organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Meth­­oxy-N′-[(6-methyl-4-oxo-4H-chromen-3-yl)methyl­­idene]benzo­hydrazide monohydrate

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 3 June 2014; accepted 12 June 2014; online 18 June 2014)

In the title hydrate, C19H16N2O4·H2O, the 4H-chromen-4-one segment is slightly twisted, with a dihedral angle between the two six-membered rings of 3.30 (5)°. The dihedral angles between the plane of the pyran­one ring and the hydrazide plane and between the planes of the pyran­one ring and the benzene ring of the p-meth­oxy­benzene unit are 26.69 (4) and 2.23 (3)°, respectively. The mol­ecule is connected to the solvent water mol­ecule by an N—H⋯O hydrogen bond. In the crystal, there are ππ stacking inter­actions between centrosymmetrically related pyran­one rings [centroid–centroid distance = 3.5394 (9) Å], as well as bridges formed by the water mol­ecules via O—H⋯O hydrogen bonds.

Related literature

For the biological activity of related compounds, see: Khan et al. (2009[Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.]); Tu et al. (2013[Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826-2831.]). For related structures, see: Ishikawa & Watanabe (2014a[Ishikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, o472.],b[Ishikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, o565.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O4·H2O

  • Mr = 354.36

  • Triclinic, [P \overline 1]

  • a = 7.6228 (13) Å

  • b = 10.809 (3) Å

  • c = 11.260 (2) Å

  • α = 116.339 (14)°

  • β = 94.258 (14)°

  • γ = 96.190 (16)°

  • V = 818.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.48 × 0.35 × 0.13 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • 4581 measured reflections

  • 3748 independent reflections

  • 3219 reflections with F2 > 2σ(F2)

  • Rint = 0.008

  • 3 standard reflections every 150 reflections intensity decay: −0.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.04

  • 3748 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H17⋯O3i 0.86 1.99 2.8465 (13) 178
O5—H18⋯O2ii 0.87 1.96 2.8274 (16) 176
N2—H6⋯O5 0.88 2.07 2.9341 (14) 166
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Schiff base derivatives of 3-formyl chromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan et al. 2009; Tu et al. 2013). We herein report the crystal structure of the title compound, which was obtained from the condensation reaction of 6-methyl-3-formylchromone with 4-methoxybenzoylhydrazide in benzene.

The 4H-chromen-4-one segment segment is slightly twisted with a dihedral angle between the two 6-membered rings of 3.30 (5)°. The dihedral angles between the pyranone ring and the hydrazide plane (C11/N1/N2/C12) and between the pyranone ring and the benzene ring of the p-methoxybenzene unit are 26.69 (4) and 2.23 (3)°, respectively. The molecule is connected to the solvent water molecule byan N–H···O hydrogen bond.

In the crystal, there are π-π stacking interactions between centrosymmetrically-related pyranone rings [centroid–centroidi distance = 3.5394 (9) Å, i: –x + 1, –y + 1, –z + 1] as well as bridges formed by the water molecules via O–H···O hydrogen bonds (Fig. 2).

Related literature top

For the biological activity of related compounds, see: Khan et al. (2009); Tu et al. (2013). For related structures, see: Ishikawa & Watanabe (2014a,b).

Experimental top

4-Methoxybenzoylhydrazide (1.00 mmol), 6-methyl-3-formylchromone (1.00 mmol), and a few drops of acetic acid were dissolved in 25 mL of benzene and the mixture was refluxed with a Dean-Stark apparatus for 6 h. After cooling, the precipitates were collected, washed with n-hexane, and dried (yield 68.9%). 1H NMR (400 MHz, DMSO-d6): δ = 2.45 (s, 3H), 3.84 (s, 3H), 7.06 (d, 1H, J = 8.8 Hz), 7.63 (d, 1H, J = 8.3 Hz), 7.69 (dd, 1H, J = 2.5 and 8.3 Hz), 7.93 (d, 1H, J = 8.8 Hz), 7.94 (d, 1H, J = 2.5 Hz), 8.63 (s, 1H), 8.79 (s, 1H), 11.82 (s, 1H). DART-MS calcd for [C19H16N2O4 + H+]: 337.119, found 337.194. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an N,N-dimethylformamide solution of the title compound at room temperature.

Refinement top

The C(sp2)- and N(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C), N–H 0.88 Å, Uiso(H) = 1.2Ueq(N)], and refined using a riding model. Hydrogen atoms of methyl groups were found in a difference Fourier map, and a rotating group model was applied with distance constraint [C–H = 0.98 Å, Uiso(H) = 1.2Ueq(C)]. Hydrogen atoms of the water molecule were found in a difference Fourier map, and were refined using a riding model.

Structure description top

Schiff base derivatives of 3-formyl chromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan et al. 2009; Tu et al. 2013). We herein report the crystal structure of the title compound, which was obtained from the condensation reaction of 6-methyl-3-formylchromone with 4-methoxybenzoylhydrazide in benzene.

The 4H-chromen-4-one segment segment is slightly twisted with a dihedral angle between the two 6-membered rings of 3.30 (5)°. The dihedral angles between the pyranone ring and the hydrazide plane (C11/N1/N2/C12) and between the pyranone ring and the benzene ring of the p-methoxybenzene unit are 26.69 (4) and 2.23 (3)°, respectively. The molecule is connected to the solvent water molecule byan N–H···O hydrogen bond.

In the crystal, there are π-π stacking interactions between centrosymmetrically-related pyranone rings [centroid–centroidi distance = 3.5394 (9) Å, i: –x + 1, –y + 1, –z + 1] as well as bridges formed by the water molecules via O–H···O hydrogen bonds (Fig. 2).

For the biological activity of related compounds, see: Khan et al. (2009); Tu et al. (2013). For related structures, see: Ishikawa & Watanabe (2014a,b).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software(Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A crystal packing view of the title compound. Intermolecular N–H···O and O–H···O hydrogen bonds are represented by dashed lines.
(E)-4-Methoxy-N'-[(6-methyl-4-oxo-4H-chromen-3-yl)methylidene]benzohydrazide monohydrate top
Crystal data top
C19H16N2O4·H2OZ = 2
Mr = 354.36F(000) = 372.00
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.6228 (13) ÅCell parameters from 25 reflections
b = 10.809 (3) Åθ = 15.0–17.3°
c = 11.260 (2) ŵ = 0.11 mm1
α = 116.339 (14)°T = 100 K
β = 94.258 (14)°Block, colorless
γ = 96.190 (16)°0.48 × 0.35 × 0.13 mm
V = 818.8 (3) Å3
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 95
4581 measured reflectionsk = 1314
3748 independent reflectionsl = 1414
3219 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.008 intensity decay: 0.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.2692P]
where P = (Fo2 + 2Fc2)/3
3748 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H16N2O4·H2Oγ = 96.190 (16)°
Mr = 354.36V = 818.8 (3) Å3
Triclinic, P1Z = 2
a = 7.6228 (13) ÅMo Kα radiation
b = 10.809 (3) ŵ = 0.11 mm1
c = 11.260 (2) ÅT = 100 K
α = 116.339 (14)°0.48 × 0.35 × 0.13 mm
β = 94.258 (14)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.008
4581 measured reflections3 standard reflections every 150 reflections
3748 independent reflections intensity decay: 0.9%
3219 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3748 reflectionsΔρmin = 0.27 e Å3
245 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20207 (10)0.53571 (9)0.53711 (8)0.01721 (18)
O20.55749 (11)0.68656 (9)0.35944 (8)0.01894 (19)
O30.21138 (10)0.30160 (9)0.02159 (8)0.02063 (19)
O40.10198 (11)0.11287 (9)0.63143 (8)0.02078 (19)
O50.43347 (11)0.31344 (10)0.10886 (9)0.0217 (2)
N10.11013 (12)0.40533 (10)0.13232 (9)0.0151 (2)
N20.09049 (12)0.34737 (10)0.00533 (9)0.0148 (2)
C10.18957 (14)0.48425 (12)0.40352 (11)0.0155 (3)
C20.30132 (14)0.52846 (11)0.33784 (10)0.0138 (3)
C30.45241 (14)0.63884 (11)0.41270 (10)0.0134 (2)
C40.61596 (14)0.78940 (11)0.64525 (11)0.0148 (3)
C50.63334 (15)0.83414 (11)0.78214 (11)0.0162 (3)
C60.49795 (16)0.78222 (12)0.83435 (11)0.0179 (3)
C70.35334 (15)0.68501 (12)0.75278 (11)0.0177 (3)
C80.47079 (14)0.68973 (11)0.55867 (10)0.0134 (3)
C90.34401 (14)0.63802 (11)0.61494 (11)0.0147 (3)
C100.79455 (17)0.93337 (13)0.87393 (11)0.0223 (3)
C110.26801 (14)0.46611 (11)0.19139 (11)0.0141 (2)
C120.07629 (14)0.30143 (11)0.07521 (11)0.0145 (3)
C130.08209 (14)0.25000 (11)0.22219 (11)0.0139 (2)
C140.21783 (15)0.14353 (12)0.30858 (11)0.0165 (3)
C150.22855 (15)0.09151 (12)0.44696 (11)0.0174 (3)
C160.10404 (15)0.15125 (11)0.49879 (11)0.0154 (3)
C170.03025 (15)0.26040 (12)0.41282 (11)0.0159 (3)
C180.04234 (14)0.30807 (11)0.27641 (11)0.0145 (3)
C190.23205 (17)0.00285 (13)0.72346 (11)0.0229 (3)
H10.09430.41080.35110.0186*
H20.70360.82670.60910.0177*
H30.50640.81500.92840.0214*
H40.26280.65110.78940.0212*
H50.36140.47070.14140.0169*
H60.18450.34020.04740.0177*
H70.30480.10560.27250.0198*
H80.31920.01660.50500.0208*
H90.11350.30190.44860.0191*
H100.13560.38070.21880.0174*
H11A0.87630.95710.82130.0268*
H12B0.85510.88880.92080.0268*
H13C0.75711.01870.93940.0268*
H14A0.22290.08380.70690.0274*
H15B0.21080.02620.81530.0274*
H16C0.35150.02230.71120.0274*
H170.54080.31160.08060.0412*
H180.44190.31580.18450.0441*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0149 (4)0.0220 (4)0.0133 (4)0.0023 (3)0.0011 (3)0.0079 (4)
O20.0155 (4)0.0265 (5)0.0147 (4)0.0021 (4)0.0015 (3)0.0105 (4)
O30.0131 (4)0.0313 (5)0.0159 (4)0.0008 (4)0.0022 (3)0.0099 (4)
O40.0224 (5)0.0252 (5)0.0114 (4)0.0014 (4)0.0011 (3)0.0060 (4)
O50.0146 (4)0.0348 (5)0.0165 (4)0.0022 (4)0.0025 (4)0.0129 (4)
N10.0165 (5)0.0164 (5)0.0110 (5)0.0030 (4)0.0009 (4)0.0050 (4)
N20.0125 (5)0.0191 (5)0.0101 (5)0.0012 (4)0.0011 (4)0.0047 (4)
C10.0135 (5)0.0181 (5)0.0128 (5)0.0012 (4)0.0000 (4)0.0058 (4)
C20.0123 (5)0.0153 (5)0.0126 (5)0.0031 (4)0.0002 (4)0.0055 (4)
C30.0109 (5)0.0164 (5)0.0131 (5)0.0036 (4)0.0013 (4)0.0067 (4)
C40.0149 (5)0.0153 (5)0.0139 (5)0.0018 (4)0.0021 (4)0.0065 (4)
C50.0177 (6)0.0149 (5)0.0139 (5)0.0028 (4)0.0002 (4)0.0050 (4)
C60.0228 (6)0.0192 (6)0.0109 (5)0.0047 (5)0.0023 (4)0.0060 (5)
C70.0185 (6)0.0218 (6)0.0149 (6)0.0039 (5)0.0049 (4)0.0098 (5)
C80.0135 (5)0.0148 (5)0.0122 (5)0.0037 (4)0.0015 (4)0.0062 (4)
C90.0128 (5)0.0168 (5)0.0140 (5)0.0025 (4)0.0010 (4)0.0067 (5)
C100.0246 (6)0.0227 (6)0.0143 (6)0.0033 (5)0.0031 (5)0.0061 (5)
C110.0134 (5)0.0149 (5)0.0134 (5)0.0022 (4)0.0015 (4)0.0059 (4)
C120.0138 (5)0.0140 (5)0.0149 (5)0.0011 (4)0.0009 (4)0.0063 (4)
C130.0129 (5)0.0150 (5)0.0133 (5)0.0033 (4)0.0012 (4)0.0059 (4)
C140.0146 (5)0.0181 (6)0.0164 (6)0.0001 (4)0.0015 (4)0.0082 (5)
C150.0158 (5)0.0164 (6)0.0162 (6)0.0001 (4)0.0014 (4)0.0051 (5)
C160.0171 (6)0.0168 (5)0.0118 (5)0.0061 (4)0.0012 (4)0.0055 (4)
C170.0145 (5)0.0177 (5)0.0176 (6)0.0031 (4)0.0034 (4)0.0095 (5)
C180.0127 (5)0.0144 (5)0.0151 (5)0.0011 (4)0.0000 (4)0.0062 (4)
C190.0230 (6)0.0251 (6)0.0124 (5)0.0035 (5)0.0021 (5)0.0022 (5)
Geometric parameters (Å, º) top
O1—C11.3438 (15)C14—C151.3944 (17)
O1—C91.3794 (12)C15—C161.3939 (19)
O2—C31.2345 (17)C16—C171.3985 (14)
O3—C121.2315 (15)C17—C181.3782 (17)
O4—C161.3631 (16)O5—H170.861
O4—C191.4322 (14)O5—H180.871
N1—N21.3787 (14)N2—H60.880
N1—C111.2827 (13)C1—H10.950
N2—C121.3604 (14)C4—H20.950
C1—C21.3492 (19)C6—H30.950
C2—C31.4586 (14)C7—H40.950
C2—C111.4672 (16)C10—H11A0.980
C3—C81.4732 (16)C10—H12B0.980
C4—C51.3862 (17)C10—H13C0.980
C4—C81.4094 (14)C11—H50.950
C5—C61.4084 (19)C14—H70.950
C5—C101.5074 (15)C15—H80.950
C6—C71.3807 (15)C17—H90.950
C7—C91.3958 (17)C18—H100.950
C8—C91.3916 (18)C19—H14A0.980
C12—C131.4891 (17)C19—H15B0.980
C13—C141.3934 (14)C19—H16C0.980
C13—C181.4014 (19)
O1···C32.8584 (17)C11···H18iv3.0847
O2···C13.5695 (17)C12···H4i3.4658
O2···C42.8803 (16)C12···H11Axi3.3379
O2···C112.8936 (14)C12···H13Cxi3.2583
O3···N12.7054 (13)C12···H17vi2.9300
O3···C142.9022 (15)C13···H11Axi3.3981
O3···C183.5987 (17)C13···H14Aviii3.0288
N1···C12.7788 (17)C13···H15Bviii3.5976
N2···C182.8777 (18)C13···H17vi3.3762
C1···C73.5842 (17)C14···H2xi3.0995
C1···C82.7485 (15)C14···H11Axi3.0798
C2···C92.7804 (17)C14···H14Aviii3.4949
C4···C72.7985 (19)C14···H17vi3.2493
C5···C92.7814 (15)C14···H18vi3.3794
C6···C82.7899 (17)C15···H2xi3.1928
C11···C123.4855 (17)C15···H8xv3.4404
C13···C162.7930 (18)C16···H2iv3.4036
C14···C172.771 (2)C17···H1v3.5568
C15···C182.7948 (16)C17···H2iv3.0193
C15···C192.8103 (18)C17···H14Aviii3.1958
O1···O1i3.0524 (12)C18···H14Aviii2.8568
O1···C1i3.1131 (15)C18···H183.1229
O1···C3ii3.5514 (17)C19···H6viii3.4870
O1···C8ii3.5633 (16)C19···H7xv3.5754
O1···C17iii3.413 (2)C19···H11Aiv3.0741
O2···O5iv2.8274 (16)C19···H17viii3.5419
O2···C14v3.4847 (18)C19···H18viii3.2485
O2···C15v3.5467 (17)H1···O1i2.6612
O2···C17iv3.0969 (15)H1···O4iii3.4948
O2···C18iv3.2582 (16)H1···C1i3.4987
O3···O5vi2.8465 (13)H1···C4ii3.2645
O3···C6i3.4626 (18)H1···C5ii3.4193
O3···C7i3.2379 (18)H1···C7i3.4139
O4···C9v3.3715 (18)H1···C9i3.4026
O5···O2iv2.8274 (16)H1···C17v3.5568
O5···O3vii2.8465 (13)H1···H1i3.5510
O5···N22.9341 (14)H1···H2ii3.3061
O5···C113.4460 (16)H1···H4i2.8965
O5···C11iv3.5818 (19)H1···H9iii2.9731
O5···C183.3885 (16)H1···H9v3.4140
O5···C19viii3.1664 (17)H1···H12Bii3.4139
N1···C12v3.534 (2)H2···O4iv3.0040
N1···C13v3.4362 (19)H2···C1ii3.4871
N1···C18v3.1900 (17)H2···C14x3.0995
N2···O52.9341 (14)H2···C15x3.1928
N2···C12v3.5061 (19)H2···C16iv3.4036
C1···O1i3.1131 (15)H2···C17iv3.0193
C1···C4ii3.297 (2)H2···H1ii3.3061
C1···C8ii3.4666 (19)H2···H7x2.7132
C1···C17v3.347 (2)H2···H8x2.8772
C2···C7ii3.5937 (19)H2···H9iv2.3881
C2···C8ii3.600 (2)H2···H16Cv3.3063
C2···C9ii3.5376 (19)H3···O3i2.9428
C2···C17v3.4872 (19)H3···O5ii2.9615
C2···C18v3.5038 (19)H3···C11ii3.4417
C3···O1ii3.5514 (17)H3···H5ii3.1313
C3···C9ii3.422 (2)H3···H6ii3.5413
C3···C15v3.425 (2)H3···H13Cxii2.8860
C3···C16v3.5874 (18)H3···H15Bxiv3.1317
C4···C1ii3.297 (2)H3···H17ii2.6475
C5···C11ii3.541 (2)H4···O3i2.5018
C6···O3i3.4626 (18)H4···N1i3.1154
C6···C11ii3.300 (2)H4···C12i3.4658
C7···O3i3.2379 (18)H4···H1i2.8965
C7···C2ii3.5937 (19)H4···H5ii3.4550
C8···O1ii3.5633 (16)H4···H9iii3.5172
C8···C1ii3.4666 (19)H4···H10iii2.9367
C8···C2ii3.600 (2)H4···H13Cxii3.5497
C9···O4v3.3715 (18)H4···H17ii3.3353
C9···C2ii3.5376 (19)H5···O3v3.5370
C9···C3ii3.422 (2)H5···O52.7040
C11···O53.4460 (16)H5···O5iv2.8429
C11···O5iv3.5818 (19)H5···C6ii3.1539
C11···C5ii3.541 (2)H5···C7ii3.3413
C11···C6ii3.300 (2)H5···H3ii3.1313
C11···C13v3.408 (2)H5···H4ii3.4550
C11···C18v3.4611 (18)H5···H172.8769
C12···N1v3.534 (2)H5···H17iv2.7727
C12···N2v3.5061 (19)H5···H183.4278
C13···N1v3.4362 (19)H5···H18iv2.4418
C13···C11v3.408 (2)H6···O3v3.5738
C14···O2v3.4847 (18)H6···O52.0733
C15···O2v3.5467 (17)H6···C19viii3.4870
C15···C3v3.425 (2)H6···H3ii3.5413
C16···C3v3.5874 (18)H6···H12Bii3.3595
C17···O1ix3.413 (2)H6···H14Aviii2.9852
C17···O2iv3.0969 (15)H6···H15Bviii3.0796
C17···C1v3.347 (2)H6···H172.7998
C17···C2v3.4872 (19)H6···H182.5496
C18···O2iv3.2582 (16)H7···O2v3.5098
C18···O53.3885 (16)H7···O5vi3.2029
C18···N1v3.1900 (17)H7···C4xi3.0931
C18···C2v3.5038 (19)H7···C5xi3.2491
C18···C11v3.4611 (18)H7···C10xi3.0983
C19···O5viii3.1664 (17)H7···C19xv3.5754
O1···H42.5251H7···H2xi2.7132
O2···H22.6134H7···H8xv3.3791
O2···H52.7069H7···H11Axi2.7136
O3···H63.0551H7···H13Cxi2.9516
O3···H72.6534H7···H14Axv3.5658
O4···H82.6732H7···H16Cxv2.7801
O4···H92.4801H7···H17vi2.7717
N1···H12.4498H7···H18vi3.0174
N2···H52.3906H8···O2xi3.1894
N2···H102.6248H8···C4xi3.5614
C1···H53.2679H8···C15xv3.4404
C3···H13.2802H8···H2xi2.8772
C3···H22.6884H8···H7xv3.3791
C3···H52.7576H8···H8xv2.7580
C4···H33.2557H9···O1ix2.6230
C4···H11A2.5696H9···O1v3.4596
C4···H12B3.1436H9···O2iv2.6002
C4···H13C3.1436H9···C1ix3.1313
C5···H43.2972H9···C1v3.3502
C6···H23.2605H9···C3iv3.2617
C6···H11A3.3234H9···C4iv3.0509
C6···H12B2.7605H9···C8iv3.4940
C6···H13C2.7782H9···C9ix3.5961
C8···H43.2968H9···H1ix2.9731
C9···H13.1875H9···H1v3.4140
C9···H23.2584H9···H2iv2.3881
C9···H33.2399H9···H4ix3.5172
C10···H22.6780H10···O2iv2.8992
C10···H32.6698H10···O3v3.2467
C11···H12.5457H10···O52.8202
C11···H62.4080H10···N1v3.0018
C12···H72.6281H10···H4ix2.9367
C12···H102.6974H10···H14Aviii3.0995
C13···H62.4962H10···H182.5593
C13···H83.2867H11A···O3x3.5087
C13···H93.2692H11A···O4iv2.7373
C14···H103.2651H11A···C12x3.3379
C15···H93.2762H11A···C13x3.3981
C15···H14A2.6970H11A···C14x3.0798
C15···H16C2.7835H11A···C19iv3.0741
C16···H73.2575H11A···H7x2.7136
C16···H103.2648H11A···H12Bxiii3.0810
C16···H14A2.5828H11A···H14Aiv3.4356
C16···H15B3.1948H11A···H15Biv2.5934
C16···H16C2.6505H12B···N1ii3.0093
C17···H83.2812H12B···N2ii3.1500
C18···H62.5794H12B···C10xiii3.1944
C18···H73.2633H12B···C11ii3.4557
C19···H82.5204H12B···H1ii3.4139
H1···H53.4530H12B···H6ii3.3595
H2···H11A2.3603H12B···H11Axiii3.0810
H2···H12B3.3527H12B···H12Bxiii2.8819
H2···H13C3.3240H12B···H13Cxiii3.0808
H3···H42.3310H12B···H15Bxiv2.7976
H3···H12B2.7103H12B···H15Biv3.4853
H3···H13C2.7079H13C···O3x2.8693
H5···H62.1974H13C···C6xii3.4168
H6···H102.1755H13C···C12x3.2583
H7···H82.3430H13C···H3xii2.8860
H8···H14A2.2623H13C···H4xii3.5497
H8···H15B3.4901H13C···H7x2.9516
H8···H16C2.3453H13C···H12Bxiii3.0808
H9···H102.3234H13C···H15Bxiv3.0074
O1···H1i2.6612H14A···O2xi3.2341
O1···H9iii2.6230H14A···O5viii2.6683
O1···H9v3.4596H14A···N2viii3.5424
O2···H7v3.5098H14A···C13viii3.0288
O2···H8x3.1894H14A···C14viii3.4949
O2···H9iv2.6002H14A···C17viii3.1958
O2···H10iv2.8992H14A···C18viii2.8568
O2···H14Ax3.2341H14A···H6viii2.9852
O2···H17iv3.1820H14A···H7xv3.5658
O2···H18iv1.9585H14A···H10viii3.0995
O3···H3i2.9428H14A···H11Aiv3.4356
O3···H4i2.5018H14A···H17viii3.2070
O3···H5v3.5370H14A···H18viii2.5780
O3···H6v3.5738H15B···O5viii3.0892
O3···H10v3.2467H15B···N2viii3.4220
O3···H11Axi3.5087H15B···C10xvi3.3329
O3···H13Cxi2.8693H15B···C10iv3.4241
O3···H17vi1.9860H15B···C13viii3.5976
O3···H18vi3.1614H15B···H3xvi3.1317
O4···H1ix3.4948H15B···H6viii3.0796
O4···H2iv3.0040H15B···H11Aiv2.5934
O4···H11Aiv2.7373H15B···H12Bxvi2.7976
O5···H3ii2.9615H15B···H12Biv3.4853
O5···H52.7040H15B···H13Cxvi3.0074
O5···H5iv2.8429H15B···H17viii3.4492
O5···H62.0733H15B···H18viii3.4212
O5···H7vii3.2029H16C···O5viii3.2344
O5···H102.8202H16C···C4v2.9199
O5···H14Aviii2.6683H16C···C5v3.0378
O5···H15Bviii3.0892H16C···C6v3.2428
O5···H16Cviii3.2344H16C···C7v3.3992
N1···H4i3.1154H16C···C8v3.0929
N1···H10v3.0018H16C···C9v3.3280
N1···H12Bii3.0093H16C···H2v3.3063
N2···H12Bii3.1500H16C···H7xv2.7801
N2···H14Aviii3.5424H16C···H17viii3.3865
N2···H15Bviii3.4220H16C···H18viii3.2768
N2···H183.4279H17···O2iv3.1820
C1···H1i3.4987H17···O3vii1.9860
C1···H2ii3.4871H17···C6ii3.3703
C1···H9iii3.1313H17···C11iv3.4096
C1···H9v3.3502H17···C12vii2.9300
C2···H18iv3.4662H17···C13vii3.3762
C3···H9iv3.2617H17···C14vii3.2493
C3···H18iv2.9714H17···C19viii3.5419
C4···H1ii3.2645H17···H3ii2.6475
C4···H7x3.0931H17···H4ii3.3353
C4···H8x3.5614H17···H52.8769
C4···H9iv3.0509H17···H5iv2.7727
C4···H16Cv2.9199H17···H62.7998
C5···H1ii3.4193H17···H7vii2.7717
C5···H7x3.2491H17···H14Aviii3.2070
C5···H16Cv3.0378H17···H15Bviii3.4492
C6···H5ii3.1539H17···H16Cviii3.3865
C6···H13Cxii3.4168H18···O2iv1.9585
C6···H16Cv3.2428H18···O3vii3.1614
C6···H17ii3.3703H18···N23.4279
C7···H1i3.4139H18···C2iv3.4662
C7···H5ii3.3413H18···C3iv2.9714
C7···H16Cv3.3992H18···C11iv3.0847
C8···H9iv3.4940H18···C14vii3.3794
C8···H16Cv3.0929H18···C183.1229
C9···H1i3.4026H18···C19viii3.2485
C9···H9iii3.5961H18···H53.4278
C9···H16Cv3.3280H18···H5iv2.4418
C10···H7x3.0983H18···H62.5496
C10···H12Bxiii3.1944H18···H7vii3.0174
C10···H15Bxiv3.3329H18···H102.5593
C10···H15Biv3.4241H18···H14Aviii2.5780
C11···H3ii3.4417H18···H15Bviii3.4212
C11···H12Bii3.4557H18···H16Cviii3.2768
C11···H17iv3.4096
C1—O1—C9118.30 (11)C16—C17—C18120.28 (13)
C16—O4—C19116.81 (11)C13—C18—C17120.42 (9)
N2—N1—C11115.03 (10)H17—O5—H18104.049
N1—N2—C12119.09 (10)N1—N2—H6120.456
O1—C1—C2125.30 (9)C12—N2—H6120.455
C1—C2—C3119.92 (10)O1—C1—H1117.348
C1—C2—C11119.51 (9)C2—C1—H1117.351
C3—C2—C11120.57 (11)C5—C4—H2119.347
O2—C3—C2123.39 (10)C8—C4—H2119.353
O2—C3—C8122.09 (9)C5—C6—H3119.062
C2—C3—C8114.51 (11)C7—C6—H3119.061
C5—C4—C8121.30 (12)C6—C7—H4120.966
C4—C5—C6118.44 (10)C9—C7—H4120.967
C4—C5—C10121.41 (12)C5—C10—H11A109.468
C6—C5—C10120.13 (11)C5—C10—H12B109.473
C5—C6—C7121.88 (11)C5—C10—H13C109.474
C6—C7—C9118.07 (12)H11A—C10—H12B109.466
C3—C8—C4121.97 (11)H11A—C10—H13C109.475
C3—C8—C9120.11 (9)H12B—C10—H13C109.472
C4—C8—C9117.92 (11)N1—C11—H5120.708
O1—C9—C7115.96 (11)C2—C11—H5120.713
O1—C9—C8121.73 (10)C13—C14—H7119.332
C7—C9—C8122.31 (9)C15—C14—H7119.329
N1—C11—C2118.58 (11)C14—C15—H8120.561
O3—C12—N2122.85 (11)C16—C15—H8120.551
O3—C12—C13122.70 (10)C16—C17—H9119.859
N2—C12—C13114.45 (10)C18—C17—H9119.864
C12—C13—C14119.21 (12)C13—C18—H10119.788
C12—C13—C18121.95 (9)C17—C18—H10119.793
C14—C13—C18118.82 (11)O4—C19—H14A109.469
C13—C14—C15121.34 (13)O4—C19—H15B109.476
C14—C15—C16118.89 (10)O4—C19—H16C109.470
O4—C16—C15124.87 (9)H14A—C19—H15B109.472
O4—C16—C17114.91 (12)H14A—C19—H16C109.471
C15—C16—C17120.21 (11)H15B—C19—H16C109.469
C1—O1—C9—C7178.27 (10)C6—C5—C10—H11A178.6
C1—O1—C9—C81.07 (17)C6—C5—C10—H12B58.6
C9—O1—C1—C22.91 (18)C6—C5—C10—H13C61.4
C9—O1—C1—H1177.1C10—C5—C6—C7176.19 (11)
C16—O4—C19—H14A54.8C10—C5—C6—H33.8
C16—O4—C19—H15B174.8C5—C6—C7—C90.2 (2)
C16—O4—C19—H16C65.2C5—C6—C7—H4179.8
C19—O4—C16—C153.73 (17)H3—C6—C7—C9179.8
C19—O4—C16—C17177.18 (10)H3—C6—C7—H40.2
N2—N1—C11—C2178.93 (10)C6—C7—C9—O1176.77 (11)
N2—N1—C11—H51.1C6—C7—C9—C82.58 (19)
C11—N1—N2—C12169.22 (11)H4—C7—C9—O13.2
C11—N1—N2—H610.8H4—C7—C9—C8177.4
N1—N2—C12—O34.41 (19)C3—C8—C9—O12.10 (18)
N1—N2—C12—C13175.96 (10)C3—C8—C9—C7178.59 (10)
H6—N2—C12—O3175.6C4—C8—C9—O1177.05 (10)
H6—N2—C12—C134.0C4—C8—C9—C72.26 (18)
O1—C1—C2—C31.3 (2)O3—C12—C13—C1430.86 (18)
O1—C1—C2—C11177.80 (11)O3—C12—C13—C18147.39 (12)
H1—C1—C2—C3178.7N2—C12—C13—C14148.77 (11)
H1—C1—C2—C112.2N2—C12—C13—C1832.97 (17)
C1—C2—C3—O2178.28 (12)C12—C13—C14—C15179.76 (11)
C1—C2—C3—C81.82 (17)C12—C13—C14—H70.2
C1—C2—C11—N121.42 (18)C12—C13—C18—C17178.28 (10)
C1—C2—C11—H5158.6C12—C13—C18—H101.7
C3—C2—C11—N1157.72 (11)C14—C13—C18—C170.02 (18)
C3—C2—C11—H522.3C14—C13—C18—H10180.0
C11—C2—C3—O20.86 (18)C18—C13—C14—C151.93 (19)
C11—C2—C3—C8179.04 (10)C18—C13—C14—H7178.1
O2—C3—C8—C44.21 (19)C13—C14—C15—C162.29 (19)
O2—C3—C8—C9176.67 (11)C13—C14—C15—H8177.7
C2—C3—C8—C4175.68 (10)H7—C14—C15—C16177.7
C2—C3—C8—C93.43 (16)H7—C14—C15—H82.3
C5—C4—C8—C3178.65 (11)C14—C15—C16—O4178.30 (11)
C5—C4—C8—C90.48 (18)C14—C15—C16—C170.75 (19)
C8—C4—C5—C62.74 (18)H8—C15—C16—O41.7
C8—C4—C5—C10175.85 (10)H8—C15—C16—C17179.3
H2—C4—C5—C6177.3O4—C16—C17—C18179.74 (10)
H2—C4—C5—C104.1O4—C16—C17—H90.3
H2—C4—C8—C31.3C15—C16—C17—C181.12 (19)
H2—C4—C8—C9179.5C15—C16—C17—H9178.9
C4—C5—C6—C72.42 (19)C16—C17—C18—C131.49 (19)
C4—C5—C6—H3177.6C16—C17—C18—H10178.5
C4—C5—C10—H11A0.0H9—C17—C18—C13178.5
C4—C5—C10—H12B120.0H9—C17—C18—H101.5
C4—C5—C10—H13C120.0
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x1, y, z; (vii) x+1, y, z; (viii) x, y, z1; (ix) x, y, z1; (x) x+1, y+1, z+1; (xi) x1, y1, z1; (xii) x+1, y+2, z+2; (xiii) x+2, y+2, z+2; (xiv) x+1, y+1, z+2; (xv) x1, y, z1; (xvi) x1, y1, z2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H17···O3vii0.861.992.8465 (13)178
O5—H18···O2iv0.871.962.8274 (16)176
N2—H6···O50.882.072.9341 (14)166
Symmetry codes: (iv) x+1, y+1, z; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H17···O3i0.8611.9862.8465 (13)178
O5—H18···O2ii0.8711.9582.8274 (16)176
N2—H6···O50.8802.0732.9341 (14)166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

We acknowledge the University of Shizuoka for instrumental support.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, o472.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, o565.  CSD CrossRef IUCr Journals Google Scholar
First citationKhan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983–2988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826–2831.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds