2—H2A111.2C14—C13—H13107.4
C3—C2—H2B111.2C15—C13—H13107.4
N1—C3—C2100.81 (12)C15—C13—C14110.46 (16)
N1—C3—H3109.6C13—C14—H14A109.5
N1—C3—C7112.12 (12)C13—C14—H14B109.5
C2—C3—H3109.6C13—C14—H14C109.5
C7—C3—C2114.82 (13)H14A—C14—H14B109.5
C7—C3—H3109.6H14A—C14—H14C109.5
O1—C4—N1120.11 (15)H14B—C14—H14C109.5
O1—C4—C5123.92 (14)C13—C15—H15A109.5
N1—C4—C5115.96 (14)C13—C15—H15B109.5
C4—C5—H5A109.3C13—C15—H15C109.5
C4—C5—H5B109.3H15A—C15—H15B109.5
H5A—C5—H5B108.0H15A—C15—H15C109.5
C6—C5—C4111.61 (14)H15B—C15—H15C109.5
C6—C5—H5A109.3C17—C16—C1120.97 (14)
C6—C5—H5B109.3C21—C16—C1120.24 (14)
C5—C6—H6A109.5C21—C16—C17118.76 (15)
C5—C6—H6B109.5C16—C17—H17119.6
C5—C6—H6C109.5C18—C17—C16120.78 (16)
H6A—C6—H6B109.5C18—C17—H17119.6
H6A—C6—H6C109.5C17—C18—H18120.5
H6B—C6—H6C109.5C17—C18—C19119.09 (16)
C8—C7—C3121.51 (14)C19—C18—H18120.5
C12—C7—C3120.69 (14)C18—C19—Cl1119.18 (14)
C12—C7—C8117.80 (14)C20—C19—Cl1119.38 (14)
C7—C8—H8119.6C20—C19—C18121.45 (16)
C9—C8—C7120.73 (14)C19—C20—H20120.5
C9—C8—H8119.6C19—C20—C21118.94 (15)
C8—C9—H9119.2C21—C20—H20120.5
C8—C9—C10121.58 (14)C16—C21—H21119.5
C10—C9—H9119.2C20—C21—C16120.97 (15)
C9—C10—C11117.48 (15)C20—C21—H21119.5
Cl1—C19—C20—C21179.97 (12)C3—C7—C8—C9179.03 (14)
O1—C4—C5—C65.7 (2)C3—C7—C12—C11179.83 (14)
N1—N2—C1—C21.75 (18)C4—N1—N2—C1170.50 (14)
N1—N2—C1—C16179.56 (13)C4—N1—C3—C2167.46 (14)
N1—C3—C7—C866.98 (18)C4—N1—C3—C769.93 (19)
N1—C3—C7—C12112.81 (16)C7—C8—C9—C101.2 (2)
N1—C4—C5—C6175.14 (14)C8—C7—C12—C110.4 (2)
N2—N1—C3—C25.53 (16)C8—C9—C10—C110.5 (2)
N2—N1—C3—C7117.09 (14)C8—C9—C10—C13178.43 (15)
N2—N1—C4—O1177.75 (14)C9—C10—C11—C120.7 (2)
N2—N1—C4—C51.4 (2)C9—C10—C13—C1483.6 (2)
N2—C1—C2—C35.09 (18)C9—C10—C13—C1540.9 (2)
N2—C1—C16—C173.7 (2)C10—C11—C12—C71.1 (3)
N2—C1—C16—C21178.10 (14)C11—C10—C13—C1494.32 (19)
C1—C2—C3—N15.77 (15)C11—C10—C13—C15141.14 (17)
C1—C2—C3—C7114.94 (14)C12—C7—C8—C90.8 (2)
C1—C16—C17—C18177.91 (16)C13—C10—C11—C12177.35 (15)
C1—C16—C21—C20178.43 (14)C16—C1—C2—C3177.20 (14)
C2—C1—C16—C17173.90 (16)C16—C17—C18—C190.4 (3)
C2—C1—C16—C214.3 (2)C17—C16—C21—C200.1 (2)
C2—C3—C7—C847.29 (19)C17—C18—C19—Cl1179.47 (14)
C2—C3—C7—C12132.92 (15)C17—C18—C19—C200.0 (3)
C3—N1—N2—C12.67 (17)C18—C19—C20—C210.5 (3)
C3—N1—C4—O15.3 (2)C19—C20—C21—C160.6 (2)
C3—N1—C4—C5173.88 (13)C21—C16—C17—C180.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.952.513.419 (2)161
Symmetry code: (i) x+3, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.952.513.419 (2)161
Symmetry code: (i) x+3, y+2, z+2.
 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. VVS thanks the DST for financial assistance through a PURSE grant. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLombardino, J. G. & Otterness, I. G. (1977). J. Med. Chem. 20, 830–834.  Google Scholar
First citationManna, F., Chimenti, F., Fioravanti, F., Bolasco, A., Seecci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett. 15, 4632–4635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarayana, B., Salian, V. V., Sarojini, B. K. & Jasinski, J. P. (2014). Acta Cryst. E70, o761–o762.  CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Darsan Raj, C. G. & Ragavendra, R. (2012b). Med. Chem. Res. 21, 2012–2022.  Web of Science CSD CrossRef CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Yathirajan, H. S. & Ragavendra, R. (2012a). Pharma Chem. 4, 1445–1457.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, E. C., Patel, H. & Kumar, H. (1992). Tetrahedron, 48, 8089–8100.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds