organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4-(All­yl­oxy)phen­yl](phen­yl)methanone

aInstituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador são-carlense 400, São Carlos, SP, 13566-590, Brazil, bPrograma de Ingenieria Agroindustrial, Universidad San Buenaventura, AA 7154, Santiago de Cali, Colombia, cDepartamento de Química, Facultad de Ciencias, Universidad del Valle, AA 25360, Santiago de Cali, Colombia, and dCase Western Reserve University, Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, USA
*Correspondence e-mail: ridvries@ifsc.usp.br

(Received 22 May 2014; accepted 18 June 2014; online 25 June 2014)

The structure of the title compound, C16H14O2, features a dihedral angle of 54.4 (3)° between the aromatic rings. The allyl group is rotated by 37.4 (4)° relative to the adjacent benzene ring. The crystal packing is characterized by numerous C—H⋯O and C—H⋯π inter­actions. Most of these inter­actions occur in layers along (011). The layers are linked by C—H⋯π inter­actions along [100], forming a three-dimensional network.

Keywords: crystal structure.

Related literature

For more details of the synthesis, see: Prucker et al. (1999[Prucker, O., Naumann, C. A., Ruhe, J., Knoll, W. & Frank, C. W. (1999). J. Am. Chem. Soc. 121, 8766-8770.]). For photoreactive properties of benzo­phenone derivates, see: Shirahata & Kishimoto (1984[Shirahata, A. & Kishimoto, K. (1984). US Patent 4467082A.]); Dorman & Prestwich (1994[Dorman, G. & Prestwich, G. D. (1994). Biochemistry, 33, 5661-5673.]); Beckett & Porter (1963[Beckett, A. & Porter, G. (1963). Trans. Faraday Soc. 59, 2038-2050.]); Kubo et al. (2010[Kubo, S., Ohtake, T., Kang, E.-C. & Nakagawa, M. J. (2010). J. Photopolym. Sci. Technol. 23, 83-86.]); Balakirev et al. (2005[Balakirev, M. Y., Porte, S., Vernaz-Gris, M., Berger, M., Arie, J.-P., Fouque, B. & Chatelain, F. (2005). Anal. Chem. 77, 5474-5479.]); Ferreira et al. (1995[Ferreira, L. F. V., Netto-Ferreira, J. C., Khmelinskii, I. V., Garcia, A. R. & Costa, S. M. B. (1995). Langmuir, 11, 231-236.]); Matsushita et al. (1992[Matsushita, Y., Kajii, Y. & Obi, K. (1992). J. Phys. Chem. 96, 6566-6570.]). For related structures, see: Schlemper (1982[Schlemper, E. O. (1982). Acta Cryst. B38, 554-559.]); Norment & Karle (1962[Norment, H. G. & Karle, I. L. (1962). Acta Cryst. 15, 873-878.]); Guo et al. (1992[Guo, S., Su, G., Pan, F. & He, Y. (1992). Acta Cryst. C48, 576-578.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O2

  • Mr = 238.27

  • Monoclinic, P 21

  • a = 6.0141 (5) Å

  • b = 7.8839 (8) Å

  • c = 13.5992 (14) Å

  • β = 94.442 (6)°

  • V = 642.86 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 1609 measured reflections

  • 1603 independent reflections

  • 1021 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.133

  • S = 1.01

  • 1603 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.93 2.83 3.651 (3) 147
C14—H14BCg2ii 0.97 2.96 3.630 (3) 127
C10—H10⋯O2ii 0.93 2.89 3.528 (4) 127
C2—H2⋯O1iii 0.93 2.85 3.698 (4) 152
C14—H14B⋯O1iv 0.97 2.85 3.596 (4) 134
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) x+1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Introduction top

The title compound C16H14O2, is based on a photoreactive benzo­phenone derivative that can be bound to SiO2 surfaces via a silane anchor. This substrate is a compound that has a benzo­phenone moiety which exhibits a known photoreactivity and is particularly useful in photopolymerizable organopolysiloxane and silicone resins Prucker et al., (1999); Shirahata & Kishimoto, (1984); Dorman & Prestwich, (1994); Beckett & Porter, (1963). When triggered by UV light (λ = 365 nm), a biradical triplet state is formed, which is able of abstracting a proton from any neighboring aliphatic C—H group to form a C—C bond (Ferreira et al., (1995); Balakirev et al., (2005); Kubo et al. (2010)) and as a result of the photochemical reaction, a thin layer of the polymer is covalently bound to the surface (Prucker et al. (1999); Shirahata & Kishimoto, (1984); Dorman & Prestwich, (1994); Matsushita et al. (1992)). This molecule can be also copolymerized with other polymer molecules and will not migrate out through its double bond.

Experimental top

Synthesis of (4-Allyl­oxy-phenyl)-phenyl-methanone. This compound was synthesized by a procedure already reported. A mixture of 4-hy­droxy­benzo­phenone (39.6 g, 0.2 mol) and allyl bromide (26.6 g, 0.22 mol) were dissolved in 120 mL of acetone and 28 g of potassium carbonate. The mixture was heated to reflux for 8 h and then cooled down to room temperature. Water (80 mL) was added and the resulting solution was extracted twice with 100 mL of di­ethyl ether. The combined organic phases were washed with 100 mL of aqueous NaOH (10%) and dried over Na2SO4, and the solvent was evaporated. The resulting yellowish product was purified from methanol to yield 40 g (89%) of pure product as confirmed by NMR. FTIR (KBr): 3081, 3059, 3022, 2939, 2865, 1650, 1600 cm-1. 1H NMR (CDCl3, δ(ppm): 4.6 (m, 2H, OCH2), 5.3-5.5 (m, 2H, CH2=), 6.1 (m, 1H,=CH-), 7.21 (2H, m); 7.44 (2H, m); 7.56 (1H, m); 7.77 (2H, m); 7.88 (2H, m). 13C NMR: δ(ppm) in CDCl3: 195.13 (C=O), 162.14 (OCarom), 149.12, 137.60, 135.94, 132.78, 131.93, 130.19, 128.35, 118.29, 115.91, 69.34 (OCH2).

Refinement top

All H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 (aromatic C—H) or 0.97 Å (terminal methyl­ene), and refined as riding with displacement parameters calculated as Uiso(H) = xUeq(carrier C) where x = 1.2.

Results and discussion top

The compound C16H14O2 is a benzo­phenone derivate formed by two aromatic rings linked by a ketone funtion. The presence of the ketone funtion and an allyl­oxy group make of this molecule particularly useful in photopolymerizable organopolysiloxane and silicone resins, and a excellent substrate for selective catalysis. The rings are twisted with a torsion angle formed between C6—C1—C7—C8 of 136.59 (31)°. The allyl­oxy group presents a torsion angle of -7.99 (42)° (C10—C11—O2—C14) relative to the aromatic ring. The molecules inter­act via supra­molecular weak inter­actions C5—H5···π = 3.651 (3) , C14—H14B···O1 = 3.596 (4) and C10—H10··O2 = 3.528 (4) Å giving rise to supra­molecular layers in the plane (011). C14—H14B···π = 3.698 (2) Å inter­action join the layers along [100] to obtain the supra­molecular crystal packing.

Related literature top

For more datails of the synthesis, see: Prucker et al. (1999). For photoreactive properties of benzophenone derivates, see: Shirahata & Kishimoto (1984); Dorman & Prestwich (1994); Beckett & Porter (1963); Kubo et al. (2010); Balakirev et al. (2005); Ferreira et al. (1995); Matsushita et al. (1992). For related structures, see: Schlemper (1982); Norment & Karle (1962); Guo et al. (1992).

Structure description top

The title compound C16H14O2, is based on a photoreactive benzo­phenone derivative that can be bound to SiO2 surfaces via a silane anchor. This substrate is a compound that has a benzo­phenone moiety which exhibits a known photoreactivity and is particularly useful in photopolymerizable organopolysiloxane and silicone resins Prucker et al., (1999); Shirahata & Kishimoto, (1984); Dorman & Prestwich, (1994); Beckett & Porter, (1963). When triggered by UV light (λ = 365 nm), a biradical triplet state is formed, which is able of abstracting a proton from any neighboring aliphatic C—H group to form a C—C bond (Ferreira et al., (1995); Balakirev et al., (2005); Kubo et al. (2010)) and as a result of the photochemical reaction, a thin layer of the polymer is covalently bound to the surface (Prucker et al. (1999); Shirahata & Kishimoto, (1984); Dorman & Prestwich, (1994); Matsushita et al. (1992)). This molecule can be also copolymerized with other polymer molecules and will not migrate out through its double bond.

Synthesis of (4-Allyl­oxy-phenyl)-phenyl-methanone. This compound was synthesized by a procedure already reported. A mixture of 4-hy­droxy­benzo­phenone (39.6 g, 0.2 mol) and allyl bromide (26.6 g, 0.22 mol) were dissolved in 120 mL of acetone and 28 g of potassium carbonate. The mixture was heated to reflux for 8 h and then cooled down to room temperature. Water (80 mL) was added and the resulting solution was extracted twice with 100 mL of di­ethyl ether. The combined organic phases were washed with 100 mL of aqueous NaOH (10%) and dried over Na2SO4, and the solvent was evaporated. The resulting yellowish product was purified from methanol to yield 40 g (89%) of pure product as confirmed by NMR. FTIR (KBr): 3081, 3059, 3022, 2939, 2865, 1650, 1600 cm-1. 1H NMR (CDCl3, δ(ppm): 4.6 (m, 2H, OCH2), 5.3-5.5 (m, 2H, CH2=), 6.1 (m, 1H,=CH-), 7.21 (2H, m); 7.44 (2H, m); 7.56 (1H, m); 7.77 (2H, m); 7.88 (2H, m). 13C NMR: δ(ppm) in CDCl3: 195.13 (C=O), 162.14 (OCarom), 149.12, 137.60, 135.94, 132.78, 131.93, 130.19, 128.35, 118.29, 115.91, 69.34 (OCH2).

The compound C16H14O2 is a benzo­phenone derivate formed by two aromatic rings linked by a ketone funtion. The presence of the ketone funtion and an allyl­oxy group make of this molecule particularly useful in photopolymerizable organopolysiloxane and silicone resins, and a excellent substrate for selective catalysis. The rings are twisted with a torsion angle formed between C6—C1—C7—C8 of 136.59 (31)°. The allyl­oxy group presents a torsion angle of -7.99 (42)° (C10—C11—O2—C14) relative to the aromatic ring. The molecules inter­act via supra­molecular weak inter­actions C5—H5···π = 3.651 (3) , C14—H14B···O1 = 3.596 (4) and C10—H10··O2 = 3.528 (4) Å giving rise to supra­molecular layers in the plane (011). C14—H14B···π = 3.698 (2) Å inter­action join the layers along [100] to obtain the supra­molecular crystal packing.

For more datails of the synthesis, see: Prucker et al. (1999). For photoreactive properties of benzophenone derivates, see: Shirahata & Kishimoto (1984); Dorman & Prestwich (1994); Beckett & Porter (1963); Kubo et al. (2010); Balakirev et al. (2005); Ferreira et al. (1995); Matsushita et al. (1992). For related structures, see: Schlemper (1982); Norment & Karle (1962); Guo et al. (1992).

Refinement details top

All H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 (aromatic C—H) or 0.97 Å (terminal methyl­ene), and refined as riding with displacement parameters calculated as Uiso(H) = xUeq(carrier C) where x = 1.2.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2006), Mercury (Macrae et al., 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The ORTEP structure of the title compound with displacement ellipsoid plot drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing view of the title compound along [100] direction. The hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Crystal packing view of the title compound along [001] direction. The hydrogen bonds are shown as dashed lines.
[4-(Allyloxy)phenyl](phenyl)methanone top
Crystal data top
C16H14O2F(000) = 252
Mr = 238.27Dx = 1.231 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1583 reflections
a = 6.0141 (5) Åθ = 3.0–27.9°
b = 7.8839 (8) ŵ = 0.08 mm1
c = 13.5992 (14) ÅT = 293 K
β = 94.442 (6)°Prism, colourless
V = 642.86 (11) Å30.12 × 0.08 × 0.06 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1021 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.065
Horizonally mounted graphite crystal monochromatorθmax = 27.8°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = 0.0000007.000000
CCD rotation images, thick slices scansk = 0.0000010.000000
1609 measured reflectionsl = 17.0000017.000000
1603 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0858P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1603 reflectionsΔρmax = 0.17 e Å3
167 parametersΔρmin = 0.16 e Å3
1 restraint
Crystal data top
C16H14O2V = 642.86 (11) Å3
Mr = 238.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0141 (5) ŵ = 0.08 mm1
b = 7.8839 (8) ÅT = 293 K
c = 13.5992 (14) Å0.12 × 0.08 × 0.06 mm
β = 94.442 (6)°
Data collection top
Nonius KappaCCD
diffractometer
1021 reflections with I > 2σ(I)
1609 measured reflectionsRint = 0.065
1603 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
1603 reflectionsΔρmin = 0.16 e Å3
167 parameters
Special details top

Experimental. The absence of some reflections of the data sets is due to merged them. The 001 reflection was removed because it intensity was affect by the beam stop.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C161.2957 (8)0.3081 (6)0.2215 (3)0.1064 (13)
H16A1.42030.3170.26620.128*
H16B1.31320.28990.1550.128*
H150.960 (6)0.322 (7)0.199 (3)0.119 (14)*
C10.5814 (4)0.3364 (4)0.8323 (2)0.0589 (7)
C20.7988 (4)0.3074 (4)0.8703 (2)0.0660 (8)
H20.89460.24190.83560.079*
C30.8714 (5)0.3768 (5)0.9602 (2)0.0780 (9)
H31.01590.35520.98670.094*
C40.7337 (6)0.4775 (5)1.0114 (2)0.0846 (10)
H40.78510.52441.07170.102*
C50.5206 (6)0.5084 (5)0.9730 (3)0.0825 (9)
H50.42770.57791.00680.099*
C60.4430 (5)0.4374 (5)0.8849 (2)0.0732 (8)
H60.29670.4570.86010.088*
C70.4818 (4)0.2537 (4)0.7404 (2)0.0618 (7)
C80.6023 (4)0.2502 (3)0.64903 (19)0.0551 (6)
C90.7921 (4)0.3450 (4)0.63562 (19)0.0558 (6)
H90.85460.41070.68740.067*
C100.8906 (4)0.3438 (3)0.54670 (18)0.0577 (6)
H101.01870.40710.53940.069*
C110.7969 (4)0.2475 (4)0.46872 (19)0.0570 (6)
C120.6079 (4)0.1514 (4)0.4819 (2)0.0666 (8)
H120.54580.08520.43020.08*
C130.5125 (4)0.1529 (4)0.5696 (2)0.0656 (7)
H130.38550.08810.57670.079*
C141.0531 (5)0.3498 (4)0.3553 (2)0.0700 (8)
H14A1.18580.32690.39840.084*
H14B1.00950.46680.36470.084*
C151.0986 (7)0.3210 (6)0.2518 (2)0.0848 (10)
O10.2952 (3)0.1918 (4)0.74038 (17)0.0906 (8)
O20.8762 (3)0.2378 (3)0.37801 (13)0.0715 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C160.136 (3)0.105 (3)0.082 (2)0.012 (3)0.032 (2)0.009 (2)
C10.0556 (14)0.0588 (16)0.0637 (14)0.0029 (13)0.0135 (12)0.0036 (14)
C20.0571 (15)0.0756 (19)0.0663 (17)0.0002 (13)0.0116 (13)0.0027 (15)
C30.0674 (16)0.103 (3)0.0636 (17)0.0109 (17)0.0026 (14)0.0057 (17)
C40.098 (2)0.093 (2)0.0655 (18)0.0230 (19)0.0192 (18)0.0085 (18)
C50.089 (2)0.077 (2)0.084 (2)0.0005 (18)0.0283 (18)0.0107 (18)
C60.0629 (15)0.0760 (19)0.083 (2)0.0060 (15)0.0220 (14)0.0025 (18)
C70.0487 (14)0.0666 (16)0.0700 (16)0.0002 (13)0.0041 (12)0.0027 (14)
C80.0513 (13)0.0511 (14)0.0624 (15)0.0022 (12)0.0006 (11)0.0025 (13)
C90.0535 (13)0.0560 (14)0.0570 (14)0.0015 (12)0.0011 (11)0.0035 (13)
C100.0563 (13)0.0584 (15)0.0584 (15)0.0056 (13)0.0038 (12)0.0000 (14)
C110.0617 (14)0.0521 (13)0.0568 (15)0.0042 (13)0.0017 (12)0.0011 (14)
C120.0700 (16)0.0608 (16)0.0671 (18)0.0082 (14)0.0076 (14)0.0089 (15)
C130.0603 (15)0.0614 (16)0.0751 (19)0.0101 (14)0.0055 (14)0.0019 (16)
C140.0773 (18)0.0667 (18)0.0672 (17)0.0032 (15)0.0133 (14)0.0003 (16)
C150.099 (2)0.092 (2)0.0645 (17)0.001 (2)0.0139 (18)0.0056 (18)
O10.0605 (12)0.121 (2)0.0911 (15)0.0256 (13)0.0138 (11)0.0100 (15)
O20.0857 (13)0.0694 (12)0.0600 (11)0.0070 (11)0.0099 (9)0.0039 (11)
Geometric parameters (Å, º) top
C16—C151.289 (5)C8—C91.388 (4)
C16—H16A0.93C8—C131.399 (4)
C16—H16B0.93C9—C101.387 (4)
C1—C21.387 (3)C9—H90.93
C1—C61.390 (4)C10—C111.387 (4)
C1—C71.494 (4)C10—H100.93
C2—C31.379 (4)C11—O21.359 (3)
C2—H20.93C11—C121.389 (4)
C3—C41.375 (5)C12—C131.363 (4)
C3—H30.93C12—H120.93
C4—C51.368 (5)C13—H130.93
C4—H40.93C14—O21.435 (3)
C5—C61.371 (5)C14—C151.472 (4)
C5—H50.93C14—H14A0.97
C6—H60.93C14—H14B0.97
C7—O11.224 (3)C15—H151.06 (4)
C7—C81.486 (4)
C15—C16—H16A120C13—C8—C7118.1 (2)
C15—C16—H16B120C8—C9—C10121.5 (2)
H16A—C16—H16B120C8—C9—H9119.3
C2—C1—C6119.2 (3)C10—C9—H9119.3
C2—C1—C7123.1 (3)C11—C10—C9119.6 (2)
C6—C1—C7117.6 (2)C11—C10—H10120.2
C3—C2—C1119.3 (3)C9—C10—H10120.2
C3—C2—H2120.3O2—C11—C10125.1 (2)
C1—C2—H2120.3O2—C11—C12115.7 (2)
C4—C3—C2121.1 (3)C10—C11—C12119.2 (2)
C4—C3—H3119.5C13—C12—C11120.8 (3)
C2—C3—H3119.5C13—C12—H12119.6
C5—C4—C3119.5 (3)C11—C12—H12119.6
C5—C4—H4120.3C12—C13—C8121.1 (2)
C3—C4—H4120.3C12—C13—H13119.4
C6—C5—C4120.5 (3)C8—C13—H13119.4
C6—C5—H5119.8O2—C14—C15107.8 (3)
C4—C5—H5119.8O2—C14—H14A110.1
C5—C6—C1120.4 (3)C15—C14—H14A110.1
C5—C6—H6119.8O2—C14—H14B110.1
C1—C6—H6119.8C15—C14—H14B110.1
O1—C7—C8120.0 (3)H14A—C14—H14B108.5
O1—C7—C1118.8 (3)C16—C15—C14124.2 (4)
C8—C7—C1121.2 (2)C16—C15—H15119 (2)
C9—C8—C13117.8 (2)C14—C15—H15117 (2)
C9—C8—C7124.0 (2)C11—O2—C14118.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.833.651 (3)147
C14—H14B···Cg2ii0.972.963.630 (3)127
C10—H10···O2ii0.932.893.528 (4)127
C2—H2···O1iii0.932.853.698 (4)152
C14—H14B···O1iv0.972.853.596 (4)134
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+2, y+1/2, z+1; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.833.651 (3)147
C14—H14B···Cg2ii0.972.963.630 (3)127
C10—H10···O2ii0.932.893.528 (4)127
C2—H2···O1iii0.932.853.698 (4)152
C14—H14B···O1iv0.972.853.596 (4)134
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+2, y+1/2, z+1; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1.
 

Acknowledgements

RFD acknowledges a CAPES/PNPD scholarship from the Brazilian Ministry of Education (MEC) and the Crystallography Group of the Instituto de Física de São Carlos, Universidade de São Paulo. MNC acknowledges the Centro en Excelencia en Nuevos Materiales (CENM), the Vicerrectoría de Investigaciones of Universidad del Valle, Banco de la República and Colciencias from Colombia for partial financial support. CDG acnowledges the Universidad de San Buenaventura Cali for partial financial support.

References

First citationBalakirev, M. Y., Porte, S., Vernaz-Gris, M., Berger, M., Arie, J.-P., Fouque, B. & Chatelain, F. (2005). Anal. Chem. 77, 5474–5479.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeckett, A. & Porter, G. (1963). Trans. Faraday Soc. 59, 2038–2050.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDorman, G. & Prestwich, G. D. (1994). Biochemistry, 33, 5661–5673.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, L. F. V., Netto-Ferreira, J. C., Khmelinskii, I. V., Garcia, A. R. & Costa, S. M. B. (1995). Langmuir, 11, 231–236.  Google Scholar
First citationGuo, S., Su, G., Pan, F. & He, Y. (1992). Acta Cryst. C48, 576–578.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKubo, S., Ohtake, T., Kang, E.-C. & Nakagawa, M. J. (2010). J. Photopolym. Sci. Technol. 23, 83–86.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsushita, Y., Kajii, Y. & Obi, K. (1992). J. Phys. Chem. 96, 6566–6570.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNorment, H. G. & Karle, I. L. (1962). Acta Cryst. 15, 873–878.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrucker, O., Naumann, C. A., Ruhe, J., Knoll, W. & Frank, C. W. (1999). J. Am. Chem. Soc. 121, 8766–8770.  Web of Science CrossRef CAS Google Scholar
First citationSchlemper, E. O. (1982). Acta Cryst. B38, 554–559.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirahata, A. & Kishimoto, K. (1984). US Patent 4467082A.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds