organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2,3-Di­hydro­thieno[3,4-b][1,4]dioxin-5-yl)aniline

aDepartment of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin, Texas 78712, USA
*Correspondence e-mail: bholliday@cm.utexas.edu

(Received 20 May 2014; accepted 16 June 2014; online 21 June 2014)

In the title mol­ecule, C12H11NO2S, the dioxane-type ring adopts a half-chair conformation. The thio­phene ring forms a dihedral angle of 12.53 (6)° with the benzene ring. In the crystal, N—H⋯O, hydrogen bonds link mol­ecules, forming chains along the c-axis direction. A weak intra­molecular C—H⋯O hydrogen bond is observed.

Keywords: crystal structure.

Related literature

For related structures, see: Chen et al. (2011[Chen, X.-Y., Yang, X. & Holliday, B. J. (2011). Acta Cryst. E67, o3021.]); Riehn et al. (2000[Riehn, C., Degen, A., Weichert, A., Bolte, M., Egert, E., Brutschy, B., Tarakeshwar, P. & Kim, K. S. (2000). J. Phys. Chem. A, 104, 11593-11600.]); Sotzing & Reynolds (1996[Sotzing, G. A. & Reynolds, J. R. (1996). Chem. Mater. 8, 882-889.]). For the properties of 4-(2,3-di­hydro­thieno[3,4-b][1,4]dioxin-5-yl)aniline see: Trippé-Allard & Lacroix (2013[Trippé-Allard, G. & Lacroix, J.-C. (2013). Tetrahedron, 69, 861-866.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NO2S

  • Mr = 233.28

  • Orthorhombic, P 21 21 21

  • a = 6.9117 (6) Å

  • b = 7.0898 (6) Å

  • c = 21.4784 (16) Å

  • V = 1052.50 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.29 × 0.27 × 0.08 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.858, Tmax = 1.000

  • 11854 measured reflections

  • 1853 independent reflections

  • 1812 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 0.86

  • 1853 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 743 Friedel pairs

  • Absolute structure parameter: 0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H10A⋯O1i 0.88 (3) 2.52 (3) 3.352 (2) 160 (2)
C8—H8⋯O2 0.93 2.36 2.998 (2) 126
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is composed of an aniline moiety with a 3,4-ethylenedioxythiophene group appended at the 4-position, see Fig. 1. It has been used in the development of π-conjugated oligomers, which have low HOMO-LUMO gaps and are easily oxidized at low potentials, making them potential materials for photovoltaics and other optoelectronic applications (Trippé-Allard & Lacroix, 2013). The geometry of the ethylenedioxythiophene moiety is similar to other ethylenedioxythiophene containing compounds reported in the literature, which includes the six-membered dioxane-type ring in the half-chair conformation (Chen et al., 2011; Sotzing & Reynolds, 1996; Riehn et al., 2000). The dihedral angle between the thiophene and benzene rings is 12.53 (6)°. In the crystal, N1—H10A···O1i hydrogen bonds link molecules into chains along the c axis (Fig. 2). A weak intramolecular C—H···O hydrogen bond is also observed.

Related literature top

For related structures, see: Chen et al. (2011); Riehn et al. (2000); Sotzing & Reynolds (1996). For the properties of 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)aniline see: Trippé-Allard & Lacroix (2013).

Experimental top

To a solution of dry toluene under N2 was added tributyl(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)stannane (21.4 g, 49.5 mmol), 4-iodonitrobenzene (7.7 g, 30.9 mmol), trans-dichlorobis(triphenylphosphine) palladium (II) (0.3 g, 0.5 mmol), and copper (I) chloride (0.2 g, 1.1 mmol). The solution was refluxed at 383 K overnight. The black solution was exposed to atmosphere and conc. under reduced pressure. The solid was dissolved in dichloromethane and filtered over a bed of silica. The filtrate was conc. and recycrystallized in a dichloromethane/hexanes mixture to yield a bright yellow solid. The isolated yellow solid was added to a round bottom and dissolved in tetrahydrofuran (THF). Charcoal (8.39 g) and 5 ml of H2O was added and the mixture was heated to 323 K. Sodium borohydride (2.66 g, 70.5 mmol) was added in four portions over 1 hr. The reaction was heated for an additional 30 min after the last addition. The mixture was cooled to room temp. and filtered, washing with THF. The solution was concentrated then re-dissolved in CH2Cl2 and washed with H2O. The organic layer was concentrated to a third the original volume and mixed with an equal volume of hexanes. The solution was left standing overnight at 273 K and the orange crystals that precipitated were collected by vacuum filtration (4.63 g, 64% yield). These crystals were found suitable for X-ray diffraction. m.p. 376 K. 1H NMR (300 MHz, CDCl3): δ 7.51 (dt, J = 8.7, J = 2.1, 2H), 6.66 (dt, J = 8.7, J = 2.4, 2H), 6.19 (s, 1H), 4.25 – 4.18 (m, 4H), 3.64 (b, 2H); 13C{1H} NMR (75 MHz, CDCl3): δ 145.2, 142.1, 136.6, 127.2, 123.5, 117.9, 115.0, 95.5, 64.5, 64.4; Anal Calcd for C12H11NO2S: C, 61.78; H, 4.75; N, 6.00. Found: C, 61.67; H, 4.07; N, 5.90.

Refinement top

The amine H atoms were located in a difference Fourier map and both positional and isotropic displacement parameters were refined. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

The title compound is composed of an aniline moiety with a 3,4-ethylenedioxythiophene group appended at the 4-position, see Fig. 1. It has been used in the development of π-conjugated oligomers, which have low HOMO-LUMO gaps and are easily oxidized at low potentials, making them potential materials for photovoltaics and other optoelectronic applications (Trippé-Allard & Lacroix, 2013). The geometry of the ethylenedioxythiophene moiety is similar to other ethylenedioxythiophene containing compounds reported in the literature, which includes the six-membered dioxane-type ring in the half-chair conformation (Chen et al., 2011; Sotzing & Reynolds, 1996; Riehn et al., 2000). The dihedral angle between the thiophene and benzene rings is 12.53 (6)°. In the crystal, N1—H10A···O1i hydrogen bonds link molecules into chains along the c axis (Fig. 2). A weak intramolecular C—H···O hydrogen bond is also observed.

For related structures, see: Chen et al. (2011); Riehn et al. (2000); Sotzing & Reynolds (1996). For the properties of 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)aniline see: Trippé-Allard & Lacroix (2013).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), POV-RAY (Cason, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure viewed along the b axis. Thin black lines indicate N—H···O hydrogen bonds.
4-(2,3-Dihydrothieno[3,4-b][1,4]dioxin-5-yl)aniline top
Crystal data top
C12H11NO2SF(000) = 488
Mr = 233.28Dx = 1.472 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 2964 reflections
a = 6.9117 (6) Åθ = 2.9–28.2°
b = 7.0898 (6) ŵ = 0.29 mm1
c = 21.4784 (16) ÅT = 100 K
V = 1052.50 (15) Å3Plate, orange
Z = 40.29 × 0.27 × 0.08 mm
Data collection top
Rigaku Saturn724+
diffractometer
1853 independent reflections
Radiation source: fine-focus sealed tube1812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 3.0°
profile data from ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
k = 88
Tmin = 0.858, Tmax = 1.000l = 2225
11854 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.6318P]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
1853 reflectionsΔρmax = 0.43 e Å3
153 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 743 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C12H11NO2SV = 1052.50 (15) Å3
Mr = 233.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9117 (6) ŵ = 0.29 mm1
b = 7.0898 (6) ÅT = 100 K
c = 21.4784 (16) Å0.29 × 0.27 × 0.08 mm
Data collection top
Rigaku Saturn724+
diffractometer
1853 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
1812 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 1.000Rint = 0.047
11854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.43 e Å3
S = 0.86Δρmin = 0.21 e Å3
1853 reflectionsAbsolute structure: Flack (1983), 743 Friedel pairs
153 parametersAbsolute structure parameter: 0.03 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53914 (6)0.63412 (6)0.83637 (2)0.02511 (15)
O10.73741 (18)0.56761 (18)0.66914 (6)0.0229 (3)
O21.02695 (18)0.47874 (17)0.76297 (6)0.0203 (3)
N11.1401 (3)0.4133 (3)1.07137 (9)0.0332 (4)
C10.5329 (3)0.6408 (3)0.75642 (9)0.0257 (4)
H10.42670.68010.73320.031*
C20.7019 (3)0.5818 (2)0.73164 (9)0.0199 (4)
C30.9069 (3)0.4540 (3)0.65674 (9)0.0238 (4)
H3A0.94470.46870.61350.029*
H3B0.87670.32200.66380.029*
C41.0715 (3)0.5118 (3)0.69824 (8)0.0207 (4)
H4A1.18650.44110.68700.025*
H4B1.09880.64470.69210.025*
C50.8432 (2)0.5355 (2)0.77795 (8)0.0182 (4)
C60.7780 (2)0.5557 (2)0.83812 (9)0.0196 (4)
C70.8775 (3)0.5263 (2)0.89751 (9)0.0199 (4)
C81.0548 (3)0.4311 (2)0.90137 (9)0.0225 (4)
H81.11540.39150.86500.027*
C91.1417 (3)0.3948 (3)0.95825 (9)0.0262 (4)
H91.25930.33120.95950.031*
C101.0543 (3)0.4530 (3)1.01393 (9)0.0250 (4)
C110.8850 (3)0.5570 (3)1.01015 (9)0.0266 (4)
H110.82960.60411.04640.032*
C120.7970 (3)0.5920 (3)0.95357 (9)0.0257 (4)
H120.68230.66050.95260.031*
H10A1.065 (4)0.415 (3)1.1041 (11)0.035 (6)*
H10B1.215 (4)0.315 (4)1.0685 (12)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0134 (2)0.0283 (3)0.0336 (3)0.0022 (2)0.0016 (2)0.0034 (2)
O10.0188 (6)0.0237 (6)0.0262 (7)0.0012 (5)0.0045 (6)0.0017 (5)
O20.0152 (6)0.0226 (6)0.0230 (6)0.0032 (6)0.0014 (5)0.0021 (5)
N10.0385 (11)0.0316 (10)0.0295 (11)0.0059 (9)0.0036 (9)0.0010 (8)
C10.0154 (8)0.0235 (8)0.0382 (11)0.0007 (9)0.0046 (8)0.0025 (8)
C20.0185 (9)0.0146 (8)0.0264 (10)0.0029 (7)0.0037 (7)0.0002 (7)
C30.0210 (9)0.0215 (9)0.0289 (10)0.0005 (8)0.0002 (7)0.0030 (8)
C40.0191 (9)0.0185 (8)0.0245 (10)0.0006 (7)0.0026 (8)0.0001 (7)
C50.0123 (8)0.0121 (8)0.0302 (10)0.0009 (7)0.0002 (7)0.0007 (7)
C60.0121 (8)0.0146 (8)0.0322 (10)0.0004 (7)0.0012 (8)0.0009 (8)
C70.0181 (9)0.0144 (8)0.0271 (10)0.0032 (7)0.0029 (7)0.0014 (7)
C80.0225 (9)0.0204 (8)0.0244 (9)0.0030 (8)0.0000 (8)0.0019 (7)
C90.0233 (9)0.0226 (9)0.0327 (11)0.0053 (8)0.0040 (8)0.0028 (8)
C100.0284 (10)0.0202 (8)0.0264 (10)0.0053 (9)0.0015 (8)0.0030 (8)
C110.0263 (10)0.0288 (10)0.0247 (10)0.0014 (9)0.0074 (8)0.0011 (8)
C120.0202 (9)0.0243 (9)0.0327 (11)0.0022 (8)0.0048 (8)0.0027 (8)
Geometric parameters (Å, º) top
S1—C11.718 (2)C4—H4A0.9700
S1—C61.7424 (18)C4—H4B0.9700
O1—C21.368 (2)C5—C61.376 (3)
O1—C31.446 (2)C6—C71.464 (3)
O2—C51.370 (2)C7—C81.402 (3)
O2—C41.443 (2)C7—C121.406 (3)
N1—C101.397 (3)C8—C91.385 (3)
N1—H10A0.87 (3)C8—H80.9300
N1—H10B0.87 (3)C9—C101.402 (3)
C1—C21.350 (3)C9—H90.9300
C1—H10.9300C10—C111.385 (3)
C2—C51.432 (3)C11—C121.382 (3)
C3—C41.503 (3)C11—H110.9300
C3—H3A0.9700C12—H120.9300
C3—H3B0.9700
C1—S1—C693.10 (9)O2—C5—C6123.69 (16)
C2—O1—C3111.52 (14)O2—C5—C2122.42 (16)
C5—O2—C4112.11 (13)C6—C5—C2113.89 (16)
C10—N1—H10A117.2 (17)C5—C6—C7130.51 (16)
C10—N1—H10B110.5 (17)C5—C6—S1108.87 (14)
H10A—N1—H10B115 (2)C7—C6—S1120.60 (14)
C2—C1—S1111.33 (15)C8—C7—C12117.05 (17)
C2—C1—H1124.3C8—C7—C6122.06 (16)
S1—C1—H1124.3C12—C7—C6120.89 (17)
C1—C2—O1124.39 (17)C9—C8—C7121.37 (18)
C1—C2—C5112.78 (17)C9—C8—H8119.3
O1—C2—C5122.83 (16)C7—C8—H8119.3
O1—C3—C4110.61 (14)C8—C9—C10120.74 (18)
O1—C3—H3A109.5C8—C9—H9119.6
C4—C3—H3A109.5C10—C9—H9119.6
O1—C3—H3B109.5C11—C10—N1121.13 (19)
C4—C3—H3B109.5C11—C10—C9118.06 (18)
H3A—C3—H3B108.1N1—C10—C9120.76 (19)
O2—C4—C3111.42 (15)C12—C11—C10121.27 (18)
O2—C4—H4A109.3C12—C11—H11119.4
C3—C4—H4A109.3C10—C11—H11119.4
O2—C4—H4B109.3C11—C12—C7121.31 (18)
C3—C4—H4B109.3C11—C12—H12119.3
H4A—C4—H4B108.0C7—C12—H12119.3
C6—S1—C1—C21.54 (14)C2—C5—C6—S10.29 (19)
S1—C1—C2—O1178.30 (13)C1—S1—C6—C50.68 (13)
S1—C1—C2—C52.0 (2)C1—S1—C6—C7177.95 (14)
C3—O1—C2—C1164.18 (17)C5—C6—C7—C813.8 (3)
C3—O1—C2—C516.1 (2)S1—C6—C7—C8167.89 (14)
C2—O1—C3—C446.87 (19)C5—C6—C7—C12166.69 (19)
C5—O2—C4—C344.06 (19)S1—C6—C7—C1211.6 (2)
O1—C3—C4—O263.54 (19)C12—C7—C8—C93.3 (3)
C4—O2—C5—C6166.28 (16)C6—C7—C8—C9176.21 (18)
C4—O2—C5—C212.9 (2)C7—C8—C9—C100.1 (3)
C1—C2—C5—O2177.73 (15)C8—C9—C10—C113.7 (3)
O1—C2—C5—O22.0 (3)C8—C9—C10—N1178.79 (19)
C1—C2—C5—C61.5 (2)N1—C10—C11—C12178.21 (19)
O1—C2—C5—C6178.78 (15)C9—C10—C11—C124.3 (3)
O2—C5—C6—C70.5 (3)C10—C11—C12—C71.1 (3)
C2—C5—C6—C7178.74 (17)C8—C7—C12—C112.7 (3)
O2—C5—C6—S1178.91 (13)C6—C7—C12—C11176.79 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10A···O1i0.88 (3)2.52 (3)3.352 (2)160 (2)
C8—H8···O20.932.362.998 (2)126
Symmetry code: (i) x+3/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10A···O1i0.88 (3)2.52 (3)3.352 (2)160 (2)
C8—H8···O20.932.362.998 (2)126
Symmetry code: (i) x+3/2, y+1, z+1/2.
 

Acknowledgements

The data were collected using instrumentation purchased with funds provided by the National Science Foundation (grant No. CHE-0741973). The Welch Foundation (grant No. F-1631) and the National Science Foundation (grant No. CHE-0847763) are acknowledged for financial support of this research.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org  Google Scholar
First citationChen, X.-Y., Yang, X. & Holliday, B. J. (2011). Acta Cryst. E67, o3021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRiehn, C., Degen, A., Weichert, A., Bolte, M., Egert, E., Brutschy, B., Tarakeshwar, P. & Kim, K. S. (2000). J. Phys. Chem. A, 104, 11593–11600.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSotzing, G. A. & Reynolds, J. R. (1996). Chem. Mater. 8, 882–889.  CSD CrossRef CAS Web of Science Google Scholar
First citationTrippé-Allard, G. & Lacroix, J.-C. (2013). Tetrahedron, 69, 861–866.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds