metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis[2,5-bis­­(pyridin-2-yl)-1,3,4-thia­diazole-κ2N2,N3]bis­­(methanol-κO)iron(II) bis­­(perchlorate)

aInstitut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg i. Br., Germany
*Correspondence e-mail: julia.klingele@ac.uni-freiburg.de

(Received 16 May 2014; accepted 2 June 2014; online 7 June 2014)

The title compound, [Fe(C12H8N4S)2(CH3OH)2](ClO4)2, crystallized in the solvent-free form from a methanol solution. The FeII ion is located on a centre of inversion. The distorted N4O2 octa­hedral coordination geometry is formed by two N,N′-chelating equatorial 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole ligands and axially coordinating methanol coligands, resulting in the mononuclear trans-(N2,N3,O)2 coordination mode. The methanol co-ligand is involved in a hydrogen bond to the perchlorate counter-ion.

Related literature

For other 3d metal structures of 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole, see: Klingele et al. (2010[Klingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689-1691.], 2012[Klingele, J., Kaase, D., Klingele, M. H. & Lach, J. (2012). Dalton Trans. 41, 1397-1406.]); Bentiss, Lagrenee, Mentre et al. (2004[Bentiss, F., Lagrenee, M., Mentre, O., Conflant, P., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Inorg. Chem. 43, 1865-1873.]); Bentiss, Lagrenee, Vezin et al. (2004[Bentiss, F., Lagrenee, M., Vezin, H., Wignacourt, J.-P. & Holt, E. M. (2004). Polyhedron, 23, 1903-1907.]); Zheng et al. (2006[Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 543-544.]); Bentiss et al. (2002[Bentiss, F., Lagrenee, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403-408.]); Wan et al. (2007[Wan, X.-S., Ning, A.-M., Hou, S.-C., Niu, C.-Y., Kou, C.-H. & Dang, Y.-L. (2007). Z. Kristallogr. New Cryst. Struct. 222, 153-154.]). For related compounds, see: Guionneau et al. (2004[Guionneau, P., Marchivie, M., Bravic, G., Létard, J.-F. & Chasseau, D. (2004). Top. Curr. Chem. 234, 97-128.]). For the bridging capability of 4,4′-bispyridine-N,N′-dioxide, see: Jia et al. (2008[Jia, J., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2008). Inorg. Chem. 47, 8652-8664.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C12H8N4S)2(CH4O)2](ClO4)2

  • Mr = 799.40

  • Triclinic, [P \overline 1]

  • a = 8.8410 (3) Å

  • b = 9.5579 (4) Å

  • c = 9.5875 (4) Å

  • α = 87.169 (2)°

  • β = 88.945 (2)°

  • γ = 74.735 (2)°

  • V = 780.61 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 100 K

  • 0.18 × 0.08 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.861, Tmax = 0.975

  • 18025 measured reflections

  • 3128 independent reflections

  • 2789 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.062

  • S = 1.05

  • 3128 reflections

  • 227 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O20—H20⋯O11 0.78 (3) 1.91 (3) 2.690 (2) 178 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: OLEX2.refine (Puschmann et al., 2013[Puschmann, H., Bourhis, L. J., Dolomanov, O. V., Gildea, R. J. & Howard, J. A. K. (2013). Acta Cryst. A69, s679.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2.refine (Puschmann et al., 2013[Puschmann, H., Bourhis, L. J., Dolomanov, O. V., Gildea, R. J. & Howard, J. A. K. (2013). Acta Cryst. A69, s679.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2011[Brandenburg, K. & Putz, H. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Introduction top

The ligand 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole (L) is well known to have a suitable ligand field for the preparation of iron(II) spin crossover complexes (Klingele. et al., 2010). Known examples are the 2:1-type complexes [Fe(L)2(NCS)2], [Fe(L)2(NCSe)2] and [Fe(L)2(NCBH3)2] (Klingele et al., 2012). 4,4'-Bispyridine-N,N'-dioxide is able to bridge metal ions to form multidimensional structures (Jia et al., 2008). The title compound [Fe(L)2(MeOH)2](ClO4)2 was obtained unintendedly in the attempt to isolate one-dimensional chains of 4,4'-bis­pyridine-N,N'-dioxide-bridged [Fe(L)2]2+ units.

Experimental top

Synthesis and crystallization top

Single crystals suitable for X-ray diffraction of the title compound were obtained unexpectedly by layering a MeOH solution of iron(II) perchlorate with a MeOH solution of 2,5-di(pyridin-2-yl)-1,3,4-thia­diazole and 4,4'-bis­pyridine-N,N'-dioxide in an argon atmosphere.

Refinement top

Crystal data, data collection and structure refinement details are summarized in the Table below. All hydrogen atoms of the ligand and of the methyl hydrogen atoms of the methanol coligand were positioned geometrically and refined using a riding model. The hydrogen atom of the methanol hydroxyl group was located from the difference maps and refined freely and isotropically.

Results and discussion top

The ligand L was synthesized according to literature procedure (Klingele et al., 2012). A single-crystal of [Fe(L)2(MeOH)2](ClO4)2 suitable for X-ray diffraction was obtained unexpectedly by layering a MeOH solution of iron(II) perchlorate with a MeOH solution of L and 4,4'-bis­pyridine-N,N'-dioxide. The mononuclear complex cation is formed by high-spin iron(II) ion coordinated by two bidentate ligands L and two MeOH coligands. The Fe—N [Fe—Npyr 2.1516 (15), Fe—Ntda 2.2015 (15) Å] and Fe—O [2.0886 (13) Å] distances are in the expected range for high-spin iron(II) (Guionneau et al., 2004).

Related literature top

For other 3d metal structures of 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole, see: Klingele et al. (2010, 2012); Bentiss, Lagrenee, Mentre et al. (2004); Bentiss, Lagrenee, Vezin et al. (2004); Zheng et al. (2006); Bentiss et al. (2002); Wan et al. (2007). For related compounds, see: Guionneau et al. (2004). For the bridging capability of 4,4'-bispyridine-N,N'-dioxide Jia et al. (2008).

Structure description top

The ligand 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole (L) is well known to have a suitable ligand field for the preparation of iron(II) spin crossover complexes (Klingele. et al., 2010). Known examples are the 2:1-type complexes [Fe(L)2(NCS)2], [Fe(L)2(NCSe)2] and [Fe(L)2(NCBH3)2] (Klingele et al., 2012). 4,4'-Bispyridine-N,N'-dioxide is able to bridge metal ions to form multidimensional structures (Jia et al., 2008). The title compound [Fe(L)2(MeOH)2](ClO4)2 was obtained unintendedly in the attempt to isolate one-dimensional chains of 4,4'-bis­pyridine-N,N'-dioxide-bridged [Fe(L)2]2+ units.

The ligand L was synthesized according to literature procedure (Klingele et al., 2012). A single-crystal of [Fe(L)2(MeOH)2](ClO4)2 suitable for X-ray diffraction was obtained unexpectedly by layering a MeOH solution of iron(II) perchlorate with a MeOH solution of L and 4,4'-bis­pyridine-N,N'-dioxide. The mononuclear complex cation is formed by high-spin iron(II) ion coordinated by two bidentate ligands L and two MeOH coligands. The Fe—N [Fe—Npyr 2.1516 (15), Fe—Ntda 2.2015 (15) Å] and Fe—O [2.0886 (13) Å] distances are in the expected range for high-spin iron(II) (Guionneau et al., 2004).

For other 3d metal structures of 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole, see: Klingele et al. (2010, 2012); Bentiss, Lagrenee, Mentre et al. (2004); Bentiss, Lagrenee, Vezin et al. (2004); Zheng et al. (2006); Bentiss et al. (2002); Wan et al. (2007). For related compounds, see: Guionneau et al. (2004). For the bridging capability of 4,4'-bispyridine-N,N'-dioxide Jia et al. (2008).

Synthesis and crystallization top

Single crystals suitable for X-ray diffraction of the title compound were obtained unexpectedly by layering a MeOH solution of iron(II) perchlorate with a MeOH solution of 2,5-di(pyridin-2-yl)-1,3,4-thia­diazole and 4,4'-bis­pyridine-N,N'-dioxide in an argon atmosphere.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in the Table below. All hydrogen atoms of the ligand and of the methyl hydrogen atoms of the methanol coligand were positioned geometrically and refined using a riding model. The hydrogen atom of the methanol hydroxyl group was located from the difference maps and refined freely and isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: OLEX2.refine (Puschmann et al., 2013); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2.refine (Puschmann et al., 2013); molecular graphics: DIAMOND (Brandenburg et al., 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the complex [Fe(L)2(MeOH)2](ClO4)2. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn with arbitrary radii. [Symmetry code: (A) -x, -y+2, -z.]
trans-Bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2N2,N3]bis(methanol-κO)iron(II) bis(perchlorate) top
Crystal data top
[Fe(C12H8N4S)2(CH4O)2](ClO4)2Z = 1
Mr = 799.40F(000) = 408
Triclinic, P1Dx = 1.701 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8410 (3) ÅCell parameters from 9969 reflections
b = 9.5579 (4) Åθ = 2.2–30.5°
c = 9.5875 (4) ŵ = 0.86 mm1
α = 87.169 (2)°T = 100 K
β = 88.945 (2)°Plate, red
γ = 74.735 (2)°0.18 × 0.08 × 0.03 mm
V = 780.61 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3128 independent reflections
Radiation source: microfocus sealed tube2789 reflections with I > 2σ(I)
Multilayer mirror optics monochromatorRint = 0.019
φ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.861, Tmax = 0.975k = 1111
18025 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0172P)2 + 0.9493P]
where P = (Fo2 + 2Fc2)/3
3128 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Fe(C12H8N4S)2(CH4O)2](ClO4)2γ = 74.735 (2)°
Mr = 799.40V = 780.61 (5) Å3
Triclinic, P1Z = 1
a = 8.8410 (3) ÅMo Kα radiation
b = 9.5579 (4) ŵ = 0.86 mm1
c = 9.5875 (4) ÅT = 100 K
α = 87.169 (2)°0.18 × 0.08 × 0.03 mm
β = 88.945 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3128 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2789 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.975Rint = 0.019
18025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.49 e Å3
3128 reflectionsΔρmin = 0.38 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00001.00000.00000.01139 (10)
S10.22171 (5)0.51392 (5)0.06646 (5)0.01390 (11)
N10.18464 (17)0.89318 (16)0.14602 (15)0.0128 (3)
N20.05730 (17)0.77550 (16)0.07183 (16)0.0131 (3)
N30.00347 (18)0.70371 (17)0.17709 (16)0.0144 (3)
N40.14375 (19)0.33511 (17)0.30380 (17)0.0171 (3)
C10.2469 (2)0.9547 (2)0.25294 (19)0.0154 (4)
H10.20341.05500.27600.018*
C20.3724 (2)0.8783 (2)0.33180 (19)0.0162 (4)
H20.41300.92550.40750.019*
C30.4371 (2)0.7330 (2)0.2986 (2)0.0154 (4)
H30.52280.67860.35100.018*
C40.3748 (2)0.6677 (2)0.18715 (19)0.0138 (4)
H40.41740.56790.16170.017*
C50.2495 (2)0.75062 (19)0.11400 (18)0.0115 (4)
C60.1740 (2)0.69113 (19)0.00391 (18)0.0118 (4)
C70.0705 (2)0.5668 (2)0.18660 (19)0.0131 (4)
C80.0312 (2)0.4599 (2)0.28666 (19)0.0131 (4)
C90.1131 (2)0.4898 (2)0.35465 (19)0.0158 (4)
H90.18880.58010.33870.019*
C100.1429 (2)0.3835 (2)0.4465 (2)0.0186 (4)
H100.24020.39920.49490.022*
C110.0285 (2)0.2540 (2)0.4665 (2)0.0200 (4)
H110.04620.17940.52880.024*
C120.1125 (2)0.2350 (2)0.3942 (2)0.0201 (4)
H120.19080.14630.40980.024*
C200.2991 (2)0.9010 (2)0.0662 (2)0.0234 (5)
H20A0.34660.86170.14160.035*
H20B0.37920.97750.02230.035*
H20C0.25520.82320.00360.035*
O200.17589 (15)0.96075 (15)0.12275 (15)0.0173 (3)
H200.212 (3)1.021 (3)0.179 (3)0.026*
Cl100.46099 (5)1.25579 (5)0.29619 (5)0.01521 (11)
O110.30426 (17)1.16340 (19)0.32171 (16)0.0353 (4)
O120.47275 (19)1.39590 (16)0.36152 (17)0.0320 (4)
O130.57261 (18)1.19384 (18)0.35684 (18)0.0339 (4)
O140.48818 (18)1.26721 (19)0.14843 (15)0.0327 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01072 (18)0.00969 (19)0.01282 (19)0.00126 (14)0.00130 (14)0.00030 (14)
S10.0141 (2)0.0101 (2)0.0162 (2)0.00128 (17)0.00275 (17)0.00076 (18)
N10.0137 (8)0.0124 (8)0.0118 (8)0.0027 (6)0.0007 (6)0.0007 (6)
N20.0133 (7)0.0125 (8)0.0128 (8)0.0024 (6)0.0018 (6)0.0005 (6)
N30.0159 (8)0.0134 (8)0.0136 (8)0.0042 (6)0.0017 (6)0.0012 (6)
N40.0202 (8)0.0136 (8)0.0171 (8)0.0041 (7)0.0023 (7)0.0009 (7)
C10.0184 (9)0.0129 (9)0.0153 (9)0.0048 (8)0.0005 (7)0.0001 (7)
C20.0177 (9)0.0198 (10)0.0134 (9)0.0090 (8)0.0025 (7)0.0020 (8)
C30.0124 (9)0.0184 (10)0.0163 (9)0.0047 (7)0.0026 (7)0.0070 (8)
C40.0137 (9)0.0115 (9)0.0157 (9)0.0021 (7)0.0010 (7)0.0026 (7)
C50.0119 (8)0.0128 (9)0.0104 (8)0.0041 (7)0.0022 (7)0.0014 (7)
C60.0117 (8)0.0109 (9)0.0126 (9)0.0026 (7)0.0025 (7)0.0009 (7)
C70.0115 (9)0.0152 (9)0.0127 (9)0.0036 (7)0.0007 (7)0.0015 (7)
C80.0159 (9)0.0129 (9)0.0118 (9)0.0060 (7)0.0007 (7)0.0015 (7)
C90.0152 (9)0.0170 (10)0.0161 (9)0.0057 (8)0.0035 (7)0.0003 (8)
C100.0184 (10)0.0262 (11)0.0153 (10)0.0130 (8)0.0002 (8)0.0026 (8)
C110.0301 (11)0.0198 (10)0.0144 (10)0.0145 (9)0.0005 (8)0.0011 (8)
C120.0272 (11)0.0131 (10)0.0189 (10)0.0037 (8)0.0001 (8)0.0015 (8)
C200.0144 (10)0.0255 (11)0.0320 (12)0.0074 (8)0.0032 (8)0.0068 (9)
O200.0145 (7)0.0178 (7)0.0192 (7)0.0037 (6)0.0026 (5)0.0009 (6)
Cl100.0138 (2)0.0166 (2)0.0151 (2)0.00390 (17)0.00130 (17)0.00016 (18)
O110.0177 (8)0.0490 (11)0.0267 (9)0.0102 (7)0.0051 (6)0.0129 (8)
O120.0452 (10)0.0162 (8)0.0349 (9)0.0095 (7)0.0194 (7)0.0019 (7)
O130.0289 (9)0.0383 (10)0.0423 (10)0.0201 (7)0.0035 (7)0.0160 (8)
O140.0312 (9)0.0527 (11)0.0135 (7)0.0105 (8)0.0059 (6)0.0004 (7)
Geometric parameters (Å, º) top
Fe1—O202.0886 (13)C1—C21.391 (3)
Fe1—O20i2.0886 (13)C2—C31.379 (3)
Fe1—N2i2.1516 (15)C3—C41.389 (3)
Fe1—N22.1516 (15)C4—C51.382 (3)
Fe1—N1i2.2015 (15)C5—C61.468 (2)
Fe1—N12.2015 (15)C7—C81.471 (2)
S1—C61.7144 (18)C8—C91.389 (3)
S1—C71.7364 (19)C9—C101.386 (3)
N1—C11.338 (2)C10—C111.384 (3)
N1—C51.354 (2)C11—C121.389 (3)
N2—C61.315 (2)C20—O201.443 (2)
N2—N31.372 (2)Cl10—O131.4232 (15)
N3—C71.299 (2)Cl10—O121.4292 (15)
N4—C121.339 (2)Cl10—O141.4372 (15)
N4—C81.342 (2)Cl10—O111.4574 (15)
O20—Fe1—O20i180.00 (4)C2—C3—C4118.88 (17)
O20—Fe1—N2i91.48 (6)C5—C4—C3118.73 (17)
O20i—Fe1—N2i88.52 (6)N1—C5—C4122.90 (16)
O20—Fe1—N288.52 (6)N1—C5—C6114.25 (16)
O20i—Fe1—N291.48 (6)C4—C5—C6122.85 (16)
N2i—Fe1—N2180.0N2—C6—C5120.39 (16)
O20—Fe1—N1i87.99 (5)N2—C6—S1113.48 (13)
O20i—Fe1—N1i92.01 (5)C5—C6—S1126.13 (14)
N2i—Fe1—N1i76.37 (6)N3—C7—C8124.64 (17)
N2—Fe1—N1i103.63 (6)N3—C7—S1114.73 (13)
O20—Fe1—N192.01 (5)C8—C7—S1120.61 (14)
O20i—Fe1—N187.99 (5)N4—C8—C9124.49 (17)
N2i—Fe1—N1103.63 (6)N4—C8—C7114.70 (16)
N2—Fe1—N176.37 (6)C9—C8—C7120.81 (17)
N1i—Fe1—N1180.0C10—C9—C8117.74 (18)
C6—S1—C786.84 (9)C11—C10—C9118.93 (18)
C1—N1—C5117.61 (16)C10—C11—C12118.91 (18)
C1—N1—Fe1127.76 (12)N4—C12—C11123.43 (19)
C5—N1—Fe1114.39 (11)C20—O20—Fe1123.03 (12)
C6—N2—N3113.63 (15)O13—Cl10—O12109.10 (10)
C6—N2—Fe1114.27 (12)O13—Cl10—O14110.30 (10)
N3—N2—Fe1132.09 (12)O12—Cl10—O14110.33 (10)
C7—N3—N2111.33 (15)O13—Cl10—O11108.75 (10)
C12—N4—C8116.48 (17)O12—Cl10—O11108.62 (9)
N1—C1—C2122.82 (17)O14—Cl10—O11109.71 (9)
C3—C2—C1119.05 (17)
O20—Fe1—N1—C192.67 (15)Fe1—N2—C6—C52.5 (2)
O20i—Fe1—N1—C187.33 (15)N3—N2—C6—S10.96 (19)
N2i—Fe1—N1—C10.65 (16)Fe1—N2—C6—S1178.04 (8)
N2—Fe1—N1—C1179.35 (16)N1—C5—C6—N22.2 (2)
O20—Fe1—N1—C593.28 (12)C4—C5—C6—N2178.55 (16)
O20i—Fe1—N1—C586.72 (12)N1—C5—C6—S1177.18 (13)
N2i—Fe1—N1—C5174.71 (12)C4—C5—C6—S12.0 (3)
N2—Fe1—N1—C55.29 (12)C7—S1—C6—N20.74 (14)
O20—Fe1—N2—C696.46 (13)C7—S1—C6—C5178.71 (16)
O20i—Fe1—N2—C683.54 (13)N2—N3—C7—C8178.46 (16)
N1i—Fe1—N2—C6175.97 (12)N2—N3—C7—S10.07 (19)
N1—Fe1—N2—C64.03 (12)C6—S1—C7—N30.37 (15)
O20—Fe1—N2—N384.78 (15)C6—S1—C7—C8178.09 (15)
O20i—Fe1—N2—N395.22 (15)C12—N4—C8—C90.7 (3)
N1i—Fe1—N2—N32.79 (16)C12—N4—C8—C7179.92 (17)
N1—Fe1—N2—N3177.21 (16)N3—C7—C8—N4163.82 (17)
C6—N2—N3—C70.7 (2)S1—C7—C8—N417.9 (2)
Fe1—N2—N3—C7178.11 (13)N3—C7—C8—C916.8 (3)
C5—N1—C1—C20.7 (3)S1—C7—C8—C9161.50 (14)
Fe1—N1—C1—C2174.61 (13)N4—C8—C9—C100.0 (3)
N1—C1—C2—C30.5 (3)C7—C8—C9—C10179.33 (17)
C1—C2—C3—C40.1 (3)C8—C9—C10—C110.3 (3)
C2—C3—C4—C50.3 (3)C9—C10—C11—C120.1 (3)
C1—N1—C5—C40.4 (3)C8—N4—C12—C111.2 (3)
Fe1—N1—C5—C4175.14 (13)C10—C11—C12—N40.9 (3)
C1—N1—C5—C6179.67 (15)N2i—Fe1—O20—C20124.06 (14)
Fe1—N1—C5—C65.64 (19)N2—Fe1—O20—C2055.94 (14)
C3—C4—C5—N10.1 (3)N1i—Fe1—O20—C2047.76 (14)
C3—C4—C5—C6179.08 (16)N1—Fe1—O20—C20132.24 (14)
N3—N2—C6—C5178.53 (15)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O20—H20···O110.78 (3)1.91 (3)2.690 (2)178 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O20—H20···O110.78 (3)1.91 (3)2.690 (2)178 (3)
 

Acknowledgements

Financial support by the European Social Fund, by the Ministry of Science, Research and the Arts Baden-Württemberg within the Margarete von Wrangell Program, the Baden-Württemberg Stiftung within the Eliteprogramme for Postdocs, the Fonds der Chemischen Industrie (FCI) and the Universität Freiburg is gratefully acknowledged.

References

First citationBentiss, F., Lagrenee, M., Mentre, O., Conflant, P., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Inorg. Chem. 43, 1865–1873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBentiss, F., Lagrenee, M., Vezin, H., Wignacourt, J.-P. & Holt, E. M. (2004). Polyhedron, 23, 1903–1907.  Web of Science CSD CrossRef CAS Google Scholar
First citationBentiss, F., Lagrenee, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403–408.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuionneau, P., Marchivie, M., Bravic, G., Létard, J.-F. & Chasseau, D. (2004). Top. Curr. Chem. 234, 97–128.  Web of Science CrossRef CAS Google Scholar
First citationJia, J., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2008). Inorg. Chem. 47, 8652–8664.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKlingele, J., Kaase, D., Klingele, M. H. & Lach, J. (2012). Dalton Trans. 41, 1397–1406.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKlingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689–1691.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPuschmann, H., Bourhis, L. J., Dolomanov, O. V., Gildea, R. J. & Howard, J. A. K. (2013). Acta Cryst. A69, s679.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, X.-S., Ning, A.-M., Hou, S.-C., Niu, C.-Y., Kou, C.-H. & Dang, Y.-L. (2007). Z. Kristallogr. New Cryst. Struct. 222, 153–154.  CAS Google Scholar
First citationZheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 543–544.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds