organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R,S)-2′-Amino-6′-methyl-2,5′,5′-trioxo-6′H-spiro­[indoline-3,4′-pyrano[3,2-c][2,1]benzo­thia­zine]-3′-carbo­nitrile di­methyl­formamide monosolvate

aSTC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina Ave., Kharkiv 61001, Ukraine, and bNational University of Pharmacy, 4 Blyukhera St, Kharkiv 61168, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

(Received 29 May 2014; accepted 11 June 2014; online 18 June 2014)

The title solvate, C20H14N4O4S·C3H7NO, comprises a stereogenic centre but the centrosymmetric space group causes the presence of the racemate in the crystal. The spiro-joined fragments are almost orthogonal, with a dihedral angle of 86.8 (2)° between the mean planes of the pyrane ring and the dihydroindolone ring system. The atoms of the indolinone bicycle are coplanar, with an r.m.s. deviation of 0.005 Å. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers which are linked to the di­methyl­formamide solvent mol­ecules by further N—H⋯O hydrogen bonds. N—H⋯N hydrogen bonds link neighbouring dimers into [010] chains.

Related literature

A three-component condensation of 1-R-4-hy­droxy-2-oxo-1,2-di­hydro­quinolines, isatin and malono­nitrile gave satisfactory yield of 4,3′-spiro­[(6-R-2-amino-5-oxo-5,6-di­hydro-4H-pyrano[3,2-c]quinoline-3-carbo­nitrile)-2′-oxindoles], see: Ukrainets et al. (2009[Ukrainets, I. V., Red'kin, R. G., Sidorenko, L. V. & Turov, A. V. (2009). Chem. Heterocycl. Compd, 45, 1478-1484.]). For van der Waals radii, see: Zefirov (1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]) and for puckering parameters, see: Zefirov et al. (1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-154.]). For mean bond lengths, see: Bürgi & Dunitz (1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N4O4S·C3H7NO

  • Mr = 479.51

  • Orthorhombic, P b c a

  • a = 17.2493 (12) Å

  • b = 9.6046 (5) Å

  • c = 27.7664 (17) Å

  • V = 4600.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.30 × 0.02 × 0.02 mm

Data collection
  • Agilent Xcalibur"3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011[Agilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.946, Tmax = 0.996

  • 30060 measured reflections

  • 4049 independent reflections

  • 2147 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.194

  • S = 0.99

  • 4049 reflections

  • 323 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.82 (5) 2.01 (5) 2.797 (7) 160 (5)
N3—H3NA⋯O1ii 0.86 (5) 2.22 (5) 3.051 (6) 162 (4)
N3—H3NB⋯N4iii 0.83 (4) 2.37 (4) 3.159 (6) 160 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Agilent, 2011[Agilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Agilent, 2011[Agilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A three-component condensation of 1-R-4-hydroxy-2-oxo-1,2-dihydro- quinolines, isatin, and malononitrile gave a satisfactory yields of 4,3'- spiro[(6-R-2-amino-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3- carbonitrile)-2'-oxindoles] (Ukrainets et al., 2009). This is an interesting reaction takes place more easily with sulfo analogues of 1-R-4-hydroxy- 2-oxo-1,2-dihydroquinolines. For example, 1-methyl-4-oxo-3,4-dihydro-1H- 2λ6,1-benzothiazine-2,2-dione was already 15 minute after the start of the reaction forms the corresponding 2'-amino-6'-methyl-2-oxo-1,2-dihydro-6'H– spiro[indole-3,4'-pyrano[3,2-c][2,1]benzothiazine]3'-carbonitrile-5,5'- dioxide (I), which was isolated as a solvate of DMF. The spiro-joined tricyclic and bicyclic fragments of I are turned relatively to each other in such way that the dihedral angle between mean planes of the pyrane ring and dihydroindolone bicycle is 86.8°. At that the C1—C2 bond is elongated as compared with its mean value (Bürgi & Dunitz, 1994) 1.511 Å. The bicyclic fragment is slightly non-planar, the five-membered heterocycle adopts an envelope conformation with deviation of the C1 atom by 0.14 Å. In addition the dihedral angle between planar N1—C1(=O1)—C2 fragment and aromatic ring is 11.5 °. The pyrane ring adopts a boat conformation (the puckering parameters (Zefirov et al., 1990) are: S=0.24, Θ=73.0°, Ψ=9.1°). Deviations of the O2 and C2 atoms from the mean plane of the remaining atoms of this ring are 0.10 Å and 0.20 Å, respectivey. The benzothiazine ring adopts a twist-boat conformation (the puckering parameters are S=0.57, Θ=47.2°, Ψ=25.9°). Deviations of the S1 and C9 atoms from the mean plane of the remaining atoms of this ring are -0.76 Å and -0.23 Å, respectivey. The steric repulsion between methyl group and atoms of the C10···C15 ring (shortened intramolecular contacts are: H20b···C11 2.71 Å, H11···C20 2.50 Å as compared with van der Waals radii sum ((Zefirov, 1997) 2.87 Å and H11···H20b 2.26 Å (2.34 Å)) results in elongation of the N2—C10 bond up to 1.415 (6) Å as compared with its mean value 1.371 Å. In the crystal the molecules form the centrosymmetric dimers (Fig. 2) by N3—H3Na···O1' (1 - x, 1 - y, 1 - z) intermolecular hydrogen bonds (Table 1). Each monomer of such dimer is bonded with DMF solvate molecule by the N1—H···O5' (0.5 + x, y, 1.5 - z) hydrogen bond. N3—H3Nb···N4' (1 - x, -y, 1 - z) hydrogen bond is observed between neighboring dimers (Table 1).

Related literature top

A three-component condensation of 1-R-4-hydroxy-2-oxo-1,2-dihydroquinolines, isatin and malononitrile gave a satisfactory yields of 4,3'-spiro[(6-R-2-amino-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carbonitrile)-2'-oxindoles], see: Ukrainets et al. (2009). For van der Waals radii, see: Zefirov (1997) and for puckering parameters, see: Zefirov et al. (1990). For mean bond lengths, see: Bürgi & Dunitz (1994).

Experimental top

A mixture of 1-methyl-4-oxo-3,4-dihydro-1H-2λ6,1-benzothiazine-2,2- dione (2.11 g, 0.01 mol), isatin (1.47 g, 0.01 mol), malononitrile (0.66 g, 0.01 mol), and triethylamine (1.4 ml, 0.01 mol) in methanol (20 ml) was refluxed for 15 min, and cooled. The precipitated were off, washed with methanol, and crystallized from DMF-H2O (1:1). Prepared 3.21 g (67%) solvate crystals of the pyranobenzothiazine with DMF; mp 437-439 K (decomp.).

Refinement top

All hydrogen atoms were located from electron density difference maps and were refined in the riding motion approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl group and 1.2 times Ueq of the carrier atom for the other atoms. Hydrogen atoms of the aminogroups are refined using isotropic approximation.

Structure description top

A three-component condensation of 1-R-4-hydroxy-2-oxo-1,2-dihydro- quinolines, isatin, and malononitrile gave a satisfactory yields of 4,3'- spiro[(6-R-2-amino-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3- carbonitrile)-2'-oxindoles] (Ukrainets et al., 2009). This is an interesting reaction takes place more easily with sulfo analogues of 1-R-4-hydroxy- 2-oxo-1,2-dihydroquinolines. For example, 1-methyl-4-oxo-3,4-dihydro-1H- 2λ6,1-benzothiazine-2,2-dione was already 15 minute after the start of the reaction forms the corresponding 2'-amino-6'-methyl-2-oxo-1,2-dihydro-6'H– spiro[indole-3,4'-pyrano[3,2-c][2,1]benzothiazine]3'-carbonitrile-5,5'- dioxide (I), which was isolated as a solvate of DMF. The spiro-joined tricyclic and bicyclic fragments of I are turned relatively to each other in such way that the dihedral angle between mean planes of the pyrane ring and dihydroindolone bicycle is 86.8°. At that the C1—C2 bond is elongated as compared with its mean value (Bürgi & Dunitz, 1994) 1.511 Å. The bicyclic fragment is slightly non-planar, the five-membered heterocycle adopts an envelope conformation with deviation of the C1 atom by 0.14 Å. In addition the dihedral angle between planar N1—C1(=O1)—C2 fragment and aromatic ring is 11.5 °. The pyrane ring adopts a boat conformation (the puckering parameters (Zefirov et al., 1990) are: S=0.24, Θ=73.0°, Ψ=9.1°). Deviations of the O2 and C2 atoms from the mean plane of the remaining atoms of this ring are 0.10 Å and 0.20 Å, respectivey. The benzothiazine ring adopts a twist-boat conformation (the puckering parameters are S=0.57, Θ=47.2°, Ψ=25.9°). Deviations of the S1 and C9 atoms from the mean plane of the remaining atoms of this ring are -0.76 Å and -0.23 Å, respectivey. The steric repulsion between methyl group and atoms of the C10···C15 ring (shortened intramolecular contacts are: H20b···C11 2.71 Å, H11···C20 2.50 Å as compared with van der Waals radii sum ((Zefirov, 1997) 2.87 Å and H11···H20b 2.26 Å (2.34 Å)) results in elongation of the N2—C10 bond up to 1.415 (6) Å as compared with its mean value 1.371 Å. In the crystal the molecules form the centrosymmetric dimers (Fig. 2) by N3—H3Na···O1' (1 - x, 1 - y, 1 - z) intermolecular hydrogen bonds (Table 1). Each monomer of such dimer is bonded with DMF solvate molecule by the N1—H···O5' (0.5 + x, y, 1.5 - z) hydrogen bond. N3—H3Nb···N4' (1 - x, -y, 1 - z) hydrogen bond is observed between neighboring dimers (Table 1).

A three-component condensation of 1-R-4-hydroxy-2-oxo-1,2-dihydroquinolines, isatin and malononitrile gave a satisfactory yields of 4,3'-spiro[(6-R-2-amino-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carbonitrile)-2'-oxindoles], see: Ukrainets et al. (2009). For van der Waals radii, see: Zefirov (1997) and for puckering parameters, see: Zefirov et al. (1990). For mean bond lengths, see: Bürgi & Dunitz (1994).

Computing details top

Data collection: CrysAlis CCD (Agilent, 2011); cell refinement: CrysAlis RED (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with atomic membering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonded, centrosymmetric dimers with dimethyl foramid solvate connected by hydrogen bonds.The hydrogen bonds are shown by dashed lines.
(R,S)-2'-Amino-6'-methyl-2,5',5'-trioxo-6'H-spiro[indoline-3,4'-pyrano[3,2-c][2,1]benzothiazine]-3'-carbonitrile dimethylformamide monosolvate top
Crystal data top
C20H14N4O4S·C3H7NODx = 1.385 Mg m3
Mr = 479.51Melting point = 437–439 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2361 reflections
a = 17.2493 (12) Åθ = 3.2–21.6°
b = 9.6046 (5) ŵ = 0.19 mm1
c = 27.7664 (17) ÅT = 293 K
V = 4600.1 (5) Å3Stick, colourless
Z = 80.30 × 0.02 × 0.02 mm
F(000) = 2000
Data collection top
Agilent Xcalibur"3
diffractometer
4049 independent reflections
Radiation source: Enhance (Mo) X-ray Source2147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1827 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω scansh = 2017
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
k = 1111
Tmin = 0.946, Tmax = 0.996l = 3333
30060 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: difference Fourier map
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0901P)2]
where P = (Fo2 + 2Fc2)/3
4049 reflections(Δ/σ)max < 0.001
323 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C20H14N4O4S·C3H7NOV = 4600.1 (5) Å3
Mr = 479.51Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.2493 (12) ŵ = 0.19 mm1
b = 9.6046 (5) ÅT = 293 K
c = 27.7664 (17) Å0.30 × 0.02 × 0.02 mm
Data collection top
Agilent Xcalibur"3
diffractometer
4049 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
2147 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.996Rint = 0.034
30060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.44 e Å3
4049 reflectionsΔρmin = 0.27 e Å3
323 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37888 (7)0.59466 (11)0.64282 (4)0.0534 (4)
O10.58546 (17)0.4943 (3)0.59913 (12)0.0611 (9)
O20.41460 (16)0.4674 (3)0.51036 (9)0.0464 (7)
O30.30029 (19)0.5566 (3)0.65291 (13)0.0712 (10)
O40.4331 (2)0.5859 (3)0.68127 (12)0.0748 (10)
O50.1982 (3)0.3611 (7)0.7857 (2)0.157 (2)
N10.5617 (3)0.3404 (4)0.66047 (15)0.0579 (11)
H1N0.605 (3)0.330 (5)0.6722 (19)0.073 (18)*
N20.3820 (2)0.7522 (3)0.62123 (14)0.0569 (10)
N30.4424 (2)0.2711 (5)0.47288 (15)0.0554 (11)
H3NB0.457 (2)0.189 (4)0.4712 (15)0.048 (14)*
H3NA0.434 (2)0.322 (4)0.4479 (17)0.057 (15)*
N40.5120 (2)0.0310 (4)0.56205 (14)0.0653 (12)
N50.3135 (3)0.3806 (7)0.8231 (3)0.1135 (19)
C10.5437 (2)0.4109 (4)0.62037 (16)0.0475 (11)
C20.4597 (2)0.3692 (4)0.60525 (15)0.0414 (10)
C30.4343 (3)0.2863 (4)0.64885 (15)0.0448 (11)
C40.3633 (3)0.2320 (4)0.66055 (17)0.0527 (12)
H40.32120.24040.63980.063*
C50.3562 (3)0.1631 (4)0.70495 (19)0.0661 (14)
H50.30820.12890.71460.079*
C60.4193 (4)0.1461 (5)0.73416 (17)0.0686 (14)
H60.41360.09680.76280.082*
C70.4917 (3)0.2001 (5)0.72248 (17)0.0669 (14)
H70.53440.18910.74260.080*
C80.4966 (3)0.2713 (4)0.67924 (16)0.0498 (11)
C90.4128 (2)0.4982 (4)0.59449 (15)0.0394 (10)
C100.3533 (2)0.7780 (4)0.57434 (18)0.0504 (11)
C110.3224 (3)0.9077 (4)0.5625 (2)0.0643 (14)
H110.31680.97580.58610.077*
C120.3004 (3)0.9344 (5)0.5162 (2)0.0743 (16)
H120.28061.02160.50840.089*
C130.3070 (3)0.8350 (5)0.4807 (2)0.0685 (14)
H130.29110.85480.44950.082*
C140.3368 (2)0.7075 (4)0.49171 (17)0.0511 (11)
H140.34120.64050.46770.061*
C150.3609 (2)0.6756 (4)0.53878 (16)0.0444 (11)
C160.3960 (2)0.5445 (4)0.55022 (15)0.0394 (10)
C170.4408 (2)0.3341 (4)0.51557 (15)0.0415 (10)
C180.4615 (2)0.2827 (4)0.55921 (15)0.0404 (10)
C190.4899 (2)0.1437 (4)0.56126 (15)0.0459 (11)
C200.3838 (3)0.8663 (4)0.65669 (18)0.0827 (18)
H20C0.33170.89080.66550.124*
H20B0.40910.94580.64290.124*
H20A0.41160.83670.68480.124*
C210.2672 (5)0.3931 (5)0.7875 (2)0.133 (3)
H210.28810.43110.75950.159*
C220.3923 (5)0.4117 (12)0.8231 (5)0.251 (8)
H22A0.40550.45870.79380.376*
H22B0.42160.32700.82560.376*
H22C0.40400.47070.85010.376*
C230.2835 (7)0.3142 (14)0.8647 (5)0.259 (7)
H23A0.24490.24740.85530.389*
H23B0.26050.38250.88550.389*
H23C0.32480.26760.88140.389*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0699 (9)0.0464 (7)0.0440 (7)0.0084 (6)0.0028 (6)0.0073 (5)
O10.054 (2)0.072 (2)0.057 (2)0.0097 (16)0.0099 (17)0.0087 (17)
O20.065 (2)0.0423 (15)0.0317 (16)0.0125 (13)0.0046 (14)0.0015 (13)
O30.065 (2)0.071 (2)0.077 (3)0.0050 (17)0.0236 (19)0.0025 (17)
O40.102 (3)0.066 (2)0.056 (2)0.0198 (18)0.034 (2)0.0182 (17)
O50.067 (3)0.285 (7)0.118 (5)0.007 (4)0.030 (3)0.012 (4)
N10.048 (3)0.073 (3)0.053 (3)0.004 (2)0.012 (2)0.012 (2)
N20.070 (3)0.041 (2)0.060 (3)0.0093 (18)0.009 (2)0.0175 (18)
N30.083 (3)0.046 (2)0.037 (3)0.013 (2)0.006 (2)0.004 (2)
N40.086 (3)0.051 (2)0.059 (3)0.017 (2)0.001 (2)0.002 (2)
N50.074 (4)0.165 (5)0.102 (5)0.014 (4)0.002 (4)0.012 (4)
C10.049 (3)0.050 (3)0.044 (3)0.005 (2)0.005 (2)0.001 (2)
C20.041 (3)0.043 (2)0.040 (3)0.0064 (18)0.002 (2)0.0000 (18)
C30.053 (3)0.040 (2)0.041 (3)0.005 (2)0.002 (2)0.0063 (19)
C40.066 (3)0.038 (2)0.054 (3)0.003 (2)0.004 (3)0.007 (2)
C50.086 (4)0.057 (3)0.055 (3)0.009 (3)0.007 (3)0.001 (3)
C60.104 (4)0.067 (3)0.035 (3)0.007 (3)0.001 (3)0.008 (2)
C70.088 (4)0.068 (3)0.044 (3)0.002 (3)0.010 (3)0.010 (2)
C80.055 (3)0.051 (2)0.043 (3)0.006 (2)0.007 (2)0.006 (2)
C90.039 (2)0.039 (2)0.040 (2)0.0001 (18)0.002 (2)0.0038 (19)
C100.045 (3)0.043 (2)0.063 (3)0.0048 (19)0.001 (2)0.001 (2)
C110.069 (3)0.049 (3)0.074 (4)0.017 (2)0.002 (3)0.001 (3)
C120.075 (4)0.058 (3)0.090 (5)0.028 (3)0.007 (3)0.016 (3)
C130.066 (3)0.067 (3)0.072 (4)0.020 (3)0.008 (3)0.020 (3)
C140.050 (3)0.053 (3)0.051 (3)0.009 (2)0.000 (2)0.006 (2)
C150.039 (3)0.043 (2)0.050 (3)0.0034 (18)0.001 (2)0.003 (2)
C160.038 (2)0.040 (2)0.040 (3)0.0008 (17)0.002 (2)0.0032 (19)
C170.047 (3)0.039 (2)0.039 (3)0.0045 (18)0.001 (2)0.001 (2)
C180.043 (2)0.034 (2)0.044 (3)0.0069 (17)0.000 (2)0.0010 (18)
C190.051 (3)0.051 (3)0.035 (3)0.002 (2)0.002 (2)0.000 (2)
C200.115 (5)0.053 (3)0.081 (4)0.005 (3)0.012 (3)0.025 (3)
C210.104 (7)0.184 (8)0.110 (7)0.023 (6)0.044 (6)0.010 (6)
C220.105 (7)0.364 (17)0.284 (16)0.088 (9)0.044 (8)0.183 (13)
C230.178 (11)0.392 (19)0.207 (14)0.006 (11)0.028 (10)0.131 (13)
Geometric parameters (Å, º) top
S1—O41.422 (3)C2—C31.514 (6)
S1—O31.432 (3)C2—C181.525 (6)
S1—N21.628 (4)C3—C41.370 (6)
S1—C91.732 (4)C3—C81.374 (6)
O1—C11.228 (5)C4—C51.404 (6)
O2—C171.366 (4)C5—C61.367 (7)
O2—C161.370 (5)C6—C71.390 (7)
O5—C211.231 (8)C7—C81.384 (6)
N1—C11.339 (6)C9—C161.339 (5)
N1—C81.404 (6)C10—C111.394 (6)
N2—C101.415 (6)C10—C151.400 (6)
N2—C201.474 (5)C11—C121.365 (7)
N3—C171.331 (5)C12—C131.375 (7)
N4—C191.148 (5)C13—C141.363 (6)
N5—C211.277 (8)C14—C151.406 (6)
N5—C221.391 (9)C15—C161.432 (5)
N5—C231.417 (11)C17—C181.357 (6)
C1—C21.560 (6)C18—C191.423 (6)
C2—C91.510 (5)
O4—S1—O3117.4 (2)C8—C7—C6116.2 (5)
O4—S1—N2108.0 (2)C3—C8—C7122.5 (5)
O3—S1—N2109.9 (2)C3—C8—N1110.3 (4)
O4—S1—C9109.15 (19)C7—C8—N1127.2 (5)
O3—S1—C9109.5 (2)C16—C9—C2124.8 (4)
N2—S1—C9101.58 (19)C16—C9—S1117.4 (3)
C17—O2—C16119.9 (3)C2—C9—S1117.8 (3)
C1—N1—C8111.3 (4)C11—C10—C15119.9 (5)
C10—N2—C20119.5 (4)C11—C10—N2120.5 (4)
C10—N2—S1119.3 (3)C15—C10—N2119.5 (4)
C20—N2—S1116.5 (3)C12—C11—C10119.7 (5)
C21—N5—C22126.3 (9)C11—C12—C13121.4 (4)
C21—N5—C23116.4 (7)C14—C13—C12119.7 (5)
C22—N5—C23116.9 (10)C13—C14—C15121.0 (4)
O1—C1—N1126.4 (4)C10—C15—C14118.3 (4)
O1—C1—C2125.6 (4)C10—C15—C16120.1 (4)
N1—C1—C2108.0 (4)C14—C15—C16121.5 (4)
C9—C2—C3115.7 (3)C9—C16—O2120.8 (3)
C9—C2—C18107.0 (3)C9—C16—C15126.0 (4)
C3—C2—C18112.9 (3)O2—C16—C15113.3 (3)
C9—C2—C1110.0 (3)N3—C17—C18128.6 (4)
C3—C2—C1100.9 (3)N3—C17—O2109.8 (4)
C18—C2—C1110.3 (3)C18—C17—O2121.5 (4)
C4—C3—C8120.9 (4)C17—C18—C19117.9 (4)
C4—C3—C2130.5 (4)C17—C18—C2123.0 (3)
C8—C3—C2108.6 (4)C19—C18—C2119.0 (3)
C3—C4—C5117.7 (5)N4—C19—C18178.5 (5)
C6—C5—C4120.5 (5)O5—C21—N5127.8 (6)
C5—C6—C7122.1 (5)
O4—S1—N2—C10160.2 (3)O3—S1—C9—C297.2 (3)
O3—S1—N2—C1070.5 (4)N2—S1—C9—C2146.6 (3)
C9—S1—N2—C1045.4 (4)C20—N2—C10—C113.9 (6)
O4—S1—N2—C2044.3 (4)S1—N2—C10—C11150.8 (3)
O3—S1—N2—C2085.0 (4)C20—N2—C10—C15171.6 (4)
C9—S1—N2—C20159.1 (3)S1—N2—C10—C1533.6 (5)
C8—N1—C1—O1170.6 (4)C15—C10—C11—C120.5 (7)
C8—N1—C1—C29.1 (5)N2—C10—C11—C12175.0 (5)
O1—C1—C2—C947.7 (5)C10—C11—C12—C130.9 (8)
N1—C1—C2—C9132.0 (4)C11—C12—C13—C140.7 (8)
O1—C1—C2—C3170.4 (4)C12—C13—C14—C150.1 (7)
N1—C1—C2—C39.3 (4)C11—C10—C15—C140.1 (6)
O1—C1—C2—C1870.0 (5)N2—C10—C15—C14175.6 (4)
N1—C1—C2—C18110.3 (4)C11—C10—C15—C16177.1 (4)
C9—C2—C3—C454.1 (6)N2—C10—C15—C161.5 (6)
C18—C2—C3—C469.7 (5)C13—C14—C15—C100.3 (7)
C1—C2—C3—C4172.7 (4)C13—C14—C15—C16176.8 (4)
C9—C2—C3—C8124.9 (4)C2—C9—C16—O26.7 (6)
C18—C2—C3—C8111.3 (4)S1—C9—C16—O2174.0 (3)
C1—C2—C3—C86.4 (4)C2—C9—C16—C15170.9 (4)
C8—C3—C4—C51.2 (6)S1—C9—C16—C158.4 (6)
C2—C3—C4—C5177.7 (4)C17—O2—C16—C99.0 (5)
C3—C4—C5—C62.9 (7)C17—O2—C16—C15173.1 (3)
C4—C5—C6—C72.7 (7)C10—C15—C16—C911.0 (6)
C5—C6—C7—C80.6 (7)C14—C15—C16—C9171.9 (4)
C4—C3—C8—C70.8 (6)C10—C15—C16—O2166.7 (4)
C2—C3—C8—C7179.9 (4)C14—C15—C16—O210.3 (5)
C4—C3—C8—N1177.5 (4)C16—O2—C17—N3169.2 (4)
C2—C3—C8—N11.6 (5)C16—O2—C17—C1811.4 (6)
C6—C7—C8—C31.1 (7)N3—C17—C18—C190.8 (7)
C6—C7—C8—N1176.9 (4)O2—C17—C18—C19178.6 (3)
C1—N1—C8—C35.0 (5)N3—C17—C18—C2177.5 (4)
C1—N1—C8—C7173.2 (4)O2—C17—C18—C21.9 (6)
C3—C2—C9—C16144.0 (4)C9—C2—C18—C1714.6 (5)
C18—C2—C9—C1617.2 (5)C3—C2—C18—C17143.0 (4)
C1—C2—C9—C16102.6 (5)C1—C2—C18—C17105.0 (4)
C3—C2—C9—S136.8 (4)C9—C2—C18—C19168.8 (3)
C18—C2—C9—S1163.6 (3)C3—C2—C18—C1940.3 (5)
C1—C2—C9—S176.7 (4)C1—C2—C18—C1971.7 (5)
O4—S1—C9—C16146.6 (3)C17—C18—C19—N425 (22)
O3—S1—C9—C1683.5 (3)C2—C18—C19—N4158 (22)
N2—S1—C9—C1632.7 (4)C22—N5—C21—O5176.6 (8)
O4—S1—C9—C232.7 (3)C23—N5—C21—O54.2 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.82 (5)2.01 (5)2.797 (7)160 (5)
N3—H3NA···O1ii0.86 (5)2.22 (5)3.051 (6)162 (4)
N3—H3NB···N4iii0.83 (4)2.37 (4)3.159 (6)160 (4)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.82 (5)2.01 (5)2.797 (7)160 (5)
N3—H3NA···O1ii0.86 (5)2.22 (5)3.051 (6)162 (4)
N3—H3NB···N4iii0.83 (4)2.37 (4)3.159 (6)160 (4)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

References

First citationAgilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkrainets, I. V., Red'kin, R. G., Sidorenko, L. V. & Turov, A. V. (2009). Chem. Heterocycl. Compd, 45, 1478–1484.  CrossRef CAS Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–154.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds