organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-N-(6-bromo­pyridin-2-yl)-N-[4-(2,3-di­hydro­thieno[3,4-b][1,4]dioxin-5-yl)phen­yl]pyridin-2-amine

aDepartment of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin, Texas 78712, USA
*Correspondence e-mail: bholliday@cm.utexas.edu

(Received 20 May 2014; accepted 5 June 2014; online 21 June 2014)

In the title mol­ecule, C22H15Br2N3O2S, the central benzene ring forms dihedral angles of 12.39 (17), 56.66 (17) and 74.71 (19)°, respectively, with the mean planes of the thio­phene and two pyridine rings. The dioxane ring is in a half-chair conformation. An intra­molecular C—H⋯O hydrogen forms an S(6) ring. The amine N atom is sp2-hybridized.

Related literature

For related structures, see: Chen et al. (2011[Chen, X.-Y., Yang, X. & Holliday, B. J. (2011). Acta Cryst. E67, o3021.]); Sotzing & Reynolds (1996[Sotzing, G. A. & Reynolds, J. R. (1996). Chem. Mater. 8, 882-889.]); de Betterncourt-Dias et al. (2011[Betterncourt-Dias, A. de, Beeler, R. M. & Tse, S. S. (2011). J. Chem. Crystallogr. 41, 192-197.]). For applications of simliar compounds, see: Chahma et al. (2007[Chahma, M., Gilroy, J. B. & Hicks, R. G. (2007). J. Mater. Chem. 17, 4768-4771.]); Roncali et al. (2005[Roncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589-1610.]). For the synthesis of the starting material 4-(2,3-di­hydro­thieno[3,4-b][1,4]dioxin-5-yl)aniline, see: Trippé-Allard & Lacroix (2013[Trippé-Allard, G. & Lacroix, J.-C. (2013). Tetrahedron, 69, 861-866.]). For the calculation of the functionality of the amine group in terms of hybridization, see: Allen et al. (1995[Allen, F. H., Bird, C. M., Rowland, R. S., Harris, S. E. & Schwalbe, C. H. (1995). Acta Cryst. B51, 1068-1081.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., David, R. E., Shimoni, N.-L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H15Br2N3O2S

  • Mr = 545.25

  • Triclinic, [P \overline 1]

  • a = 4.483 (4) Å

  • b = 12.151 (9) Å

  • c = 18.958 (13) Å

  • α = 75.807 (18)°

  • β = 87.67 (3)°

  • γ = 89.62 (2)°

  • V = 1000.3 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.18 mm−1

  • T = 100 K

  • 0.22 × 0.03 × 0.03 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.563, Tmax = 1.000

  • 13439 measured reflections

  • 3521 independent reflections

  • 2732 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.128

  • S = 1.00

  • 3521 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2 0.93 2.42 3.036 (7) 124

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The optical and electronic properties of 3,4-ethylenedioxythiophene (EDOT) containing compounds have spurred the development of materials for use in light-emitting devices, non-linear optics, and organic semi-conductors (Roncali et al., 2005). Triphenylamines with EDOT substituants have been utilized in the development of electroactive polymers with high redox stabilities (Chahma et al., 2007). The title compound is a promising precurser to branched unsymmetric electroactive polymers.

The geometry of the EDOT moiety is similar to other ethylenedioxythiophene containing compounds reported in the literature (Chen et al., 2011; Sotzing & Reynolds, 1996). The dihedral angle between the thiophene and central benzene is 12.39 (17)°. The two pyridine rings are twisted out of plane of the benzene ring. The dihedral angle between the benzene ring and the pyridine ring containing N1 is 56.66 (17)°, and the dihedral angle between the benzene ring and the pyridine ring containing N2 is 74.71 (19)°. An intramolecular C—H···O hydrogen forms an S(6) ring (Bernstein et al., 1995).

The pyramidality of the amine functionality, measured by χn, the angle between the C10—N2 vector and the N2/C13/C18 plane, described by Allen et al. (1995), is 2.3 (6)°, indicating that the hybridization of the nitrogen atom is mainly sp2 (sp2 χn 0°, sp3 χn 60°).

Related literature top

For related structures, see: Chen et al. (2011); Sotzing & Reynolds (1996); de Betterncourt-Dias et al. (2011). For applications of simliar compounds, see: Chahma et al. (2007); Roncali et al. (2005). For the synthesis of the starting material 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)aniline, see: Trippé-Allard & Lacroix (2013). For the calculation of the functionality of the amine group in terms of hybridization, see: Allen et al. (1995). For hydrogen-bond graph-set motifs, see: (Bernstein et al. 1995).

Experimental top

In an air-free glovebox tris(dibenzylideneacetone)dipalladium(0) (0.488 g, 0.5 mmol) was added to a dry schlenk flask. The reaction flask was pumped out, dry toluene was transferred into the flask by cannula and 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)aniline, synthesized from Trippé-Allard & Lacroix (2013), (4.508 g, 19.3 mmol), 2,6-dibromopyridine (9.387 g, 39.6 mmol), 1,1'-bis(diphenylphosphino)ferrocene (0.632 g, 1.1 mmol), and sodium tert-butoxide (3.989 g, 41.5 mmol) were added to the solution. The solution was refluxed at 393 K for 20 h. The solution was cooled to room temperature and the toluene was removed by rotoevaporation. The product was extracted into CH2Cl2 (x3) washing with H2O. The crude solid was purified by silica gel column chromatography with 45% ethyl acetate: 55% hexanes by volume (Rf = 0.59) to yield a bright yellow solid (2.298 g, 21.8%). Crystals suitable for X-ray diffraction were obtained by slow evaporation from a 45% ethyl acetate, 55% hexanes solution (v/v). m.p. 433 K. 1H NMR (300 MHz, CDCl3) δ: 7.72 (d, 2H, J = 8.4), 7.36 (t, 2H, J = 7.9), 7.15 (d, 2H, J = 8.4), 7.09 (d, 2H, J = 5.1), 6.93 (d, 2H, J = 8.4), 6.30 (s, 1H), 4.31 – 4.25 (m, 4H), 13C{1H} NMR (75 MHz, CDCl3) δ: 156.9, 142.2, 141.5, 139.6, 139.4, 138.3, 131.51, 127.2, 122.1, 116.6, 114.9, 97.9, 64.8, 64.4. Anal. calcd. for C22H15Br2N3O2S: C, 48.46; H, 2.77; N, 7.71. Found: C, 48.63; H, 2.51; N, 7.59.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

The optical and electronic properties of 3,4-ethylenedioxythiophene (EDOT) containing compounds have spurred the development of materials for use in light-emitting devices, non-linear optics, and organic semi-conductors (Roncali et al., 2005). Triphenylamines with EDOT substituants have been utilized in the development of electroactive polymers with high redox stabilities (Chahma et al., 2007). The title compound is a promising precurser to branched unsymmetric electroactive polymers.

The geometry of the EDOT moiety is similar to other ethylenedioxythiophene containing compounds reported in the literature (Chen et al., 2011; Sotzing & Reynolds, 1996). The dihedral angle between the thiophene and central benzene is 12.39 (17)°. The two pyridine rings are twisted out of plane of the benzene ring. The dihedral angle between the benzene ring and the pyridine ring containing N1 is 56.66 (17)°, and the dihedral angle between the benzene ring and the pyridine ring containing N2 is 74.71 (19)°. An intramolecular C—H···O hydrogen forms an S(6) ring (Bernstein et al., 1995).

The pyramidality of the amine functionality, measured by χn, the angle between the C10—N2 vector and the N2/C13/C18 plane, described by Allen et al. (1995), is 2.3 (6)°, indicating that the hybridization of the nitrogen atom is mainly sp2 (sp2 χn 0°, sp3 χn 60°).

For related structures, see: Chen et al. (2011); Sotzing & Reynolds (1996); de Betterncourt-Dias et al. (2011). For applications of simliar compounds, see: Chahma et al. (2007); Roncali et al. (2005). For the synthesis of the starting material 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)aniline, see: Trippé-Allard & Lacroix (2013). For the calculation of the functionality of the amine group in terms of hybridization, see: Allen et al. (1995). For hydrogen-bond graph-set motifs, see: (Bernstein et al. 1995).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and POV-RAY (Cason, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Ellipsoids are drawn at the 50% probability level.
6-Bromo-N-(6-bromopyridin-2-yl)-N-[4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)phenyl]pyridin-2-amine top
Crystal data top
C22H15Br2N3O2SZ = 2
Mr = 545.25F(000) = 540
Triclinic, P1Dx = 1.810 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 4.483 (4) ÅCell parameters from 3281 reflections
b = 12.151 (9) Åθ = 1.7–27.7°
c = 18.958 (13) ŵ = 4.18 mm1
α = 75.807 (18)°T = 100 K
β = 87.67 (3)°Prism, colorless
γ = 89.62 (2)°0.22 × 0.03 × 0.03 mm
V = 1000.3 (13) Å3
Data collection top
Rigaku Saturn724+
diffractometer
3521 independent reflections
Radiation source: fine-focus sealed tube2732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 1.7°
dtprofit.ref scansh = 55
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
k = 1414
Tmin = 0.563, Tmax = 1.000l = 2222
13439 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0638P)2]
where P = (Fo2 + 2Fc2)/3
3521 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C22H15Br2N3O2Sγ = 89.62 (2)°
Mr = 545.25V = 1000.3 (13) Å3
Triclinic, P1Z = 2
a = 4.483 (4) ÅMo Kα radiation
b = 12.151 (9) ŵ = 4.18 mm1
c = 18.958 (13) ÅT = 100 K
α = 75.807 (18)°0.22 × 0.03 × 0.03 mm
β = 87.67 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
3521 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
2732 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 1.000Rint = 0.079
13439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 1.06 e Å3
3521 reflectionsΔρmin = 0.83 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4149 (12)0.8677 (5)0.3436 (3)0.0254 (13)
H10.40190.91000.29580.030*
C20.5672 (11)0.7710 (5)0.3635 (3)0.0223 (12)
C30.7454 (12)0.6007 (5)0.3458 (3)0.0244 (13)
H3A0.87360.56750.31410.029*
H3B0.54910.56630.34890.029*
C40.8723 (12)0.5774 (5)0.4210 (3)0.0238 (12)
H4A0.89820.49620.43950.029*
H4B1.06660.61330.41770.029*
C50.5503 (10)0.7210 (5)0.4403 (3)0.0188 (11)
C60.3812 (11)0.7836 (5)0.4784 (3)0.0214 (12)
C70.3032 (11)0.7649 (4)0.5558 (3)0.0181 (11)
C80.0814 (12)0.8290 (5)0.5805 (3)0.0238 (12)
H80.01790.88410.54670.029*
C90.0052 (12)0.8131 (5)0.6533 (3)0.0235 (12)
H90.14700.85600.66800.028*
C100.1546 (11)0.7335 (5)0.7049 (3)0.0216 (12)
C110.3738 (11)0.6680 (5)0.6820 (3)0.0215 (12)
H110.47330.61380.71630.026*
C120.4468 (11)0.6822 (5)0.6089 (3)0.0208 (12)
H120.59270.63660.59450.025*
C130.0144 (11)0.8117 (5)0.8102 (3)0.0201 (12)
C140.1319 (11)0.9198 (5)0.7798 (3)0.0248 (13)
H140.26320.93250.73930.030*
C150.0499 (12)1.0077 (5)0.8109 (3)0.0264 (13)
H150.12161.08090.79100.032*
C160.1433 (12)0.9848 (5)0.8729 (3)0.0257 (13)
H160.20451.04160.89540.031*
C170.2361 (11)0.8761 (5)0.8984 (3)0.0235 (12)
C180.0708 (11)0.6057 (5)0.8273 (3)0.0204 (12)
C190.2220 (12)0.5796 (5)0.8916 (3)0.0230 (12)
H190.33440.63410.90570.028*
C200.2000 (11)0.4706 (5)0.9338 (3)0.0239 (12)
H200.29520.45080.97780.029*
C210.0373 (11)0.3899 (5)0.9114 (3)0.0221 (12)
H210.01750.31570.93940.027*
C220.0947 (11)0.4255 (5)0.8448 (3)0.0214 (12)
N10.1728 (9)0.7893 (4)0.8702 (2)0.0208 (10)
N20.0834 (10)0.7185 (4)0.7811 (2)0.0223 (10)
N30.0829 (9)0.5300 (4)0.8032 (2)0.0208 (10)
O10.7239 (8)0.7215 (3)0.31571 (18)0.0250 (9)
O20.6761 (8)0.6202 (3)0.47078 (18)0.0228 (9)
S10.2461 (3)0.90420 (13)0.41770 (7)0.0266 (3)
Br10.49638 (12)0.83856 (5)0.98380 (3)0.02763 (19)
Br20.31232 (12)0.31910 (5)0.80909 (3)0.02536 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (3)0.024 (3)0.009 (3)0.000 (3)0.005 (2)0.002 (2)
C20.028 (3)0.026 (3)0.017 (3)0.004 (2)0.004 (2)0.014 (2)
C30.033 (3)0.025 (3)0.019 (3)0.002 (2)0.001 (2)0.014 (3)
C40.028 (3)0.025 (3)0.022 (3)0.002 (2)0.001 (2)0.012 (2)
C50.018 (3)0.026 (3)0.015 (3)0.000 (2)0.0007 (19)0.009 (2)
C60.026 (3)0.023 (3)0.018 (3)0.002 (2)0.002 (2)0.010 (2)
C70.025 (3)0.019 (3)0.011 (2)0.001 (2)0.001 (2)0.006 (2)
C80.029 (3)0.024 (3)0.019 (3)0.007 (2)0.003 (2)0.006 (2)
C90.032 (3)0.021 (3)0.018 (3)0.004 (2)0.009 (2)0.009 (2)
C100.026 (3)0.024 (3)0.018 (3)0.003 (2)0.001 (2)0.011 (2)
C110.029 (3)0.022 (3)0.015 (3)0.000 (2)0.001 (2)0.006 (2)
C120.025 (3)0.020 (3)0.018 (3)0.004 (2)0.003 (2)0.007 (2)
C130.028 (3)0.019 (3)0.014 (3)0.001 (2)0.001 (2)0.008 (2)
C140.029 (3)0.027 (3)0.020 (3)0.001 (2)0.005 (2)0.010 (3)
C150.033 (3)0.024 (3)0.022 (3)0.005 (2)0.002 (2)0.006 (2)
C160.038 (3)0.023 (3)0.021 (3)0.001 (3)0.004 (2)0.015 (3)
C170.025 (3)0.033 (4)0.017 (3)0.006 (2)0.003 (2)0.016 (3)
C180.022 (3)0.025 (3)0.018 (3)0.005 (2)0.001 (2)0.013 (2)
C190.024 (3)0.033 (3)0.016 (3)0.003 (2)0.001 (2)0.014 (3)
C200.028 (3)0.027 (3)0.018 (3)0.003 (2)0.001 (2)0.008 (3)
C210.025 (3)0.022 (3)0.018 (3)0.002 (2)0.001 (2)0.003 (2)
C220.029 (3)0.023 (3)0.015 (3)0.001 (2)0.008 (2)0.011 (2)
N10.027 (2)0.021 (3)0.016 (2)0.0047 (19)0.0002 (18)0.009 (2)
N20.032 (2)0.021 (3)0.017 (2)0.001 (2)0.0055 (18)0.011 (2)
N30.029 (2)0.022 (3)0.013 (2)0.000 (2)0.0068 (18)0.009 (2)
O10.035 (2)0.030 (2)0.0138 (18)0.0010 (17)0.0057 (15)0.0128 (17)
O20.031 (2)0.027 (2)0.0130 (18)0.0098 (17)0.0015 (15)0.0090 (17)
S10.0396 (8)0.0243 (8)0.0158 (7)0.0065 (6)0.0026 (6)0.0057 (6)
Br10.0357 (3)0.0294 (4)0.0196 (3)0.0038 (3)0.0076 (2)0.0111 (3)
Br20.0329 (3)0.0260 (4)0.0200 (3)0.0033 (2)0.0029 (2)0.0115 (2)
Geometric parameters (Å, º) top
C1—C21.335 (7)C11—H110.9300
C1—S11.719 (5)C12—H120.9300
C1—H10.9300C13—N11.360 (6)
C2—O11.374 (6)C13—C141.396 (8)
C2—C51.433 (7)C13—N21.403 (7)
C3—O11.442 (6)C14—C151.382 (8)
C3—C41.517 (7)C14—H140.9300
C3—H3A0.9700C15—C161.403 (7)
C3—H3B0.9700C15—H150.9300
C4—O21.450 (6)C16—C171.353 (8)
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C17—N11.318 (7)
C5—O21.351 (6)C17—Br11.919 (5)
C5—C61.376 (7)C18—N31.330 (7)
C6—C71.457 (7)C18—C191.386 (7)
C6—S11.748 (5)C18—N21.435 (7)
C7—C81.394 (7)C19—C201.371 (8)
C7—C121.409 (7)C19—H190.9300
C8—C91.375 (7)C20—C211.384 (8)
C8—H80.9300C20—H200.9300
C9—C101.386 (7)C21—C221.386 (7)
C9—H90.9300C21—H210.9300
C10—C111.382 (7)C22—N31.319 (7)
C10—N21.433 (6)C22—Br21.893 (6)
C11—C121.380 (7)
C2—C1—S1111.4 (4)C11—C12—H12119.6
C2—C1—H1124.3C7—C12—H12119.6
S1—C1—H1124.3N1—C13—C14122.3 (5)
C1—C2—O1124.1 (5)N1—C13—N2115.4 (5)
C1—C2—C5113.8 (5)C14—C13—N2122.3 (5)
O1—C2—C5122.1 (5)C15—C14—C13118.9 (5)
O1—C3—C4109.9 (4)C15—C14—H14120.6
O1—C3—H3A109.7C13—C14—H14120.6
C4—C3—H3A109.7C14—C15—C16118.9 (6)
O1—C3—H3B109.7C14—C15—H15120.5
C4—C3—H3B109.7C16—C15—H15120.5
H3A—C3—H3B108.2C17—C16—C15116.7 (5)
O2—C4—C3111.0 (4)C17—C16—H16121.6
O2—C4—H4A109.4C15—C16—H16121.6
C3—C4—H4A109.4N1—C17—C16127.3 (5)
O2—C4—H4B109.4N1—C17—Br1113.8 (4)
C3—C4—H4B109.4C16—C17—Br1118.9 (4)
H4A—C4—H4B108.0N3—C18—C19123.6 (5)
O2—C5—C6124.2 (5)N3—C18—N2116.0 (4)
O2—C5—C2122.8 (4)C19—C18—N2120.3 (5)
C6—C5—C2112.9 (5)C20—C19—C18117.6 (5)
C5—C6—C7131.5 (5)C20—C19—H19121.2
C5—C6—S1109.3 (4)C18—C19—H19121.2
C7—C6—S1119.2 (4)C19—C20—C21120.5 (5)
C8—C7—C12117.1 (5)C19—C20—H20119.8
C8—C7—C6120.9 (4)C21—C20—H20119.8
C12—C7—C6122.0 (4)C20—C21—C22116.3 (5)
C9—C8—C7121.9 (5)C20—C21—H21121.8
C9—C8—H8119.0C22—C21—H21121.8
C7—C8—H8119.0N3—C22—C21125.0 (5)
C8—C9—C10120.2 (5)N3—C22—Br2116.1 (4)
C8—C9—H9119.9C21—C22—Br2118.9 (4)
C10—C9—H9119.9C17—N1—C13115.8 (5)
C11—C10—C9119.1 (5)C13—N2—C10121.0 (4)
C11—C10—N2120.1 (5)C13—N2—C18119.9 (4)
C9—C10—N2120.8 (5)C10—N2—C18119.0 (4)
C12—C11—C10120.8 (5)C22—N3—C18116.9 (4)
C12—C11—H11119.6C2—O1—C3110.1 (4)
C10—C11—H11119.6C5—O2—C4113.7 (4)
C11—C12—C7120.9 (5)C1—S1—C692.6 (3)
S1—C1—C2—O1179.9 (4)C18—C19—C20—C211.4 (8)
S1—C1—C2—C50.8 (6)C19—C20—C21—C220.8 (7)
O1—C3—C4—O262.8 (6)C20—C21—C22—N32.0 (8)
C1—C2—C5—O2176.4 (5)C20—C21—C22—Br2178.4 (4)
O1—C2—C5—O22.7 (8)C16—C17—N1—C132.2 (8)
C1—C2—C5—C60.5 (7)Br1—C17—N1—C13179.1 (3)
O1—C2—C5—C6179.6 (5)C14—C13—N1—C170.3 (7)
O2—C5—C6—C72.6 (9)N2—C13—N1—C17179.3 (4)
C2—C5—C6—C7179.5 (5)N1—C13—N2—C10151.1 (5)
O2—C5—C6—S1176.9 (4)C14—C13—N2—C1029.4 (7)
C2—C5—C6—S10.1 (6)N1—C13—N2—C1826.2 (7)
C5—C6—C7—C8167.6 (6)C14—C13—N2—C18153.3 (5)
S1—C6—C7—C811.9 (7)C11—C10—N2—C13142.0 (5)
C5—C6—C7—C1212.5 (9)C9—C10—N2—C1338.1 (7)
S1—C6—C7—C12168.0 (4)C11—C10—N2—C1840.6 (7)
C12—C7—C8—C90.2 (8)C9—C10—N2—C18139.2 (5)
C6—C7—C8—C9179.7 (5)N3—C18—N2—C13130.1 (5)
C7—C8—C9—C101.5 (9)C19—C18—N2—C1352.2 (7)
C8—C9—C10—C112.0 (9)N3—C18—N2—C1047.3 (6)
C8—C9—C10—N2178.1 (5)C19—C18—N2—C10130.4 (5)
C9—C10—C11—C120.8 (9)C21—C22—N3—C180.8 (7)
N2—C10—C11—C12179.4 (5)Br2—C22—N3—C18179.6 (3)
C10—C11—C12—C71.0 (9)C19—C18—N3—C221.7 (7)
C8—C7—C12—C111.5 (8)N2—C18—N3—C22179.4 (4)
C6—C7—C12—C11178.4 (5)C1—C2—O1—C3153.8 (5)
N1—C13—C14—C151.5 (8)C5—C2—O1—C325.2 (7)
N2—C13—C14—C15179.0 (5)C4—C3—O1—C253.4 (5)
C13—C14—C15—C161.4 (8)C6—C5—O2—C4173.1 (5)
C14—C15—C16—C170.2 (8)C2—C5—O2—C410.3 (7)
C15—C16—C17—N12.3 (9)C3—C4—O2—C539.1 (6)
C15—C16—C17—Br1179.2 (4)C2—C1—S1—C60.7 (5)
N3—C18—C19—C202.8 (8)C5—C6—S1—C10.4 (4)
N2—C18—C19—C20179.6 (4)C7—C6—S1—C1179.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O20.932.423.036 (7)124
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O20.932.423.036 (7)124
 

Acknowledgements

The data were collected using instrumentation purchased with funds provided by the National Science Foundation (grant No. CHE-0741973). The Welch Foundation (grant No. F-1631) and the National Science Foundation (grant No. CHE-0847763) are acknowledged for financial support of this research.

References

First citationAllen, F. H., Bird, C. M., Rowland, R. S., Harris, S. E. & Schwalbe, C. H. (1995). Acta Cryst. B51, 1068–1081.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., David, R. E., Shimoni, N.-L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetterncourt-Dias, A. de, Beeler, R. M. & Tse, S. S. (2011). J. Chem. Crystallogr. 41, 192–197.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org.  Google Scholar
First citationChahma, M., Gilroy, J. B. & Hicks, R. G. (2007). J. Mater. Chem. 17, 4768–4771.  Web of Science CrossRef CAS Google Scholar
First citationChen, X.-Y., Yang, X. & Holliday, B. J. (2011). Acta Cryst. E67, o3021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRoncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589–1610.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSotzing, G. A. & Reynolds, J. R. (1996). Chem. Mater. 8, 882–889.  CSD CrossRef CAS Web of Science Google Scholar
First citationTrippé-Allard, G. & Lacroix, J.-C. (2013). Tetrahedron, 69, 861–866.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds