inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­amminepalladium(II) dichloride ammonia tetra­solvate

aInstitut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
*Correspondence e-mail: nikolaus.korber@chemie.uni-regensburg.de

(Received 25 April 2014; accepted 27 May 2014; online 7 June 2014)

The title compound, [Pd(NH3)4]Cl2·4NH3, was crystallized in liquid ammonia from the salt Pd(en)Cl2 (en is ethylenediamine) and is isotypic with [Pt(NH3)4]Cl2·4NH3 [Grassl & Korber (2014[Grassl, T. & Korber, N. (2014). Acta Cryst. E70, i31.]). Acta Cryst. E70, i31]. The Pd2+ cation is coordinated by four ammonia mol­ecules, exhibiting a square-planar geometry. The chloride anions are surrounded by nine ammonia mol­ecules. These are either bound in the palladium complex or solvent mol­ecules. The packing of the ammonia solvent mol­ecules enables the formation of an extended network of N—H⋯N and N—H⋯Cl inter­actions with nearly ideal hydrogen-bonding geometry.

Related literature

For weak inter­molecular inter­actions such as hydrogen bonds and their application in crystal engeneering, see: Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); Desiraju (2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]); Steiner (2002[Steiner, T. (2002). Angew. Chem., 114, 50-80.]). For the structure of tetra­amminepalladium(II) chloride monoydrate and complexation of palladium by carbohydrates, see: Bell et al. (1976[Bell, J. D., Bowles, J. C., Cumming, H. J., Hall, D. & Holland, R. V. (1976). Acta Cryst. B32, 634-636.]); Ahlrichs et al. (1998[Ahlrichs, R., Ballauff, M., Eichkorn, K., Hanemann, O., Kettenbach, G. & Klüfers, P. (1998). Chem. Eur. J. 4, 835-844.]). The structure of the platinum analogue is given by Grassl & Korber (2014[Grassl, T. & Korber, N. (2014). Acta Cryst. E70, i31.])

Experimental

Crystal data
  • [Pd(NH3)4]Cl2·4NH3

  • Mr = 313.58

  • Monoclinic, P 21 /n

  • a = 7.6856 (5) Å

  • b = 10.1505 (7) Å

  • c = 8.7170 (6) Å

  • β = 100.384 (7)°

  • V = 668.90 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 123 K

  • 0.32 × 0.29 × 0.23 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini ultra) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.649, Tmax = 0.741

  • 2418 measured reflections

  • 1266 independent reflections

  • 1076 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.058

  • S = 1.06

  • 1266 reflections

  • 100 parameters

  • All H-atom parameters refined

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.86 (4) 2.49 (4) 3.351 (3) 175 (3)
N1—H1B⋯Cl1i 0.85 (3) 2.49 (4) 3.328 (3) 171 (3)
N2—H2A⋯N3ii 1.03 (4) 2.02 (4) 3.025 (5) 163 (3)
N1—H1C⋯N4 0.96 (4) 2.02 (5) 2.975 (5) 170 (3)
N2—H2B⋯Cl1i 0.73 (3) 2.66 (3) 3.384 (4) 172 (3)
N2—H2C⋯Cl1iii 0.88 (5) 2.62 (5) 3.463 (3) 162 (4)
N3—H3A⋯Cl1 0.83 (3) 2.83 (3) 3.563 (4) 148 (3)
N4—H4A⋯Cl1iv 0.91 (4) 2.65 (4) 3.563 (4) 173 (3)
N4—H4B⋯Cl1v 1.00 (5) 2.61 (5) 3.606 (4) 174 (4)
N3—H3B⋯Cl1vi 0.89 (5) 2.71 (5) 3.578 (4) 163 (3)
N3—H3C⋯Cl1vii 1.09 (5) 2.48 (5) 3.535 (4) 162 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2.solve (Bourhis et al., 2014[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2014). In preparation.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

The crystal structure of the title compound was determined in the course of investigations into the reactivity of carbohydrates towards metal cations in liquid ammonia.

As in the platinum compound, the palladium cation forms a homoleptic ammine complex with a square-planar coordination geometry. Pd—N bond lengths are 2.032 (3) Å and 2.048 (3) Å, respectively, while the angles N—Pd—N are 88.59 (13)° and 91.41 (13)°. Ammonia ligands opposite to each other within the complex cation have staggered hydrogen atom positions (Fig. 1).

The chloride anion exhibits nine contacts to hydrogen atoms of ammonia molecules which are either bound in the complex or solvate molecules, forming a network of hydrogen bonds (Fig. 2 and Fig. 3). Bond angles (N—H···Cl) are between 148 (3)° and 175 (3)° whereas N—H···Cl bond lengths are observed with values between 2.48 (5) Å and 2.83 (3) Å. The two N—H···N bridges are close to 180°, with bond angles of 163 (3)° and 170 (3)° and bond lengths significantly less than the sum of the van der Waals radii of nitrogen and hydrogen (2.02 (4) Å and 2.02 (5) Å). These observations give strong evidence that a significant energy contribution from the hydrogen bond network drives the arrangement of the overall structure.

Related literature top

For weak intermolecular interactions such as hydrogen bonds and their application in crystal engeneering, see: Desiraju (2002); Desiraju (2007); Steiner (2002). For the structure of tetraamminepalladium(II) chloride monoydrate and complexation of palladium by carbohydrates, see: Bell et al. (1976); Ahlrichs et al. (1998). The structure of the platinum analogue is given by Graßl & Korber (2014).

Experimental top

0.25 g (1.05 mmol) Pd(en)Cl2 and 0.188 g (1.05 mmol) D-(+)-glucono-1,5-lactone were placed under argon atmosphere in a reaction flask and 50 ml of dry liquid ammonia were condensed. This mixture was stored in a refrigerator at 237 K for one week to ensure that all substances were completely dissolved. The flask was then stored at 161 K for five months. After that period of time, clear colorless crystals of the title compound were found on the wall of the reaction vessel.

Refinement top

The crystal structure does not show any features where special refinement procedures had to be applied. All hydrogen atoms were located in difference maps and both bond angle/bond length and isotropic displacement parameters were refined.

Structure description top

The crystal structure of the title compound was determined in the course of investigations into the reactivity of carbohydrates towards metal cations in liquid ammonia.

As in the platinum compound, the palladium cation forms a homoleptic ammine complex with a square-planar coordination geometry. Pd—N bond lengths are 2.032 (3) Å and 2.048 (3) Å, respectively, while the angles N—Pd—N are 88.59 (13)° and 91.41 (13)°. Ammonia ligands opposite to each other within the complex cation have staggered hydrogen atom positions (Fig. 1).

The chloride anion exhibits nine contacts to hydrogen atoms of ammonia molecules which are either bound in the complex or solvate molecules, forming a network of hydrogen bonds (Fig. 2 and Fig. 3). Bond angles (N—H···Cl) are between 148 (3)° and 175 (3)° whereas N—H···Cl bond lengths are observed with values between 2.48 (5) Å and 2.83 (3) Å. The two N—H···N bridges are close to 180°, with bond angles of 163 (3)° and 170 (3)° and bond lengths significantly less than the sum of the van der Waals radii of nitrogen and hydrogen (2.02 (4) Å and 2.02 (5) Å). These observations give strong evidence that a significant energy contribution from the hydrogen bond network drives the arrangement of the overall structure.

For weak intermolecular interactions such as hydrogen bonds and their application in crystal engeneering, see: Desiraju (2002); Desiraju (2007); Steiner (2002). For the structure of tetraamminepalladium(II) chloride monoydrate and complexation of palladium by carbohydrates, see: Bell et al. (1976); Ahlrichs et al. (1998). The structure of the platinum analogue is given by Graßl & Korber (2014).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: olex2.solve (Bourhis et al., 2014); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) 1 - x, 1 - y, - z.
[Figure 2] Fig. 2. : The chloride anion is shown with its surrounding molecules. The predominant bond type is hydrogen bonding. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. : Extended network of hydrogen bonds in the crystal structure. The solvent ammonia molecules are oriented to optimize the hydrogen bond geometry. Displacement ellipsoids are drawn at the 50% probability level.
Tetraamminepalladium(II) dichloride ammonia tetrasolvate top
Crystal data top
[Pd(NH3)4]Cl2·4NH3F(000) = 320
Mr = 313.58Dx = 1.557 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6856 (5) ÅCell parameters from 1429 reflections
b = 10.1505 (7) Åθ = 3.1–29.3°
c = 8.7170 (6) ŵ = 1.76 mm1
β = 100.384 (7)°T = 123 K
V = 668.90 (8) Å3Block, clear colourless
Z = 20.32 × 0.29 × 0.23 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini ultra)
diffractometer
1266 independent reflections
Radiation source: fine-focus sealed tube1076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 25.7°, θmin = 3.1°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
h = 79
Tmin = 0.649, Tmax = 0.741k = 1212
2418 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0075P)2]
where P = (Fo2 + 2Fc2)/3
1266 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Pd(NH3)4]Cl2·4NH3V = 668.90 (8) Å3
Mr = 313.58Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.6856 (5) ŵ = 1.76 mm1
b = 10.1505 (7) ÅT = 123 K
c = 8.7170 (6) Å0.32 × 0.29 × 0.23 mm
β = 100.384 (7)°
Data collection top
Agilent Xcalibur (Ruby, Gemini ultra)
diffractometer
1266 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
1076 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.741Rint = 0.034
2418 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.058All H-atom parameters refined
S = 1.06Δρmax = 0.45 e Å3
1266 reflectionsΔρmin = 0.55 e Å3
100 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.21 Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.50000.00000.01592 (13)
Cl10.09460 (10)0.66086 (7)0.23005 (10)0.0236 (2)
N10.4602 (4)0.4827 (3)0.2233 (3)0.0200 (6)
N20.3507 (4)0.3356 (3)0.0659 (4)0.0219 (6)
N30.5125 (5)0.8226 (3)0.3132 (4)0.0358 (8)
N40.7709 (4)0.5695 (4)0.4561 (4)0.0353 (8)
H1A0.364 (5)0.525 (3)0.229 (5)0.038 (12)*
H1B0.449 (4)0.402 (3)0.246 (4)0.024 (10)*
H2A0.382 (4)0.294 (3)0.166 (5)0.036 (10)*
H1C0.556 (6)0.521 (3)0.296 (5)0.046 (12)*
H2B0.358 (4)0.292 (3)0.001 (4)0.018 (11)*
H2C0.238 (6)0.355 (4)0.097 (5)0.064 (14)*
H3A0.403 (5)0.818 (3)0.287 (4)0.017 (9)*
H4A0.861 (5)0.594 (3)0.406 (4)0.028 (10)*
H4B0.817 (6)0.507 (4)0.541 (6)0.066 (15)*
H3B0.554 (6)0.815 (4)0.415 (6)0.055 (14)*
H4C0.751 (5)0.646 (4)0.517 (5)0.062 (14)*
H3C0.493 (6)0.925 (5)0.277 (6)0.086 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01442 (19)0.0156 (2)0.0177 (2)0.00015 (13)0.00265 (14)0.00067 (14)
Cl10.0235 (4)0.0204 (4)0.0260 (4)0.0014 (4)0.0024 (3)0.0023 (4)
N10.0242 (16)0.0182 (16)0.0186 (16)0.0026 (14)0.0069 (13)0.0011 (13)
N20.0226 (16)0.0219 (16)0.0210 (17)0.0041 (14)0.0031 (14)0.0023 (15)
N30.041 (2)0.035 (2)0.031 (2)0.0050 (17)0.0056 (17)0.0004 (17)
N40.0296 (17)0.042 (2)0.0320 (19)0.0026 (17)0.0002 (15)0.0059 (18)
Geometric parameters (Å, º) top
Pd1—N1i2.032 (3)N2—H2B0.73 (3)
Pd1—N12.032 (3)N2—H2C0.88 (5)
Pd1—N2i2.048 (3)N3—H3A0.83 (3)
Pd1—N22.048 (3)N3—H3B0.89 (5)
N1—H1A0.86 (4)N3—H3C1.09 (5)
N1—H1B0.85 (3)N4—H4A0.91 (4)
N1—H1C0.96 (4)N4—H4B1.00 (5)
N2—H2A1.03 (4)N4—H4C0.97 (4)
N1—Pd1—N1i179.999 (1)Pd1—N2—H2A111.2 (18)
N1—Pd1—N2i88.59 (13)Pd1—N2—H2B109 (3)
N1i—Pd1—N2i91.41 (13)Pd1—N2—H2C112 (3)
N1i—Pd1—N288.59 (13)H2A—N2—H2B115 (3)
N1—Pd1—N291.41 (13)H2A—N2—H2C102 (3)
N2—Pd1—N2i180.00 (10)H2B—N2—H2C108 (4)
Pd1—N1—H1A107 (3)H3A—N3—H3B115 (4)
Pd1—N1—H1B110 (2)H3A—N3—H3C84 (3)
Pd1—N1—H1C112 (3)H3B—N3—H3C112 (4)
H1A—N1—H1B110 (3)H4A—N4—H4B109 (3)
H1A—N1—H1C108 (3)H4A—N4—H4C105 (3)
H1B—N1—H1C109 (3)H4B—N4—H4C100 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.86 (4)2.49 (4)3.351 (3)175 (3)
N1—H1B···Cl1ii0.85 (3)2.49 (4)3.328 (3)171 (3)
N2—H2A···N3i1.03 (4)2.02 (4)3.025 (5)163 (3)
N1—H1C···N40.96 (4)2.02 (5)2.975 (5)170 (3)
N2—H2B···Cl1ii0.73 (3)2.66 (3)3.384 (4)172 (3)
N2—H2C···Cl1iii0.88 (5)2.62 (5)3.463 (3)162 (4)
N3—H3A···Cl10.83 (3)2.83 (3)3.563 (4)148 (3)
N4—H4A···Cl1iv0.91 (4)2.65 (4)3.563 (4)173 (3)
N4—H4B···Cl1v1.00 (5)2.61 (5)3.606 (4)174 (4)
N3—H3B···Cl1vi0.89 (5)2.71 (5)3.578 (4)163 (3)
N3—H3C···Cl1vii1.09 (5)2.48 (5)3.535 (4)162 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+1/2, y+3/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.86 (4)2.49 (4)3.351 (3)175 (3)
N1—H1B···Cl1i0.85 (3)2.49 (4)3.328 (3)171 (3)
N2—H2A···N3ii1.03 (4)2.02 (4)3.025 (5)163 (3)
N1—H1C···N40.96 (4)2.02 (5)2.975 (5)170 (3)
N2—H2B···Cl1i0.73 (3)2.66 (3)3.384 (4)172 (3)
N2—H2C···Cl1iii0.88 (5)2.62 (5)3.463 (3)162 (4)
N3—H3A···Cl10.83 (3)2.83 (3)3.563 (4)148 (3)
N4—H4A···Cl1iv0.91 (4)2.65 (4)3.563 (4)173 (3)
N4—H4B···Cl1v1.00 (5)2.61 (5)3.606 (4)174 (4)
N3—H3B···Cl1vi0.89 (5)2.71 (5)3.578 (4)163 (3)
N3—H3C···Cl1vii1.09 (5)2.48 (5)3.535 (4)162 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+1/2, y+3/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2.
 

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAhlrichs, R., Ballauff, M., Eichkorn, K., Hanemann, O., Kettenbach, G. & Klüfers, P. (1998). Chem. Eur. J. 4, 835–844.  CrossRef CAS Google Scholar
First citationBell, J. D., Bowles, J. C., Cumming, H. J., Hall, D. & Holland, R. V. (1976). Acta Cryst. B32, 634–636.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2014). In preparation.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrassl, T. & Korber, N. (2014). Acta Cryst. E70, i31.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem., 114, 50–80.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds