organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-([1,1′-Biphen­yl]-4-yl)-3-(2-methyl­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur 613 007, Tamilnadu, India, and cPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 30 May 2014; accepted 18 June 2014; online 25 June 2014)

In the title mol­ecule, C22H18O, the o-tolyl ring is connected through a conjugated double bond. The mol­ecule adopts an E conformation and the C—C=C—C torsion angle is 178.77 (13)°. The overall conformation may be described by the values of dihedral angles between the different planes. The terminal rings are twisted by an angle of 54.75 (8)°, while the biphenyl part is not planar, the dihedral angle between the planes of the rings being 40.65 (8)°. The dihedral angle between the benzene rings is 14.10 (7)°. There are three weak C—H⋯π inter­actions found in the crystal structure. No classic hydrogen bonds are observed.

Keywords: crystal structure.

Related literature

For the bioactivity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1150.]). For biological applications of chalcones, see: Opletalova (2000[Opletalova, V. (2000). Ceska Slov. Farm. 49, 278-284.]); Opletalova & Sedivy (1999[Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.]). For chalcones as non-linear optical materials, see: Fichou et al. (1988[Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429-L430.]); Goto et al. (1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayam, M. (1991). J. Cryst. Growth, 108, 688-698.]). For further applications of chalcones, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). For the crystal structures of related compounds, see: Betz et al. (2011a[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2996-o2997.],b[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o3179-o3180.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18O

  • Mr = 298.36

  • Triclinic, [P \overline 1]

  • a = 7.6396 (3) Å

  • b = 9.9106 (4) Å

  • c = 11.9263 (4) Å

  • α = 103.166 (2)°

  • β = 104.713 (2)°

  • γ = 103.308 (2)°

  • V = 809.66 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 273 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 1.000

  • 18636 measured reflections

  • 4534 independent reflections

  • 3291 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.151

  • S = 1.06

  • 4534 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C2–C7 methyl­benzene, C11–C16 benzene and C17–C22 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1CCg2i 0.96 2.97 3.6689 (17) 131
C5—H5⋯Cg3ii 0.93 2.84 3.5126 (18) 130
C21—H21⋯Cg1iii 0.93 2.99 3.632 (2) 127
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y-1, z-1; (iii) x, y+1, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bioactivities of chalcones were reported by Dimmock et al., (1999). The antibacterial, fungistatic and fungicidal properties of these compounds have also been reviewed (Opletalova et al. 2000, 1999). In addition with appropriate substituents, chalcones are a class of non-linear optical materials (Fichou et al. 1988, Goto et al. 1991). Recently, it has been noted that among many organic second harmonic generation, chalcone derivatives have excellent blue light transmittance and good cyrstallizability (Sarojini et al. 2006). The related compounds whose structures have been solved by X-ray are (2E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)- 3-(4-fluorophenyl)prop-2-en-1-one (Betz et al. 2011a) and (E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4' -yl)-3-(4-nitrophenyl)prop-2-en-1-one (Betz et al. 2011b).

In the title molecule (Fig. 1), C22H18O, the o-tolyl ring is connected through a conjugated double bond. The molecule adopts an E configuration and the C7—C8—C9—C10 torsion angle is 178.77 (13)°. Further, the torsion angle [C8—C9—C10—C11 = -164.91 (13)°] shows that the prop-2-en-1-one unit is not planar. The overall conformation of the compound may be described by the values of dihedral angles between the different planes. The terminal rings (C2—C7) and (C17—C22) are twisted by an angle of 54.75 (8)°, while the biphenyl part is not planar, the dihedral angle between the planes of the rings (C11—C16) and (C17—C22) being 40.65 (8)°. The dihedral angle between the benzene rings (C2—C7) and (C11—C16) is 14.10 (7)°.

There are three weak C1—H1C···π, C5—H5···π and C21—H21···π interactions involving the central benzene ring (C11—C16), the terminal phenyl ring (C17—C22) and the terminal benzene ring (C2—C7), respectively, are found in the crystal structure. The Car—Csp3, Car—Car and CO bond lengths in (I) are within their normal ranges (Allen et al., 1987). No classic hydrogen bonds are observed.

Related literature top

For the bioactivity of chalcones, see: Dimmock et al. (1999). For biological applications of chalcones, see: Opletalova (2000); Opletalova & Sedivy (1999). For chalcones as non-linear optical materials, see: Fichou et al. (1988); Goto et al. (1991). For further applications of chalcones, see: Sarojini et al. (2006). For the crystal structures of related compounds, see: Betz et al. (2011a,b). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Acetylbiphenyl (1.06 g, 10 mmol) and 2-methylbenzaldehyde (1.06 g, 10 mmol) in ethanol (25 ml) is mixed in the presence of NaOH (10 ml 30%). The reaction mixture was stirred for 6 h. Then the contents of the flask were poured into ice cold water (250 ml) and left for 12 h. The solid obtained was filtered and recrystallized for three to four times with ethanol. The pale-yellow single crystals of the title compound used for X-ray diffraction studies were grown by slow evaporation of acetone. Yield: 1.48 g (70%).

Refinement top

All H-atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl group), with Uiso(H) = 1.2 or 1.5Ueq(C); for aromatic and methyl group.

Structure description top

Bioactivities of chalcones were reported by Dimmock et al., (1999). The antibacterial, fungistatic and fungicidal properties of these compounds have also been reviewed (Opletalova et al. 2000, 1999). In addition with appropriate substituents, chalcones are a class of non-linear optical materials (Fichou et al. 1988, Goto et al. 1991). Recently, it has been noted that among many organic second harmonic generation, chalcone derivatives have excellent blue light transmittance and good cyrstallizability (Sarojini et al. 2006). The related compounds whose structures have been solved by X-ray are (2E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)- 3-(4-fluorophenyl)prop-2-en-1-one (Betz et al. 2011a) and (E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4' -yl)-3-(4-nitrophenyl)prop-2-en-1-one (Betz et al. 2011b).

In the title molecule (Fig. 1), C22H18O, the o-tolyl ring is connected through a conjugated double bond. The molecule adopts an E configuration and the C7—C8—C9—C10 torsion angle is 178.77 (13)°. Further, the torsion angle [C8—C9—C10—C11 = -164.91 (13)°] shows that the prop-2-en-1-one unit is not planar. The overall conformation of the compound may be described by the values of dihedral angles between the different planes. The terminal rings (C2—C7) and (C17—C22) are twisted by an angle of 54.75 (8)°, while the biphenyl part is not planar, the dihedral angle between the planes of the rings (C11—C16) and (C17—C22) being 40.65 (8)°. The dihedral angle between the benzene rings (C2—C7) and (C11—C16) is 14.10 (7)°.

There are three weak C1—H1C···π, C5—H5···π and C21—H21···π interactions involving the central benzene ring (C11—C16), the terminal phenyl ring (C17—C22) and the terminal benzene ring (C2—C7), respectively, are found in the crystal structure. The Car—Csp3, Car—Car and CO bond lengths in (I) are within their normal ranges (Allen et al., 1987). No classic hydrogen bonds are observed.

For the bioactivity of chalcones, see: Dimmock et al. (1999). For biological applications of chalcones, see: Opletalova (2000); Opletalova & Sedivy (1999). For chalcones as non-linear optical materials, see: Fichou et al. (1988); Goto et al. (1991). For further applications of chalcones, see: Sarojini et al. (2006). For the crystal structures of related compounds, see: Betz et al. (2011a,b). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of the title compound, showing the three weak C—H···π interactions.
(E)-1-([1,1'-Biphenyl]-4-yl)-3-(2-methylphenyl)prop-2-en-1-one top
Crystal data top
C22H18OZ = 2
Mr = 298.36F(000) = 316
Triclinic, P1Dx = 1.224 Mg m3
Hall symbol: -P 1Melting point: 393 K
a = 7.6396 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9106 (4) ÅCell parameters from 7102 reflections
c = 11.9263 (4) Åθ = 2.8–26.3°
α = 103.166 (2)°µ = 0.07 mm1
β = 104.713 (2)°T = 273 K
γ = 103.308 (2)°Block, pale yellow
V = 809.66 (6) Å30.40 × 0.35 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4534 independent reflections
Radiation source: fine-focus sealed tube3291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scanθmax = 29.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.908, Tmax = 1.000k = 1313
18636 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.073P)2 + 0.1155P]
where P = (Fo2 + 2Fc2)/3
4534 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C22H18Oγ = 103.308 (2)°
Mr = 298.36V = 809.66 (6) Å3
Triclinic, P1Z = 2
a = 7.6396 (3) ÅMo Kα radiation
b = 9.9106 (4) ŵ = 0.07 mm1
c = 11.9263 (4) ÅT = 273 K
α = 103.166 (2)°0.40 × 0.35 × 0.30 mm
β = 104.713 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4534 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3291 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 1.000Rint = 0.024
18636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
4534 reflectionsΔρmin = 0.17 e Å3
209 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37261 (17)0.60727 (11)0.09681 (9)0.0666 (4)
C10.1424 (2)0.25545 (16)0.31150 (12)0.0598 (5)
C20.02836 (17)0.14897 (13)0.26587 (10)0.0413 (3)
C30.08815 (19)0.01392 (14)0.34508 (11)0.0489 (4)
C40.1977 (2)0.08585 (15)0.30810 (13)0.0555 (4)
C50.1963 (2)0.05199 (16)0.18929 (14)0.0594 (5)
C60.0836 (2)0.08192 (15)0.10901 (12)0.0513 (4)
C70.02996 (17)0.18386 (13)0.14437 (10)0.0396 (3)
C80.14997 (19)0.32479 (13)0.05697 (10)0.0447 (3)
C90.13129 (18)0.38670 (14)0.04796 (11)0.0477 (4)
C100.26312 (18)0.52846 (14)0.13063 (10)0.0448 (4)
C110.26370 (17)0.57385 (13)0.25891 (10)0.0404 (3)
C120.1919 (2)0.47482 (14)0.31431 (11)0.0478 (4)
C130.20814 (19)0.51956 (14)0.43612 (11)0.0476 (4)
C140.29252 (17)0.66487 (13)0.50571 (10)0.0397 (3)
C150.35955 (18)0.76420 (13)0.44861 (10)0.0429 (3)
C160.34808 (18)0.71934 (13)0.32782 (10)0.0427 (3)
C170.30998 (17)0.71263 (14)0.63651 (10)0.0422 (3)
C180.35892 (19)0.62864 (15)0.71095 (11)0.0481 (4)
C190.3769 (2)0.67267 (17)0.83319 (12)0.0560 (5)
C200.3468 (2)0.80073 (19)0.88272 (12)0.0636 (5)
C210.2975 (3)0.8849 (2)0.81035 (13)0.0695 (6)
C220.2805 (2)0.84196 (17)0.68813 (12)0.0574 (5)
H1A0.121550.212530.396370.0897*
H1B0.274940.280200.266780.0897*
H1C0.103730.341790.300560.0897*
H30.092040.009680.425940.0587*
H40.272690.176130.363090.0666*
H50.270740.118850.163530.0712*
H60.083500.104690.028910.0615*
H80.249370.375900.077330.0536*
H90.031870.339390.070400.0573*
H120.132320.377510.268990.0574*
H130.161900.451380.472110.0572*
H150.412930.862380.492670.0514*
H160.397190.787010.292260.0512*
H180.379880.541580.678130.0576*
H190.409530.615180.881770.0672*
H200.359560.830640.964950.0763*
H210.275510.971290.843710.0834*
H220.248910.900490.640330.0688*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0822 (8)0.0610 (6)0.0424 (5)0.0025 (5)0.0263 (5)0.0071 (4)
C10.0701 (10)0.0586 (8)0.0426 (7)0.0047 (7)0.0249 (6)0.0080 (6)
C20.0422 (6)0.0426 (6)0.0362 (5)0.0136 (5)0.0117 (4)0.0071 (4)
C30.0517 (8)0.0478 (7)0.0379 (6)0.0152 (6)0.0086 (5)0.0020 (5)
C40.0492 (8)0.0431 (7)0.0561 (8)0.0065 (6)0.0045 (6)0.0030 (6)
C50.0536 (8)0.0522 (8)0.0661 (9)0.0044 (6)0.0186 (7)0.0191 (7)
C60.0555 (8)0.0524 (8)0.0445 (6)0.0119 (6)0.0196 (6)0.0130 (5)
C70.0407 (6)0.0410 (6)0.0352 (5)0.0135 (5)0.0112 (4)0.0082 (4)
C80.0502 (7)0.0439 (6)0.0354 (5)0.0097 (5)0.0137 (5)0.0084 (5)
C90.0459 (7)0.0517 (7)0.0371 (6)0.0085 (6)0.0139 (5)0.0038 (5)
C100.0481 (7)0.0484 (7)0.0341 (5)0.0138 (5)0.0123 (5)0.0075 (5)
C110.0410 (6)0.0434 (6)0.0329 (5)0.0127 (5)0.0100 (4)0.0066 (4)
C120.0564 (8)0.0383 (6)0.0404 (6)0.0067 (5)0.0159 (5)0.0040 (5)
C130.0565 (8)0.0421 (7)0.0408 (6)0.0070 (6)0.0183 (5)0.0114 (5)
C140.0398 (6)0.0430 (6)0.0340 (5)0.0128 (5)0.0108 (4)0.0083 (4)
C150.0497 (7)0.0358 (6)0.0359 (5)0.0099 (5)0.0094 (5)0.0057 (4)
C160.0482 (7)0.0406 (6)0.0362 (5)0.0100 (5)0.0116 (5)0.0120 (4)
C170.0395 (6)0.0481 (7)0.0347 (5)0.0104 (5)0.0121 (4)0.0077 (5)
C180.0505 (7)0.0489 (7)0.0420 (6)0.0085 (6)0.0166 (5)0.0136 (5)
C190.0536 (8)0.0686 (9)0.0429 (7)0.0081 (7)0.0165 (6)0.0212 (6)
C200.0582 (9)0.0913 (12)0.0376 (6)0.0204 (8)0.0194 (6)0.0108 (7)
C210.0794 (11)0.0832 (11)0.0489 (8)0.0428 (9)0.0238 (7)0.0041 (7)
C220.0673 (9)0.0667 (9)0.0428 (7)0.0353 (8)0.0169 (6)0.0116 (6)
Geometric parameters (Å, º) top
O1—C101.2192 (18)C19—C201.369 (2)
C1—C21.499 (2)C20—C211.375 (3)
C2—C31.3873 (18)C21—C221.385 (2)
C2—C71.4072 (16)C1—H1A0.9600
C3—C41.370 (2)C1—H1B0.9600
C4—C51.376 (2)C1—H1C0.9600
C5—C61.377 (2)C3—H30.9300
C6—C71.388 (2)C4—H40.9300
C7—C81.4628 (17)C5—H50.9300
C8—C91.3207 (17)C6—H60.9300
C9—C101.4743 (19)C8—H80.9300
C10—C111.4917 (16)C9—H90.9300
C11—C121.3901 (19)C12—H120.9300
C11—C161.3904 (18)C13—H130.9300
C12—C131.3828 (17)C15—H150.9300
C13—C141.3909 (18)C16—H160.9300
C14—C151.3948 (18)C18—H180.9300
C14—C171.4847 (16)C19—H190.9300
C15—C161.3809 (16)C20—H200.9300
C17—C181.3900 (19)C21—H210.9300
C17—C221.384 (2)C22—H220.9300
C18—C191.3840 (18)
C1—C2—C3120.06 (11)C2—C1—H1C109.00
C1—C2—C7121.73 (11)H1A—C1—H1B109.00
C3—C2—C7118.16 (12)H1A—C1—H1C109.00
C2—C3—C4122.16 (12)H1B—C1—H1C109.00
C3—C4—C5119.78 (14)C2—C3—H3119.00
C4—C5—C6119.30 (15)C4—C3—H3119.00
C5—C6—C7121.79 (13)C3—C4—H4120.00
C2—C7—C6118.80 (12)C5—C4—H4120.00
C2—C7—C8120.48 (12)C4—C5—H5120.00
C6—C7—C8120.72 (11)C6—C5—H5120.00
C7—C8—C9126.52 (13)C5—C6—H6119.00
C8—C9—C10122.06 (13)C7—C6—H6119.00
O1—C10—C9121.45 (11)C7—C8—H8117.00
O1—C10—C11119.84 (12)C9—C8—H8117.00
C9—C10—C11118.70 (12)C8—C9—H9119.00
C10—C11—C12122.41 (11)C10—C9—H9119.00
C10—C11—C16118.91 (11)C11—C12—H12120.00
C12—C11—C16118.59 (11)C13—C12—H12120.00
C11—C12—C13120.66 (12)C12—C13—H13119.00
C12—C13—C14121.08 (13)C14—C13—H13119.00
C13—C14—C15117.89 (11)C14—C15—H15119.00
C13—C14—C17120.99 (12)C16—C15—H15119.00
C15—C14—C17121.12 (11)C11—C16—H16120.00
C14—C15—C16121.17 (12)C15—C16—H16120.00
C11—C16—C15120.55 (12)C17—C18—H18120.00
C14—C17—C18120.50 (12)C19—C18—H18120.00
C14—C17—C22121.33 (12)C18—C19—H19120.00
C18—C17—C22118.16 (11)C20—C19—H19120.00
C17—C18—C19120.97 (14)C19—C20—H20120.00
C18—C19—C20120.12 (14)C21—C20—H20120.00
C19—C20—C21119.72 (13)C20—C21—H21120.00
C20—C21—C22120.46 (17)C22—C21—H21120.00
C17—C22—C21120.57 (15)C17—C22—H22120.00
C2—C1—H1A109.00C21—C22—H22120.00
C2—C1—H1B109.00
C1—C2—C3—C4178.74 (14)C16—C11—C12—C131.5 (2)
C7—C2—C3—C41.1 (2)C10—C11—C16—C15176.84 (13)
C1—C2—C7—C6177.97 (13)C12—C11—C16—C150.2 (2)
C1—C2—C7—C82.3 (2)C11—C12—C13—C141.5 (2)
C3—C2—C7—C60.4 (2)C12—C13—C14—C150.3 (2)
C3—C2—C7—C8179.93 (14)C12—C13—C14—C17179.94 (14)
C2—C3—C4—C51.1 (2)C13—C14—C15—C162.0 (2)
C3—C4—C5—C60.3 (2)C17—C14—C15—C16178.22 (13)
C4—C5—C6—C70.4 (2)C13—C14—C17—C1840.6 (2)
C5—C6—C7—C20.4 (2)C13—C14—C17—C22140.18 (15)
C5—C6—C7—C8179.34 (14)C15—C14—C17—C18139.63 (15)
C2—C7—C8—C9161.41 (14)C15—C14—C17—C2239.6 (2)
C6—C7—C8—C918.9 (2)C14—C15—C16—C112.0 (2)
C7—C8—C9—C10178.77 (13)C14—C17—C18—C19179.54 (14)
C8—C9—C10—O113.9 (2)C22—C17—C18—C190.3 (2)
C8—C9—C10—C11164.91 (13)C14—C17—C22—C21179.96 (16)
O1—C10—C11—C12158.73 (15)C18—C17—C22—C210.7 (2)
O1—C10—C11—C1617.8 (2)C17—C18—C19—C200.1 (2)
C9—C10—C11—C1220.1 (2)C18—C19—C20—C210.4 (3)
C9—C10—C11—C16163.39 (13)C19—C20—C21—C220.8 (3)
C10—C11—C12—C13175.01 (14)C20—C21—C22—C171.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C2–C7 methylbenzene, C11–C16 benzene and C17–C22 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cg2i0.962.973.6689 (17)131
C5—H5···Cg3ii0.932.843.5126 (18)130
C21—H21···Cg1iii0.932.993.632 (2)127
Symmetry codes: (i) x, y+1, z; (ii) x1, y1, z1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C2–C7 methylbenzene, C11–C16 benzene and C17–C22 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cg2i0.962.973.6689 (17)131
C5—H5···Cg3ii0.932.843.5126 (18)130
C21—H21···Cg1iii0.932.993.632 (2)127
Symmetry codes: (i) x, y+1, z; (ii) x1, y1, z1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors are thankful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India, for the single-crystal X-ray data.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2996–o2997.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o3179–o3180.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1150.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429–L430.  CrossRef CAS Web of Science Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayam, M. (1991). J. Cryst. Growth, 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationOpletalova, V. (2000). Ceska Slov. Farm. 49, 278–284.  PubMed CAS Google Scholar
First citationOpletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds