organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4R)-3-Hy­dr­oxy-7-iso­propyl-4-methyl-5,6-di­hydro­benzo­furan-2(4H)-one

aInstitut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany, and bDepartamento de Química, Universidad Simón Bolívar, Apartado 89000, Caracas 1020-A, Venezuela
*Correspondence e-mail: frank.heinemann@fau.de, jpastran@usb.ve

(Received 25 April 2014; accepted 19 June 2014; online 25 June 2014)

In the title compound, alternatively called α-hy­droxy-γ-alkyl­idenebutenolide, C12H16O3, two independent mol­ecules (A and B) crystallize in the asymmetric unit in each of which the 5,6-di­hydro­benzo ring has an envelope conformation. The torsion angle along the butadiene chain in the γ-alkyl­idenebutenolide core is −177.9 (2)° for mol­ecule A and 179.9 (2)° for mol­ecule B. In the crystal, O—H⋯O hydrogen bonds between hy­droxyl and carbonyl groups of adjacent independent mol­ecules form dimers with R22(10) loops.

Keywords: crystal structure.

Related literature

For background to butenolides and their pharmacological activity, see: Rao (1964[Rao, Y. S. (1964). Chem. Rev. 64, 353-388.]); Ma et al. (1999[Ma, S., Shi, Z. & Yu, Z. (1999). Tetrahedron, 55, 12137-12148.]). For the synthesis of γ-alkyl­idenebutenolides, see: Park et al. (2012[Park, B. R., Kim, K. H., Lim, J. W. & Kim, J. N. (2012). Tetrahedron Lett. 53, 36-40.]); Almeida et al. (2010[Almeida, L. C., Teixeira, R. R., Fontes, P., Álvares, C. R. & Demuner, A. J. (2010). Quim. Nova, 33, 5, 1163-1174.]); Xu et al. (2007[Xu, H.-W., Wang, J.-F., Liu, G.-Z., Hong, G.-F. & Liu, H.-M. (2007). Org. Biomol. Chem. 5, 1247-1250.]); Langer et al. (2000[Langer, P., Schneider, T. & Stoll, M. (2000). Chem. Eur. J. 6, 17, 3204-3214.], 2001[Langer, P., Eckardt, T., Saleh, N. N. R., Karime, I. & Müller, P. (2001). Eur. J. Org. Chem. 19, 3657-3667.]). For related structures, see: Schneider & Viljoen (1997[Schneider, D. F. & Viljoen, M. S. (1997). Synth. Commun. 27, 3349-3360.]); Langer & Saleh (2000[Langer, P. & Saleh, N. N. R. (2000). Org. Lett. 2, 3333-3336.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16O3

  • Mr = 208.25

  • Monoclinic, P 21

  • a = 9.0437 (3) Å

  • b = 13.2792 (6) Å

  • c = 9.8199 (5) Å

  • β = 104.694 (3)°

  • V = 1140.73 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.55 × 0.20 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.746

  • 37926 measured reflections

  • 2821 independent reflections

  • 2564 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.09

  • 2821 reflections

  • 283 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.87 (3) 1.81 (3) 2.627 (2) 157 (3)
O6—H6⋯O2ii 0.84 (3) 1.93 (3) 2.727 (2) 156 (3)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+2]; (ii) [-x+2, y+{\script{1\over 2}}, -z+2].

Data collection: COLLECT (Bruker–Nonius, 2002[Bruker-Nonius (2002). COLLECT. Bruker-Nonius, Madison, Wisconsin, USA.]); cell refinement: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Introduction top

Butenolides are an important class of organic compounds present in natural products that have been studied for over 50 years (Rao, 1964). Most of them exhibit inter­esting pharmacological activities, such as anti­bacterial, anti­cancer, anti­biotic and phospho­lipase A2 inhibition activity (Ma et al, 1999). During the last decades γ-alkyl­idenebutenolides have been considered as attractive synthetic targets due to their structural diversity and biological properties. As a result, several synthetic procedures have been developed for the preparation of these substances (Langer, et al., 2000; Langer, et al., 2001; Xu, et al., 2007; Almeida, et al., 2010; Park, et al., 2012). Also, α-Hy­droxy-γ-alkyl­idenebutenolides are particularly suitable building blocks for analogues of pharmacologically relevant natural products (Langer & Saleh, 2000). Herein, we report the crystal structure of a bicyclic α-hy­droxy-γ-alkyl­idenebutenolide based on l-Menthone, an inexpensive and accessible reagent from the chiral pool, which is also an important structural motif found in natural products. To the best of our knowledge, there is only one report on the preparation of a similar γ-alkyl­idenebutenolide, but no structural data were presented (Schneider & Viljoen, 1997).

Experimental top

Synthesis and crystallization top

Sodium hydride (60% dispersion in mineral oil, 2.44 g, 0.061 mmol) was stirred for 15 minutes in 200 mL of freshly distilled THF. Then a mixture of l-Menthone (7.71 g, 0.050 mmol) and di-ethyl oxalate (3.36 g, 0.023 mmol) in 100 mL of THF was added drop by drop. The resulting mixture was heated to reflux for 2 days. After this time, the solvent was removed by rotary evaporation. The crude reaction product was added to an ice-hydro­chloric acid (1M) mixture and extracted with chloro­form (3 x 50 mL). The organic layer was dried with MgSO4, filtered and the solvent was removed under vacuum to afford orange oil, which was purified by Kugelrohr distillation (413 °K, 5 x 10-2 mbar, bulbs cooled with dry ice), to obtain the desired product as a yellow oil that solidifies (1.95 g, 41%). Suitable crystals for X-ray diffraction analysis were obtained by slow diffusion of hexane into a saturated solution of the compound in di­chloro­methane cooled at 263 °K for 3 days. Elemental analysis calculated for C12H16O3×1/3H2O: C, 67.27 %, H 7.84 %. Found: C, 67.38 %, H 7.70 %.

Refinement top

The positions of the two oxygen bound hydrogen atoms H3 and H6 were taken from a difference fourier synthesis and their positional parameters were refined. All other H atoms were included in calculated positions (C–H = 0.93 Å for aromatic H, C–H = 0.96 Å for methyl H, C–H = 0.98 Å for methyl­ene H, and C–H = 1.00 Å for tertiary H), and refined using a riding model with Uiso(H) = 1.2 Ueq or Uiso (H) = 1.5 Ueq (for methyl groups) of the carrier atom.

Results and discussion top

In the title compound,C12H16O3, two independent molecules (A and B) crystallize in the asymmetric unit (Fig. 1). The 5,6-di­hydro­benzo ring has an envelope conformation (puckering parameters Q, θ, and φ = 0.458 (2)Å, 126.4 (2)° and 295.8 (3)°, respectively; (Cremer & Pople, 1975)). The torsion angles along the butadiene chain in the γ-alkyl­idenebutenolide core are -177.9 (2)° for molecule A and 179.9 (2)° for molecule B. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal O–H···O hydrogen bonds between hydroxyl and carbonyl groups of adjacent independent molecules form inversion dimers (Fig. 2).

Related literature top

For background to butenolides and their pharmacological activity, see: Rao (1964); Ma et al. (1999). For the synthesis of γ-alkylidenebutenolides, see: Park et al. (2012); Almeida et al. (2010); Xu et al. (2007); Langer et al. (2000, 2001). For related structures, see: Schneider & Viljoen (1997); Langer & Saleh (2000). For standard bond lengths, see: Allen et al. (1987) and for puckering parameters, see: Cremer & Pople (1975).

Structure description top

Butenolides are an important class of organic compounds present in natural products that have been studied for over 50 years (Rao, 1964). Most of them exhibit inter­esting pharmacological activities, such as anti­bacterial, anti­cancer, anti­biotic and phospho­lipase A2 inhibition activity (Ma et al, 1999). During the last decades γ-alkyl­idenebutenolides have been considered as attractive synthetic targets due to their structural diversity and biological properties. As a result, several synthetic procedures have been developed for the preparation of these substances (Langer, et al., 2000; Langer, et al., 2001; Xu, et al., 2007; Almeida, et al., 2010; Park, et al., 2012). Also, α-Hy­droxy-γ-alkyl­idenebutenolides are particularly suitable building blocks for analogues of pharmacologically relevant natural products (Langer & Saleh, 2000). Herein, we report the crystal structure of a bicyclic α-hy­droxy-γ-alkyl­idenebutenolide based on l-Menthone, an inexpensive and accessible reagent from the chiral pool, which is also an important structural motif found in natural products. To the best of our knowledge, there is only one report on the preparation of a similar γ-alkyl­idenebutenolide, but no structural data were presented (Schneider & Viljoen, 1997).

In the title compound,C12H16O3, two independent molecules (A and B) crystallize in the asymmetric unit (Fig. 1). The 5,6-di­hydro­benzo ring has an envelope conformation (puckering parameters Q, θ, and φ = 0.458 (2)Å, 126.4 (2)° and 295.8 (3)°, respectively; (Cremer & Pople, 1975)). The torsion angles along the butadiene chain in the γ-alkyl­idenebutenolide core are -177.9 (2)° for molecule A and 179.9 (2)° for molecule B. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal O–H···O hydrogen bonds between hydroxyl and carbonyl groups of adjacent independent molecules form inversion dimers (Fig. 2).

For background to butenolides and their pharmacological activity, see: Rao (1964); Ma et al. (1999). For the synthesis of γ-alkylidenebutenolides, see: Park et al. (2012); Almeida et al. (2010); Xu et al. (2007); Langer et al. (2000, 2001). For related structures, see: Schneider & Viljoen (1997); Langer & Saleh (2000). For standard bond lengths, see: Allen et al. (1987) and for puckering parameters, see: Cremer & Pople (1975).

Synthesis and crystallization top

Sodium hydride (60% dispersion in mineral oil, 2.44 g, 0.061 mmol) was stirred for 15 minutes in 200 mL of freshly distilled THF. Then a mixture of l-Menthone (7.71 g, 0.050 mmol) and di-ethyl oxalate (3.36 g, 0.023 mmol) in 100 mL of THF was added drop by drop. The resulting mixture was heated to reflux for 2 days. After this time, the solvent was removed by rotary evaporation. The crude reaction product was added to an ice-hydro­chloric acid (1M) mixture and extracted with chloro­form (3 x 50 mL). The organic layer was dried with MgSO4, filtered and the solvent was removed under vacuum to afford orange oil, which was purified by Kugelrohr distillation (413 °K, 5 x 10-2 mbar, bulbs cooled with dry ice), to obtain the desired product as a yellow oil that solidifies (1.95 g, 41%). Suitable crystals for X-ray diffraction analysis were obtained by slow diffusion of hexane into a saturated solution of the compound in di­chloro­methane cooled at 263 °K for 3 days. Elemental analysis calculated for C12H16O3×1/3H2O: C, 67.27 %, H 7.84 %. Found: C, 67.38 %, H 7.70 %.

Refinement details top

The positions of the two oxygen bound hydrogen atoms H3 and H6 were taken from a difference fourier synthesis and their positional parameters were refined. All other H atoms were included in calculated positions (C–H = 0.93 Å for aromatic H, C–H = 0.96 Å for methyl H, C–H = 0.98 Å for methyl­ene H, and C–H = 1.00 Å for tertiary H), and refined using a riding model with Uiso(H) = 1.2 Ueq or Uiso (H) = 1.5 Ueq (for methyl groups) of the carrier atom.

Computing details top

Data collection: COLLECT (Bruker–Nonius, 2002); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of independent molecules A and B of the title compound, C12H16O3, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Inversion dimer formed in the molecular packing of the title compound. Dashed lines indicate intermolecular O–H···O hydrogen bonds between hydroxyl and the carbonyl groups of neighboring molecules.
(4R)-3-Hydroxy-7-isopropyl-4-methyl-5,6-dihydrobenzofuran-2(4H)-one top
Crystal data top
C12H16O3F(000) = 448
Mr = 208.25Dx = 1.213 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 96 reflections
a = 9.0437 (3) Åθ = 6.0–20.0°
b = 13.2792 (6) ŵ = 0.09 mm1
c = 9.8199 (5) ÅT = 150 K
β = 104.694 (3)°Block, colorless
V = 1140.73 (9) Å30.55 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2821 independent reflections
Radiation source: fine-focus sealed tube2564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9 pixels mm-1θmax = 27.9°, θmin = 3.1°
φ– and ω–rotations with 2.00 ° and 60 sec per frame scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1717
Tmin = 0.682, Tmax = 0.746l = 1212
37926 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.064P)2 + 0.1458P]
where P = (Fo2 + 2Fc2)/3
2821 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C12H16O3V = 1140.73 (9) Å3
Mr = 208.25Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.0437 (3) ŵ = 0.09 mm1
b = 13.2792 (6) ÅT = 150 K
c = 9.8199 (5) Å0.55 × 0.20 × 0.20 mm
β = 104.694 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2821 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2564 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.746Rint = 0.042
37926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.26 e Å3
2821 reflectionsΔρmin = 0.22 e Å3
283 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3) (δ, p.p.m..): 1.01–1.04 (t, 6H), 1.29–1.31 (d, 3H), 1.43–1.51 (m, 1H), 1.81–1.88 (m, 1H), 2.14–2.21 (m, 1H), 2.26–2.33 (m, 1H), 2.74–2.83 (m, 1H), 3.04–3.11 (m, 1H). 13C{1H} NMR (101 MHz, CDCl3) (δ, p.p.m..): 17.65, 20.23, 20.40, 21.95, 27.89, 28.25, 31.22, 128.25, 128.75, 135.33, 140.89, 167.80. [α]D20 = +4.32 (c 0.018, CH3OH)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61403 (15)0.10519 (12)1.04435 (15)0.0267 (3)
O20.81828 (17)0.02807 (13)1.18582 (17)0.0340 (4)
O30.98766 (16)0.21407 (13)1.14537 (16)0.0311 (3)
H31.033 (3)0.165 (3)1.197 (3)0.047*
O40.59682 (16)0.52380 (12)0.55678 (16)0.0293 (3)
O50.80720 (19)0.59606 (14)0.6939 (2)0.0474 (5)
O60.95840 (16)0.40045 (12)0.67379 (16)0.0293 (3)
H61.005 (3)0.450 (3)0.719 (3)0.044*
C10.7648 (2)0.10095 (17)1.1155 (2)0.0247 (4)
C20.8387 (2)0.19425 (16)1.08940 (19)0.0230 (4)
C30.7337 (2)0.25226 (16)1.00204 (18)0.0231 (4)
C40.7400 (2)0.35151 (18)0.9315 (2)0.0299 (5)
H4A0.76550.33820.83990.036*
C50.5796 (3)0.39841 (18)0.8990 (2)0.0339 (5)
H5A0.55590.41750.98860.041*
H5B0.57910.46060.84330.041*
C60.4551 (2)0.32752 (19)0.8177 (2)0.0329 (5)
H6B0.35400.35920.80890.039*
H6C0.46850.31790.72150.039*
C70.4576 (2)0.22601 (17)0.8872 (2)0.0256 (4)
C80.5915 (2)0.19749 (16)0.97278 (19)0.0234 (4)
C90.8623 (3)0.4221 (2)1.0174 (3)0.0431 (6)
H9A0.96320.39101.03030.065*
H9B0.84240.43421.10960.065*
H9C0.85960.48620.96740.065*
C100.3163 (2)0.16088 (18)0.8569 (2)0.0316 (5)
H10A0.34350.09520.90680.038*
C110.2613 (3)0.1398 (3)0.6991 (3)0.0610 (9)
H11A0.34500.11040.66550.091*
H11B0.22840.20290.64880.091*
H11C0.17520.09260.68170.091*
C120.1891 (3)0.2093 (3)0.9104 (3)0.0492 (7)
H12A0.22330.21791.01270.074*
H12B0.09840.16610.88720.074*
H12C0.16390.27530.86560.074*
C130.7478 (2)0.52326 (17)0.6280 (2)0.0289 (4)
C140.8127 (2)0.42486 (16)0.60962 (19)0.0233 (4)
C150.7014 (2)0.36769 (15)0.52805 (19)0.0227 (4)
C160.6920 (2)0.26074 (17)0.4779 (2)0.0297 (4)
H16A0.65930.21840.54920.036*
C170.5661 (3)0.2546 (2)0.3396 (2)0.0382 (5)
H17A0.60030.29130.26530.046*
H17B0.55070.18320.31040.046*
C180.4140 (3)0.2984 (2)0.3514 (3)0.0362 (5)
H18A0.34260.30000.25660.043*
H18B0.36970.25330.41100.043*
C190.4274 (2)0.40341 (17)0.4132 (2)0.0264 (4)
C200.5657 (2)0.42904 (16)0.49253 (19)0.0241 (4)
C210.8449 (3)0.2199 (2)0.4629 (3)0.0409 (6)
H21A0.92110.22490.55350.061*
H21B0.87890.25940.39210.061*
H21C0.83290.14920.43340.061*
C220.2912 (2)0.47316 (19)0.3872 (3)0.0343 (5)
H22A0.31690.52990.45610.041*
C230.1499 (3)0.4196 (2)0.4103 (3)0.0407 (6)
H23A0.17260.39270.50630.061*
H23B0.12140.36430.34270.061*
H23C0.06500.46750.39680.061*
C240.2587 (3)0.5178 (3)0.2387 (3)0.0612 (9)
H24A0.34920.55410.22750.092*
H24B0.17210.56440.22460.092*
H24C0.23400.46340.16910.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (7)0.0257 (8)0.0292 (7)0.0018 (6)0.0005 (6)0.0038 (6)
O20.0256 (7)0.0287 (8)0.0423 (9)0.0028 (7)0.0013 (6)0.0112 (7)
O30.0190 (7)0.0347 (9)0.0368 (8)0.0006 (6)0.0016 (6)0.0113 (7)
O40.0244 (7)0.0211 (7)0.0349 (8)0.0017 (6)0.0065 (6)0.0013 (6)
O50.0308 (9)0.0260 (9)0.0684 (12)0.0010 (7)0.0191 (8)0.0123 (9)
O60.0213 (7)0.0269 (8)0.0351 (8)0.0001 (6)0.0016 (6)0.0064 (6)
C10.0210 (9)0.0280 (10)0.0237 (9)0.0032 (8)0.0029 (7)0.0000 (8)
C20.0213 (9)0.0276 (11)0.0206 (8)0.0032 (8)0.0061 (7)0.0020 (8)
C30.0243 (9)0.0277 (10)0.0175 (8)0.0028 (8)0.0058 (7)0.0003 (8)
C40.0270 (10)0.0324 (11)0.0292 (10)0.0047 (9)0.0050 (8)0.0098 (9)
C50.0321 (11)0.0286 (11)0.0384 (11)0.0061 (9)0.0040 (9)0.0106 (9)
C60.0275 (10)0.0381 (13)0.0307 (11)0.0103 (9)0.0030 (9)0.0112 (9)
C70.0227 (9)0.0322 (11)0.0208 (8)0.0051 (8)0.0033 (7)0.0011 (8)
C80.0254 (9)0.0241 (10)0.0200 (8)0.0036 (8)0.0048 (7)0.0009 (8)
C90.0368 (12)0.0304 (12)0.0555 (15)0.0035 (10)0.0005 (11)0.0128 (11)
C100.0215 (9)0.0337 (12)0.0350 (11)0.0053 (9)0.0013 (8)0.0019 (9)
C110.0360 (13)0.093 (3)0.0480 (16)0.0079 (15)0.0006 (11)0.0274 (17)
C120.0327 (12)0.0598 (18)0.0610 (16)0.0009 (12)0.0231 (12)0.0029 (15)
C130.0255 (9)0.0239 (10)0.0310 (10)0.0035 (8)0.0046 (8)0.0009 (8)
C140.0244 (9)0.0244 (10)0.0193 (8)0.0024 (8)0.0025 (7)0.0026 (7)
C150.0245 (9)0.0244 (10)0.0196 (8)0.0048 (7)0.0066 (7)0.0006 (7)
C160.0314 (10)0.0267 (10)0.0332 (10)0.0078 (9)0.0121 (8)0.0069 (9)
C170.0335 (11)0.0433 (13)0.0375 (11)0.0107 (11)0.0085 (9)0.0199 (11)
C180.0307 (11)0.0395 (13)0.0363 (12)0.0151 (10)0.0046 (9)0.0096 (10)
C190.0257 (10)0.0293 (11)0.0224 (9)0.0088 (9)0.0030 (8)0.0026 (8)
C200.0269 (9)0.0228 (10)0.0210 (9)0.0060 (8)0.0032 (7)0.0034 (8)
C210.0327 (11)0.0388 (13)0.0531 (14)0.0034 (10)0.0140 (10)0.0181 (11)
C220.0248 (10)0.0339 (13)0.0382 (12)0.0064 (9)0.0031 (9)0.0060 (10)
C230.0274 (11)0.0453 (15)0.0488 (14)0.0038 (10)0.0087 (10)0.0080 (12)
C240.0353 (13)0.075 (2)0.0624 (18)0.0123 (14)0.0078 (12)0.0402 (17)
Geometric parameters (Å, º) top
O1—C11.367 (2)C11—H11B0.9800
O1—C81.402 (3)C11—H11C0.9800
O2—C11.216 (3)C12—H12A0.9800
O3—C21.346 (2)C12—H12B0.9800
O3—H30.87 (3)C12—H12C0.9800
O4—C131.367 (2)C13—C141.462 (3)
O4—C201.404 (3)C14—C151.350 (3)
O5—C131.210 (3)C15—C201.440 (3)
O6—C141.348 (2)C15—C161.499 (3)
O6—H60.84 (3)C16—C211.527 (3)
C1—C21.461 (3)C16—C171.538 (3)
C2—C31.348 (3)C16—H16A1.0000
C3—C81.442 (3)C17—C181.524 (3)
C3—C41.497 (3)C17—H17A0.9900
C4—C91.529 (3)C17—H17B0.9900
C4—C51.536 (3)C18—C191.514 (3)
C4—H4A1.0000C18—H18A0.9900
C5—C61.528 (3)C18—H18B0.9900
C5—H5A0.9900C19—C201.339 (3)
C5—H5B0.9900C19—C221.510 (3)
C6—C71.509 (3)C21—H21A0.9800
C6—H6B0.9900C21—H21B0.9800
C6—H6C0.9900C21—H21C0.9800
C7—C81.341 (3)C22—C231.530 (3)
C7—C101.509 (3)C22—C241.531 (4)
C9—H9A0.9800C22—H22A1.0000
C9—H9B0.9800C23—H23A0.9800
C9—H9C0.9800C23—H23B0.9800
C10—C121.523 (3)C23—H23C0.9800
C10—C111.529 (4)C24—H24A0.9800
C10—H10A1.0000C24—H24B0.9800
C11—H11A0.9800C24—H24C0.9800
C1—O1—C8106.96 (16)H12A—C12—H12C109.5
C2—O3—H3112 (2)H12B—C12—H12C109.5
C13—O4—C20106.58 (16)O5—C13—O4121.3 (2)
C14—O6—H6111 (2)O5—C13—C14129.96 (19)
O2—C1—O1121.6 (2)O4—C13—C14108.76 (18)
O2—C1—C2129.88 (19)O6—C14—C15129.5 (2)
O1—C1—C2108.47 (17)O6—C14—C13122.17 (18)
O3—C2—C3128.2 (2)C15—C14—C13108.26 (18)
O3—C2—C1123.31 (18)C14—C15—C20106.68 (18)
C3—C2—C1108.47 (18)C14—C15—C16134.4 (2)
C2—C3—C8106.69 (19)C20—C15—C16118.89 (17)
C2—C3—C4134.0 (2)C15—C16—C21113.05 (18)
C8—C3—C4119.27 (17)C15—C16—C17107.96 (19)
C3—C4—C9113.05 (18)C21—C16—C17112.45 (19)
C3—C4—C5107.98 (17)C15—C16—H16A107.7
C9—C4—C5112.3 (2)C21—C16—H16A107.7
C3—C4—H4A107.8C17—C16—H16A107.7
C9—C4—H4A107.8C18—C17—C16113.12 (19)
C5—C4—H4A107.8C18—C17—H17A109.0
C6—C5—C4113.0 (2)C16—C17—H17A109.0
C6—C5—H5A109.0C18—C17—H17B109.0
C4—C5—H5A109.0C16—C17—H17B109.0
C6—C5—H5B109.0H17A—C17—H17B107.8
C4—C5—H5B109.0C19—C18—C17113.62 (18)
H5A—C5—H5B107.8C19—C18—H18A108.8
C7—C6—C5112.91 (17)C17—C18—H18A108.8
C7—C6—H6B109.0C19—C18—H18B108.8
C5—C6—H6B109.0C17—C18—H18B108.8
C7—C6—H6C109.0H18A—C18—H18B107.7
C5—C6—H6C109.0C20—C19—C22123.0 (2)
H6B—C6—H6C107.8C20—C19—C18115.8 (2)
C8—C7—C10123.1 (2)C22—C19—C18121.25 (18)
C8—C7—C6116.31 (19)C19—C20—O4122.70 (19)
C10—C7—C6120.55 (17)C19—C20—C15127.6 (2)
C7—C8—O1123.65 (19)O4—C20—C15109.70 (16)
C7—C8—C3126.9 (2)C16—C21—H21A109.5
O1—C8—C3109.41 (16)C16—C21—H21B109.5
C4—C9—H9A109.5H21A—C21—H21B109.5
C4—C9—H9B109.5C16—C21—H21C109.5
H9A—C9—H9B109.5H21A—C21—H21C109.5
C4—C9—H9C109.5H21B—C21—H21C109.5
H9A—C9—H9C109.5C19—C22—C23111.5 (2)
H9B—C9—H9C109.5C19—C22—C24110.5 (2)
C7—C10—C12111.4 (2)C23—C22—C24110.81 (19)
C7—C10—C11110.3 (2)C19—C22—H22A108.0
C12—C10—C11110.3 (2)C23—C22—H22A108.0
C7—C10—H10A108.2C24—C22—H22A108.0
C12—C10—H10A108.2C22—C23—H23A109.5
C11—C10—H10A108.2C22—C23—H23B109.5
C10—C11—H11A109.5H23A—C23—H23B109.5
C10—C11—H11B109.5C22—C23—H23C109.5
H11A—C11—H11B109.5H23A—C23—H23C109.5
C10—C11—H11C109.5H23B—C23—H23C109.5
H11A—C11—H11C109.5C22—C24—H24A109.5
H11B—C11—H11C109.5C22—C24—H24B109.5
C10—C12—H12A109.5H24A—C24—H24B109.5
C10—C12—H12B109.5C22—C24—H24C109.5
H12A—C12—H12B109.5H24A—C24—H24C109.5
C10—C12—H12C109.5H24B—C24—H24C109.5
C8—O1—C1—O2178.89 (19)C20—O4—C13—O5179.9 (2)
C8—O1—C1—C20.9 (2)C20—O4—C13—C140.9 (2)
O2—C1—C2—O30.7 (3)O5—C13—C14—O62.5 (4)
O1—C1—C2—O3179.55 (17)O4—C13—C14—O6176.68 (17)
O2—C1—C2—C3178.7 (2)O5—C13—C14—C15179.3 (2)
O1—C1—C2—C31.0 (2)O4—C13—C14—C150.2 (2)
O3—C2—C3—C8179.90 (19)O6—C14—C15—C20177.15 (18)
C1—C2—C3—C80.7 (2)C13—C14—C15—C200.6 (2)
O3—C2—C3—C43.4 (4)O6—C14—C15—C160.2 (4)
C1—C2—C3—C4176.0 (2)C13—C14—C15—C16176.3 (2)
C2—C3—C4—C931.2 (3)C14—C15—C16—C2129.2 (3)
C8—C3—C4—C9152.4 (2)C20—C15—C16—C21154.17 (19)
C2—C3—C4—C5156.0 (2)C14—C15—C16—C17154.2 (2)
C8—C3—C4—C527.6 (2)C20—C15—C16—C1729.1 (2)
C3—C4—C5—C652.7 (2)C15—C16—C17—C1852.6 (3)
C9—C4—C5—C6177.98 (19)C21—C16—C17—C18178.0 (2)
C4—C5—C6—C752.7 (3)C16—C17—C18—C1951.4 (3)
C5—C6—C7—C824.0 (3)C17—C18—C19—C2022.8 (3)
C5—C6—C7—C10157.55 (19)C17—C18—C19—C22157.9 (2)
C10—C7—C8—O10.9 (3)C22—C19—C20—O41.0 (3)
C6—C7—C8—O1179.27 (17)C18—C19—C20—O4179.77 (18)
C10—C7—C8—C3176.57 (19)C22—C19—C20—C15177.74 (19)
C6—C7—C8—C31.8 (3)C18—C19—C20—C151.5 (3)
C1—O1—C8—C7177.38 (19)C13—O4—C20—C19179.81 (19)
C1—O1—C8—C30.4 (2)C13—O4—C20—C151.3 (2)
C2—C3—C8—C7177.94 (19)C14—C15—C20—C19179.97 (19)
C4—C3—C8—C70.6 (3)C16—C15—C20—C192.5 (3)
C2—C3—C8—O10.2 (2)C14—C15—C20—O41.2 (2)
C4—C3—C8—O1177.12 (17)C16—C15—C20—O4176.29 (16)
C8—C7—C10—C12116.2 (2)C20—C19—C22—C23132.3 (2)
C6—C7—C10—C1265.5 (3)C18—C19—C22—C2346.9 (3)
C8—C7—C10—C11120.9 (2)C20—C19—C22—C24104.0 (3)
C6—C7—C10—C1157.4 (3)C18—C19—C22—C2476.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.87 (3)1.81 (3)2.627 (2)157 (3)
O6—H6···O2ii0.84 (3)1.93 (3)2.727 (2)156 (3)
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.87 (3)1.81 (3)2.627 (2)157 (3)
O6—H6···O2ii0.84 (3)1.93 (3)2.727 (2)156 (3)
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+2, y+1/2, z+2.
 

Acknowledgements

This work was financed by DID–USB (project S1–IN–CB–005–12).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAlmeida, L. C., Teixeira, R. R., Fontes, P., Álvares, C. R. & Demuner, A. J. (2010). Quim. Nova, 33, 5, 1163–1174.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker–Nonius (2002). COLLECT. Bruker–Nonius, Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLanger, P., Eckardt, T., Saleh, N. N. R., Karime, I. & Müller, P. (2001). Eur. J. Org. Chem. 19, 3657–3667.  CrossRef Google Scholar
First citationLanger, P. & Saleh, N. N. R. (2000). Org. Lett. 2, 3333–3336.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLanger, P., Schneider, T. & Stoll, M. (2000). Chem. Eur. J. 6, 17, 3204–3214.  Google Scholar
First citationMa, S., Shi, Z. & Yu, Z. (1999). Tetrahedron, 55, 12137–12148.  Web of Science CrossRef CAS Google Scholar
First citationPark, B. R., Kim, K. H., Lim, J. W. & Kim, J. N. (2012). Tetrahedron Lett. 53, 36–40.  Web of Science CrossRef CAS Google Scholar
First citationRao, Y. S. (1964). Chem. Rev. 64, 353–388.  CrossRef CAS Web of Science Google Scholar
First citationSchneider, D. F. & Viljoen, M. S. (1997). Synth. Commun. 27, 3349–3360.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H.-W., Wang, J.-F., Liu, G.-Z., Hong, G.-F. & Liu, H.-M. (2007). Org. Biomol. Chem. 5, 1247–1250.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds