metal-organic compounds
trans-Bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2N2,N3]bis(methanol-κO)iron(II) bis(perchlorate)
aInstitut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg i. Br., Germany
*Correspondence e-mail: julia.klingele@ac.uni-freiburg.de
The title compound, [Fe(C12H8N4S)2(CH3OH)2](ClO4)2, crystallized in the solvent-free form from a methanol solution. The FeII ion is located on a centre of inversion. The distorted N4O2 octahedral coordination geometry is formed by two N,N′-chelating equatorial 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole ligands and axially coordinating methanol coligands, resulting in the mononuclear trans-(N2,N3,O)2 coordination mode. The methanol co-ligand is involved in a hydrogen bond to the perchlorate counter-ion.
CCDC reference: 1006207
Related literature
For other 3d metal structures of 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole, see: Klingele et al. (2010, 2012); Bentiss, Lagrenee, Mentre et al. (2004); Bentiss, Lagrenee, Vezin et al. (2004); Zheng et al. (2006); Bentiss et al. (2002); Wan et al. (2007). For related compounds, see: Guionneau et al. (2004). For the bridging capability of 4,4′-bispyridine-N,N′-dioxide, see: Jia et al. (2008).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: OLEX2.refine (Puschmann et al., 2013); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2.refine (Puschmann et al., 2013); molecular graphics: DIAMOND (Brandenburg & Putz, 2011); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1006207
https://doi.org/10.1107/S160053681401277X/lr2128sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681401277X/lr2128Isup2.hkl
The ligand 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole (L) is well known to have a suitable
for the preparation of iron(II) spin crossover complexes (Klingele. et al., 2010). Known examples are the 2:1-type complexes [Fe(L)2(NCS)2], [Fe(L)2(NCSe)2] and [Fe(L)2(NCBH3)2] (Klingele et al., 2012). 4,4'-Bispyridine-N,N'-dioxide is able to bridge metal ions to form multidimensional structures (Jia et al., 2008). The title compound [Fe(L)2(MeOH)2](ClO4)2 was obtained unintendedly in the attempt to isolate one-dimensional chains of 4,4'-bispyridine-N,N'-dioxide-bridged [Fe(L)2]2+ units.Single crystals suitable for X-ray diffraction of the title compound were obtained unexpectedly by layering a MeOH solution of iron(II) perchlorate with a MeOH solution of 2,5-di(pyridin-2-yl)-1,3,4-thiadiazole and 4,4'-bispyridine-N,N'-dioxide in an argon atmosphere.
Crystal data, data collection and structure
details are summarized in the Table below. All hydrogen atoms of the ligand and of the methyl hydrogen atoms of the methanol coligand were positioned geometrically and refined using a riding model. The hydrogen atom of the methanol hydroxyl group was located from the difference maps and refined freely and isotropically.The ligand L was synthesized according to literature procedure (Klingele et al., 2012). A single-crystal of [Fe(L)2(MeOH)2](ClO4)2 suitable for X-ray diffraction was obtained unexpectedly by layering a MeOH solution of iron(II) perchlorate with a MeOH solution of L and 4,4'-bispyridine-N,N'-dioxide. The mononuclear complex cation is formed by high-spin iron(II) ion coordinated by two bidentate ligands L and two MeOH coligands. The Fe—N [Fe—Npyr 2.1516 (15), Fe—Ntda 2.2015 (15) Å] and Fe—O [2.0886 (13) Å] distances are in the expected range for high-spin iron(II) (Guionneau et al., 2004).
The ligand 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole (L) is well known to have a suitable
for the preparation of iron(II) spin crossover complexes (Klingele. et al., 2010). Known examples are the 2:1-type complexes [Fe(L)2(NCS)2], [Fe(L)2(NCSe)2] and [Fe(L)2(NCBH3)2] (Klingele et al., 2012). 4,4'-Bispyridine-N,N'-dioxide is able to bridge metal ions to form multidimensional structures (Jia et al., 2008). The title compound [Fe(L)2(MeOH)2](ClO4)2 was obtained unintendedly in the attempt to isolate one-dimensional chains of 4,4'-bispyridine-N,N'-dioxide-bridged [Fe(L)2]2+ units.The ligand L was synthesized according to literature procedure (Klingele et al., 2012). A single-crystal of [Fe(L)2(MeOH)2](ClO4)2 suitable for X-ray diffraction was obtained unexpectedly by layering a MeOH solution of iron(II) perchlorate with a MeOH solution of L and 4,4'-bispyridine-N,N'-dioxide. The mononuclear complex cation is formed by high-spin iron(II) ion coordinated by two bidentate ligands L and two MeOH coligands. The Fe—N [Fe—Npyr 2.1516 (15), Fe—Ntda 2.2015 (15) Å] and Fe—O [2.0886 (13) Å] distances are in the expected range for high-spin iron(II) (Guionneau et al., 2004).
For other 3d metal structures of 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole, see: Klingele et al. (2010, 2012); Bentiss, Lagrenee, Mentre et al. (2004); Bentiss, Lagrenee, Vezin et al. (2004); Zheng et al. (2006); Bentiss et al. (2002); Wan et al. (2007). For related compounds, see: Guionneau et al. (2004). For the bridging capability of 4,4'-bispyridine-N,N'-dioxide Jia et al. (2008).
Single crystals suitable for X-ray diffraction of the title compound were obtained unexpectedly by layering a MeOH solution of iron(II) perchlorate with a MeOH solution of 2,5-di(pyridin-2-yl)-1,3,4-thiadiazole and 4,4'-bispyridine-N,N'-dioxide in an argon atmosphere.
detailsCrystal data, data collection and structure
details are summarized in the Table below. All hydrogen atoms of the ligand and of the methyl hydrogen atoms of the methanol coligand were positioned geometrically and refined using a riding model. The hydrogen atom of the methanol hydroxyl group was located from the difference maps and refined freely and isotropically.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: OLEX2.refine (Puschmann et al., 2013); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2.refine (Puschmann et al., 2013); molecular graphics: DIAMOND (Brandenburg et al., 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. View of the complex [Fe(L)2(MeOH)2](ClO4)2. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn with arbitrary radii. [Symmetry code: (A) -x, -y+2, -z.] |
[Fe(C12H8N4S)2(CH4O)2](ClO4)2 | Z = 1 |
Mr = 799.40 | F(000) = 408 |
Triclinic, P1 | Dx = 1.701 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8410 (3) Å | Cell parameters from 9969 reflections |
b = 9.5579 (4) Å | θ = 2.2–30.5° |
c = 9.5875 (4) Å | µ = 0.86 mm−1 |
α = 87.169 (2)° | T = 100 K |
β = 88.945 (2)° | Plate, red |
γ = 74.735 (2)° | 0.18 × 0.08 × 0.03 mm |
V = 780.61 (5) Å3 |
Bruker APEXII CCD area-detector diffractometer | 3128 independent reflections |
Radiation source: microfocus sealed tube | 2789 reflections with I > 2σ(I) |
Multilayer mirror optics monochromator | Rint = 0.019 |
φ and ω scans | θmax = 26.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −11→11 |
Tmin = 0.861, Tmax = 0.975 | k = −11→11 |
18025 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0172P)2 + 0.9493P] where P = (Fo2 + 2Fc2)/3 |
3128 reflections | (Δ/σ)max < 0.001 |
227 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[Fe(C12H8N4S)2(CH4O)2](ClO4)2 | γ = 74.735 (2)° |
Mr = 799.40 | V = 780.61 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.8410 (3) Å | Mo Kα radiation |
b = 9.5579 (4) Å | µ = 0.86 mm−1 |
c = 9.5875 (4) Å | T = 100 K |
α = 87.169 (2)° | 0.18 × 0.08 × 0.03 mm |
β = 88.945 (2)° |
Bruker APEXII CCD area-detector diffractometer | 3128 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2789 reflections with I > 2σ(I) |
Tmin = 0.861, Tmax = 0.975 | Rint = 0.019 |
18025 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.49 e Å−3 |
3128 reflections | Δρmin = −0.38 e Å−3 |
227 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.0000 | 1.0000 | 0.0000 | 0.01139 (10) | |
S1 | 0.22171 (5) | 0.51392 (5) | 0.06646 (5) | 0.01390 (11) | |
N1 | 0.18464 (17) | 0.89318 (16) | −0.14602 (15) | 0.0128 (3) | |
N2 | 0.05730 (17) | 0.77550 (16) | 0.07183 (16) | 0.0131 (3) | |
N3 | −0.00347 (18) | 0.70371 (17) | 0.17709 (16) | 0.0144 (3) | |
N4 | 0.14375 (19) | 0.33511 (17) | 0.30380 (17) | 0.0171 (3) | |
C1 | 0.2469 (2) | 0.9547 (2) | −0.25294 (19) | 0.0154 (4) | |
H1 | 0.2034 | 1.0550 | −0.2760 | 0.018* | |
C2 | 0.3724 (2) | 0.8783 (2) | −0.33180 (19) | 0.0162 (4) | |
H2 | 0.4130 | 0.9255 | −0.4075 | 0.019* | |
C3 | 0.4371 (2) | 0.7330 (2) | −0.2986 (2) | 0.0154 (4) | |
H3 | 0.5228 | 0.6786 | −0.3510 | 0.018* | |
C4 | 0.3748 (2) | 0.6677 (2) | −0.18715 (19) | 0.0138 (4) | |
H4 | 0.4174 | 0.5679 | −0.1617 | 0.017* | |
C5 | 0.2495 (2) | 0.75062 (19) | −0.11400 (18) | 0.0115 (4) | |
C6 | 0.1740 (2) | 0.69113 (19) | 0.00391 (18) | 0.0118 (4) | |
C7 | 0.0705 (2) | 0.5668 (2) | 0.18660 (19) | 0.0131 (4) | |
C8 | 0.0312 (2) | 0.4599 (2) | 0.28666 (19) | 0.0131 (4) | |
C9 | −0.1131 (2) | 0.4898 (2) | 0.35465 (19) | 0.0158 (4) | |
H9 | −0.1888 | 0.5801 | 0.3387 | 0.019* | |
C10 | −0.1429 (2) | 0.3835 (2) | 0.4465 (2) | 0.0186 (4) | |
H10 | −0.2402 | 0.3992 | 0.4949 | 0.022* | |
C11 | −0.0285 (2) | 0.2540 (2) | 0.4665 (2) | 0.0200 (4) | |
H11 | −0.0462 | 0.1794 | 0.5288 | 0.024* | |
C12 | 0.1125 (2) | 0.2350 (2) | 0.3942 (2) | 0.0201 (4) | |
H12 | 0.1908 | 0.1463 | 0.4098 | 0.024* | |
C20 | −0.2991 (2) | 0.9010 (2) | −0.0662 (2) | 0.0234 (5) | |
H20A | −0.3466 | 0.8617 | −0.1416 | 0.035* | |
H20B | −0.3792 | 0.9775 | −0.0223 | 0.035* | |
H20C | −0.2552 | 0.8232 | 0.0036 | 0.035* | |
O20 | −0.17589 (15) | 0.96075 (15) | −0.12275 (15) | 0.0173 (3) | |
H20 | −0.212 (3) | 1.021 (3) | −0.179 (3) | 0.026* | |
Cl10 | −0.46099 (5) | 1.25579 (5) | −0.29619 (5) | 0.01521 (11) | |
O11 | −0.30426 (17) | 1.16340 (19) | −0.32171 (16) | 0.0353 (4) | |
O12 | −0.47275 (19) | 1.39590 (16) | −0.36152 (17) | 0.0320 (4) | |
O13 | −0.57261 (18) | 1.19384 (18) | −0.35684 (18) | 0.0339 (4) | |
O14 | −0.48818 (18) | 1.26721 (19) | −0.14843 (15) | 0.0327 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01072 (18) | 0.00969 (19) | 0.01282 (19) | −0.00126 (14) | 0.00130 (14) | 0.00030 (14) |
S1 | 0.0141 (2) | 0.0101 (2) | 0.0162 (2) | −0.00128 (17) | 0.00275 (17) | 0.00076 (18) |
N1 | 0.0137 (8) | 0.0124 (8) | 0.0118 (8) | −0.0027 (6) | 0.0007 (6) | −0.0007 (6) |
N2 | 0.0133 (7) | 0.0125 (8) | 0.0128 (8) | −0.0024 (6) | 0.0018 (6) | 0.0005 (6) |
N3 | 0.0159 (8) | 0.0134 (8) | 0.0136 (8) | −0.0042 (6) | 0.0017 (6) | 0.0012 (6) |
N4 | 0.0202 (8) | 0.0136 (8) | 0.0171 (8) | −0.0041 (7) | 0.0023 (7) | 0.0009 (7) |
C1 | 0.0184 (9) | 0.0129 (9) | 0.0153 (9) | −0.0048 (8) | 0.0005 (7) | −0.0001 (7) |
C2 | 0.0177 (9) | 0.0198 (10) | 0.0134 (9) | −0.0090 (8) | 0.0025 (7) | −0.0020 (8) |
C3 | 0.0124 (9) | 0.0184 (10) | 0.0163 (9) | −0.0047 (7) | 0.0026 (7) | −0.0070 (8) |
C4 | 0.0137 (9) | 0.0115 (9) | 0.0157 (9) | −0.0021 (7) | −0.0010 (7) | −0.0026 (7) |
C5 | 0.0119 (8) | 0.0128 (9) | 0.0104 (8) | −0.0041 (7) | −0.0022 (7) | −0.0014 (7) |
C6 | 0.0117 (8) | 0.0109 (9) | 0.0126 (9) | −0.0026 (7) | −0.0025 (7) | −0.0009 (7) |
C7 | 0.0115 (9) | 0.0152 (9) | 0.0127 (9) | −0.0036 (7) | −0.0007 (7) | −0.0015 (7) |
C8 | 0.0159 (9) | 0.0129 (9) | 0.0118 (9) | −0.0060 (7) | −0.0007 (7) | −0.0015 (7) |
C9 | 0.0152 (9) | 0.0170 (10) | 0.0161 (9) | −0.0057 (8) | −0.0035 (7) | −0.0003 (8) |
C10 | 0.0184 (10) | 0.0262 (11) | 0.0153 (10) | −0.0130 (8) | 0.0002 (8) | −0.0026 (8) |
C11 | 0.0301 (11) | 0.0198 (10) | 0.0144 (10) | −0.0145 (9) | 0.0005 (8) | 0.0011 (8) |
C12 | 0.0272 (11) | 0.0131 (10) | 0.0189 (10) | −0.0037 (8) | −0.0001 (8) | 0.0015 (8) |
C20 | 0.0144 (10) | 0.0255 (11) | 0.0320 (12) | −0.0074 (8) | 0.0032 (8) | −0.0068 (9) |
O20 | 0.0145 (7) | 0.0178 (7) | 0.0192 (7) | −0.0037 (6) | −0.0026 (5) | 0.0009 (6) |
Cl10 | 0.0138 (2) | 0.0166 (2) | 0.0151 (2) | −0.00390 (17) | 0.00130 (17) | 0.00016 (18) |
O11 | 0.0177 (8) | 0.0490 (11) | 0.0267 (9) | 0.0102 (7) | 0.0051 (6) | 0.0129 (8) |
O12 | 0.0452 (10) | 0.0162 (8) | 0.0349 (9) | −0.0095 (7) | 0.0194 (7) | −0.0019 (7) |
O13 | 0.0289 (9) | 0.0383 (10) | 0.0423 (10) | −0.0201 (7) | 0.0035 (7) | −0.0160 (8) |
O14 | 0.0312 (9) | 0.0527 (11) | 0.0135 (7) | −0.0105 (8) | 0.0059 (6) | −0.0004 (7) |
Fe1—O20 | 2.0886 (13) | C1—C2 | 1.391 (3) |
Fe1—O20i | 2.0886 (13) | C2—C3 | 1.379 (3) |
Fe1—N2i | 2.1516 (15) | C3—C4 | 1.389 (3) |
Fe1—N2 | 2.1516 (15) | C4—C5 | 1.382 (3) |
Fe1—N1i | 2.2015 (15) | C5—C6 | 1.468 (2) |
Fe1—N1 | 2.2015 (15) | C7—C8 | 1.471 (2) |
S1—C6 | 1.7144 (18) | C8—C9 | 1.389 (3) |
S1—C7 | 1.7364 (19) | C9—C10 | 1.386 (3) |
N1—C1 | 1.338 (2) | C10—C11 | 1.384 (3) |
N1—C5 | 1.354 (2) | C11—C12 | 1.389 (3) |
N2—C6 | 1.315 (2) | C20—O20 | 1.443 (2) |
N2—N3 | 1.372 (2) | Cl10—O13 | 1.4232 (15) |
N3—C7 | 1.299 (2) | Cl10—O12 | 1.4292 (15) |
N4—C12 | 1.339 (2) | Cl10—O14 | 1.4372 (15) |
N4—C8 | 1.342 (2) | Cl10—O11 | 1.4574 (15) |
O20—Fe1—O20i | 180.00 (4) | C2—C3—C4 | 118.88 (17) |
O20—Fe1—N2i | 91.48 (6) | C5—C4—C3 | 118.73 (17) |
O20i—Fe1—N2i | 88.52 (6) | N1—C5—C4 | 122.90 (16) |
O20—Fe1—N2 | 88.52 (6) | N1—C5—C6 | 114.25 (16) |
O20i—Fe1—N2 | 91.48 (6) | C4—C5—C6 | 122.85 (16) |
N2i—Fe1—N2 | 180.0 | N2—C6—C5 | 120.39 (16) |
O20—Fe1—N1i | 87.99 (5) | N2—C6—S1 | 113.48 (13) |
O20i—Fe1—N1i | 92.01 (5) | C5—C6—S1 | 126.13 (14) |
N2i—Fe1—N1i | 76.37 (6) | N3—C7—C8 | 124.64 (17) |
N2—Fe1—N1i | 103.63 (6) | N3—C7—S1 | 114.73 (13) |
O20—Fe1—N1 | 92.01 (5) | C8—C7—S1 | 120.61 (14) |
O20i—Fe1—N1 | 87.99 (5) | N4—C8—C9 | 124.49 (17) |
N2i—Fe1—N1 | 103.63 (6) | N4—C8—C7 | 114.70 (16) |
N2—Fe1—N1 | 76.37 (6) | C9—C8—C7 | 120.81 (17) |
N1i—Fe1—N1 | 180.0 | C10—C9—C8 | 117.74 (18) |
C6—S1—C7 | 86.84 (9) | C11—C10—C9 | 118.93 (18) |
C1—N1—C5 | 117.61 (16) | C10—C11—C12 | 118.91 (18) |
C1—N1—Fe1 | 127.76 (12) | N4—C12—C11 | 123.43 (19) |
C5—N1—Fe1 | 114.39 (11) | C20—O20—Fe1 | 123.03 (12) |
C6—N2—N3 | 113.63 (15) | O13—Cl10—O12 | 109.10 (10) |
C6—N2—Fe1 | 114.27 (12) | O13—Cl10—O14 | 110.30 (10) |
N3—N2—Fe1 | 132.09 (12) | O12—Cl10—O14 | 110.33 (10) |
C7—N3—N2 | 111.33 (15) | O13—Cl10—O11 | 108.75 (10) |
C12—N4—C8 | 116.48 (17) | O12—Cl10—O11 | 108.62 (9) |
N1—C1—C2 | 122.82 (17) | O14—Cl10—O11 | 109.71 (9) |
C3—C2—C1 | 119.05 (17) | ||
O20—Fe1—N1—C1 | 92.67 (15) | Fe1—N2—C6—C5 | −2.5 (2) |
O20i—Fe1—N1—C1 | −87.33 (15) | N3—N2—C6—S1 | −0.96 (19) |
N2i—Fe1—N1—C1 | 0.65 (16) | Fe1—N2—C6—S1 | 178.04 (8) |
N2—Fe1—N1—C1 | −179.35 (16) | N1—C5—C6—N2 | −2.2 (2) |
O20—Fe1—N1—C5 | −93.28 (12) | C4—C5—C6—N2 | 178.55 (16) |
O20i—Fe1—N1—C5 | 86.72 (12) | N1—C5—C6—S1 | 177.18 (13) |
N2i—Fe1—N1—C5 | 174.71 (12) | C4—C5—C6—S1 | −2.0 (3) |
N2—Fe1—N1—C5 | −5.29 (12) | C7—S1—C6—N2 | 0.74 (14) |
O20—Fe1—N2—C6 | 96.46 (13) | C7—S1—C6—C5 | −178.71 (16) |
O20i—Fe1—N2—C6 | −83.54 (13) | N2—N3—C7—C8 | −178.46 (16) |
N1i—Fe1—N2—C6 | −175.97 (12) | N2—N3—C7—S1 | −0.07 (19) |
N1—Fe1—N2—C6 | 4.03 (12) | C6—S1—C7—N3 | −0.37 (15) |
O20—Fe1—N2—N3 | −84.78 (15) | C6—S1—C7—C8 | 178.09 (15) |
O20i—Fe1—N2—N3 | 95.22 (15) | C12—N4—C8—C9 | −0.7 (3) |
N1i—Fe1—N2—N3 | 2.79 (16) | C12—N4—C8—C7 | 179.92 (17) |
N1—Fe1—N2—N3 | −177.21 (16) | N3—C7—C8—N4 | −163.82 (17) |
C6—N2—N3—C7 | 0.7 (2) | S1—C7—C8—N4 | 17.9 (2) |
Fe1—N2—N3—C7 | −178.11 (13) | N3—C7—C8—C9 | 16.8 (3) |
C5—N1—C1—C2 | 0.7 (3) | S1—C7—C8—C9 | −161.50 (14) |
Fe1—N1—C1—C2 | 174.61 (13) | N4—C8—C9—C10 | 0.0 (3) |
N1—C1—C2—C3 | −0.5 (3) | C7—C8—C9—C10 | 179.33 (17) |
C1—C2—C3—C4 | −0.1 (3) | C8—C9—C10—C11 | 0.3 (3) |
C2—C3—C4—C5 | 0.3 (3) | C9—C10—C11—C12 | 0.1 (3) |
C1—N1—C5—C4 | −0.4 (3) | C8—N4—C12—C11 | 1.2 (3) |
Fe1—N1—C5—C4 | −175.14 (13) | C10—C11—C12—N4 | −0.9 (3) |
C1—N1—C5—C6 | −179.67 (15) | N2i—Fe1—O20—C20 | −124.06 (14) |
Fe1—N1—C5—C6 | 5.64 (19) | N2—Fe1—O20—C20 | 55.94 (14) |
C3—C4—C5—N1 | −0.1 (3) | N1i—Fe1—O20—C20 | −47.76 (14) |
C3—C4—C5—C6 | 179.08 (16) | N1—Fe1—O20—C20 | 132.24 (14) |
N3—N2—C6—C5 | 178.53 (15) |
Symmetry code: (i) −x, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O20—H20···O11 | 0.78 (3) | 1.91 (3) | 2.690 (2) | 178 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O20—H20···O11 | 0.78 (3) | 1.91 (3) | 2.690 (2) | 178 (3) |
Acknowledgements
Financial support by the European Social Fund, by the Ministry of Science, Research and the Arts Baden-Württemberg within the Margarete von Wrangell Program, the Baden-Württemberg Stiftung within the Eliteprogramme for Postdocs, the Fonds der Chemischen Industrie (FCI) and the Universität Freiburg is gratefully acknowledged.
References
Bentiss, F., Lagrenee, M., Mentre, O., Conflant, P., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Inorg. Chem. 43, 1865–1873. Web of Science CrossRef PubMed CAS Google Scholar
Bentiss, F., Lagrenee, M., Vezin, H., Wignacourt, J.-P. & Holt, E. M. (2004). Polyhedron, 23, 1903–1907. Web of Science CSD CrossRef CAS Google Scholar
Bentiss, F., Lagrenee, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403–408. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Guionneau, P., Marchivie, M., Bravic, G., Létard, J.-F. & Chasseau, D. (2004). Top. Curr. Chem. 234, 97–128. Web of Science CrossRef CAS Google Scholar
Jia, J., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2008). Inorg. Chem. 47, 8652–8664. Web of Science CSD CrossRef PubMed CAS Google Scholar
Klingele, J., Kaase, D., Klingele, M. H. & Lach, J. (2012). Dalton Trans. 41, 1397–1406. Web of Science CSD CrossRef CAS PubMed Google Scholar
Klingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689–1691. Web of Science CrossRef CAS PubMed Google Scholar
Puschmann, H., Bourhis, L. J., Dolomanov, O. V., Gildea, R. J. & Howard, J. A. K. (2013). Acta Cryst. A69, s679. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wan, X.-S., Ning, A.-M., Hou, S.-C., Niu, C.-Y., Kou, C.-H. & Dang, Y.-L. (2007). Z. Kristallogr. New Cryst. Struct. 222, 153–154. CAS Google Scholar
Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 543–544. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.