organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[(2-Methyl­phen­yl)sulfan­yl]-5-propyl­pyrimidine-2,4(1H,3H)-dione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, bKing Abdullah Institute for Nanotechnology (KAIN), King Saud University, Riyadh 11451, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hfun.c@ksu.edu.sa

(Received 3 June 2014; accepted 6 June 2014; online 14 June 2014)

In the title pyrimidine-2,4-dione derivative, C14H16N2O2S, the dihedral angle between the six-membered rings is 77.81 (10)°. The mol­ecule is twisted about the Cp—S (p = pyrimidine) bond, with a C—S—C—N torsion angle of −59.01 (17)°. An intramolecular C—H⋯S hydrogen bond generates an S(5) ring motif. In the crystal, bifurcated acceptor N—H⋯O and C—H⋯O hydrogen bonds generate inversion-related dimers incorporating R21(9) and R22(8) loops. These dimers are connected into a chain extending along the a-axis direction by a second pair of inversion-related N—H⋯O hydrogen bonds, forming another R22(8) loop. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions, generating a three-dimensional network.

Related literature

For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011[Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642-4647.], 2014[Al-Abdullah, E. S., Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R., Habib, E. E. & El-Emam, A. A. (2014). Drug Res. 64, 31-39.]); Tanaka et al. (1995[Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., Clercq, E. D. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860-2865.]); Hopkins et al. (1996[Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589-1600.]); Russ et al. (2003[Russ, P., Schelling, P., Scapozza, L., Folkers, G., De Clercq, E. & Marquez, V. E. (2003). J. Med. Chem. 46, 5045-5054.]); Al-Deeb et al. (2013[Al-Deeb, O. A., Al-Turkistani, A. A., El-Brollosy, N. R., Habib, E. E. & El-Emam, A. A. (2013). Heterocycl. Commun. 19, 411-419.]); Nencka et al. (2006[Nencka, R., Votruba, I., Hrebabecky, H., Tloustova, E., Horska, K., Masojidkova, M. & Holy, A. (2006). Bioorg. Med. Chem. Lett. 16, 1335-1337.]); El-Emam et al. (2004[El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc. 25, 991-996.]); El-Brollosy et al. (2009[El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. 342, 663-670.], 2011[El-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2011). Acta Cryst. E67, o2839.]). For related pyrimidine-2,4-dione structures, see: Al-Omary et al. (2014[Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o179-o180.]); Wang et al. (2006[Wang, X., Lou, Q., Guo, Y., Xu, Y., Zhang, Z. & Liu, J. (2006). Org. Biomol. Chem. 4, 3252-3258.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O2S

  • Mr = 276.36

  • Monoclinic, P 21 /c

  • a = 10.3434 (8) Å

  • b = 5.3355 (3) Å

  • c = 24.4948 (18) Å

  • β = 91.171 (3)°

  • V = 1351.52 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.42 × 0.11 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.986

  • 32195 measured reflections

  • 4165 independent reflections

  • 2968 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.134

  • S = 1.08

  • 4165 reflections

  • 182 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of C1–C6 and C8–C11/N1/N2 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯S1 0.97 2.75 3.166 (2) 107
N2—H1N2⋯O2i 0.82 (2) 2.01 (2) 2.829 (2) 171 (2)
N1—H1N1⋯O1ii 0.83 (3) 1.98 (3) 2.805 (2) 173 (2)
C7—H7B⋯O1ii 0.96 2.58 3.289 (3) 131
C2—H2ACg2iii 0.93 2.91 3.700 (2) 144
C7—H7BCg1iv 0.96 2.85 3.632 (3) 140
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities (Al-Abdullah et al., 2014, Al-Deeb et al., 2013) including antiviral activity against HIV (Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004), and HSV viruses (Russ et al., 2003). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Nencka et al., 2006). In a continuation of our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Abdullah et al., 2011; El-Brollosy et al., 2009), we have synthesized the title compound (I) as a potential chemotherapeutic agent.

In the title compound (Fig. 1), the two six-membered rings (C1–C6 and C8–C11/N1/N2) are essentially planar, with maximum deviations of -0.012 (2) Å at atom C5 and 0.020 (2) Å at atom C10, respectively. The molecule is bent at the S atom with C6–S1–C8–N1 torsion angle of -59.01 (17)°. The heterocycle containing the structural unit CON2H2CO forms a dihedral of 77.81 (10)° with the adjacent benzene ring. Bond lengths and angles in (I) show normal values (Allen et al., 1987) and are comparable with those in related structures (Al-Omary et al., 2014; El-Brollosy et al., 2011; Wang et al., 2006). An intramolecular C—H···S hydrogen bond generates an S(5) ring motif. In the crystal structure, bifurcated acceptor N1–H1N1···O1 and C7–H7B···O1 (Table 1) hydrogen bonds link the two adjacent molecules into centrosymmetric inversion related dimers incorparating R21(9) and R22(8) loops (Fig. 2, Bernstein et al., 1995). These dimers are connected into a chain extending along a-axis direction via a pair of N2–H1N2···O2 hydrogen bonds (Table 1) resulting in another R22(8) loop (Fig. 2, Bernstein et al., 1995). The crystal structure stability is further consolidated by weak intermolecular C–H···π interactions (Table 1) involving the centroids of the six-membered C8–C11/N1/N2 (Cg1) and C1–C6 benzene (Cg2) rings.

Related literature top

For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011, 2014); Tanaka et al. (1995); Hopkins et al. (1996); Russ et al. (2003); Al-Deeb et al. (2013); Nencka et al. (2006); El-Emam et al. (2004); El-Brollosy et al. (2009,2011). For related pyrimidine-2,4-dione structures, see: Al-Omary et al. (2014); Wang et al. (2006). For reference bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 6-chloro-5-propyluracil (943 mg, 0.005 mol), o-thiocresol (621 mg, 0.005 mol) and potassium hydroxide (281 mg, 0.005 mol), in ethanol (10 ml), was heated under reflux for 3 h. The solvent was then distilled off in vaccuo and the residue was washed with cold water, dried and crystallized from ethanol to yield 940 mg (68%) of the title compound (C14H16N2O2S) as colorless needle crystals. M·P.: 210–212 °C.

1H NMR (DMSO-d6, 500.13 MHz): δ 0.84 (t, 3H, CH2CH3, J = 7.0 Hz), 1.37–1.40 (m, 2H, CH2CH3), 2.33 (s, 3H, Ar—CH3), 2.43 (t, 2H, CH2CH2CH3, J = 7.0 Hz), 6.92–7.02 (m, 3H, Ar—H), 7.26–7.28 (m, 1H, Ar—H), 10.91 (s, 1H, NH), 11.24 (s, 1H, NH). 13 C NMR (DMSO-d6, 125.76 MHz): δ 13.72 (CH2CH3), 22.06 (CH2CH3), 20.12 (Ar—CH3), 28.22 (CH2CH2CH3), 117.44 (Pyrimidine C-5), 125.90, 126.50, 129.88, 130.20, 133.18, 140.56 (Ar—C), 143.02 (Pyrimidine C-6), 150.53 (C=O), 163.23 (C=O).

Refinement top

The nitrogen-bound H-atoms were located in a difference Fourier map and were refined freely. Other H atoms were positioned geometrically (C=H 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl group.

Structure description top

Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities (Al-Abdullah et al., 2014, Al-Deeb et al., 2013) including antiviral activity against HIV (Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004), and HSV viruses (Russ et al., 2003). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Nencka et al., 2006). In a continuation of our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Abdullah et al., 2011; El-Brollosy et al., 2009), we have synthesized the title compound (I) as a potential chemotherapeutic agent.

In the title compound (Fig. 1), the two six-membered rings (C1–C6 and C8–C11/N1/N2) are essentially planar, with maximum deviations of -0.012 (2) Å at atom C5 and 0.020 (2) Å at atom C10, respectively. The molecule is bent at the S atom with C6–S1–C8–N1 torsion angle of -59.01 (17)°. The heterocycle containing the structural unit CON2H2CO forms a dihedral of 77.81 (10)° with the adjacent benzene ring. Bond lengths and angles in (I) show normal values (Allen et al., 1987) and are comparable with those in related structures (Al-Omary et al., 2014; El-Brollosy et al., 2011; Wang et al., 2006). An intramolecular C—H···S hydrogen bond generates an S(5) ring motif. In the crystal structure, bifurcated acceptor N1–H1N1···O1 and C7–H7B···O1 (Table 1) hydrogen bonds link the two adjacent molecules into centrosymmetric inversion related dimers incorparating R21(9) and R22(8) loops (Fig. 2, Bernstein et al., 1995). These dimers are connected into a chain extending along a-axis direction via a pair of N2–H1N2···O2 hydrogen bonds (Table 1) resulting in another R22(8) loop (Fig. 2, Bernstein et al., 1995). The crystal structure stability is further consolidated by weak intermolecular C–H···π interactions (Table 1) involving the centroids of the six-membered C8–C11/N1/N2 (Cg1) and C1–C6 benzene (Cg2) rings.

For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011, 2014); Tanaka et al. (1995); Hopkins et al. (1996); Russ et al. (2003); Al-Deeb et al. (2013); Nencka et al. (2006); El-Emam et al. (2004); El-Brollosy et al. (2009,2011). For related pyrimidine-2,4-dione structures, see: Al-Omary et al. (2014); Wang et al. (2006). For reference bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines. H-atoms not involved in the hydrogen bonding are omited for clarity.
6-[(2-Methylphenyl)sulfanyl]-5-propylpyrimidine-2,4(1H,3H)-dione top
Crystal data top
C14H16N2O2SF(000) = 584
Mr = 276.36Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7715 reflections
a = 10.3434 (8) Åθ = 2.6–30.3°
b = 5.3355 (3) ŵ = 0.24 mm1
c = 24.4948 (18) ÅT = 293 K
β = 91.171 (3)°Plate, colourless
V = 1351.52 (16) Å30.42 × 0.11 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4165 independent reflections
Radiation source: fine-focus sealed tube2968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
φ and ω scansθmax = 30.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.906, Tmax = 0.986k = 77
32195 measured reflectionsl = 3435
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0398P)2 + 1.8642P]
where P = (Fo2 + 2Fc2)/3
4165 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C14H16N2O2SV = 1351.52 (16) Å3
Mr = 276.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3434 (8) ŵ = 0.24 mm1
b = 5.3355 (3) ÅT = 293 K
c = 24.4948 (18) Å0.42 × 0.11 × 0.06 mm
β = 91.171 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2968 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.986Rint = 0.088
32195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.56 e Å3
4165 reflectionsΔρmin = 0.37 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06364 (5)0.09820 (10)0.09629 (2)0.01784 (14)
O10.14557 (13)0.6290 (3)0.02258 (6)0.0174 (3)
O20.50699 (13)0.2361 (3)0.04241 (6)0.0185 (3)
N10.12191 (17)0.2935 (3)0.03381 (7)0.0144 (4)
N20.32504 (16)0.4210 (4)0.00837 (7)0.0141 (4)
C10.0464 (2)0.3038 (4)0.16726 (9)0.0199 (5)
H1A0.13580.31490.16450.024*
C20.0179 (2)0.4673 (5)0.20078 (9)0.0239 (5)
H2A0.02740.59090.21990.029*
C30.1512 (2)0.4459 (5)0.20570 (10)0.0262 (5)
H3A0.19520.55320.22880.031*
C40.2185 (2)0.2647 (5)0.17622 (10)0.0237 (5)
H4A0.30750.25140.18010.028*
C50.1558 (2)0.1012 (4)0.14083 (9)0.0195 (4)
C60.0214 (2)0.1221 (4)0.13752 (8)0.0163 (4)
C70.2318 (2)0.0789 (5)0.10612 (10)0.0247 (5)
H7A0.20130.24630.11280.037*
H7B0.22140.03780.06830.037*
H7C0.32170.06840.11500.037*
C80.17527 (19)0.1011 (4)0.06450 (8)0.0139 (4)
C90.19324 (18)0.4591 (4)0.00465 (8)0.0136 (4)
C100.38780 (19)0.2403 (4)0.03944 (8)0.0140 (4)
C110.30560 (19)0.0645 (4)0.06833 (8)0.0136 (4)
C120.3691 (2)0.1357 (4)0.10241 (8)0.0154 (4)
H12A0.44790.18860.08490.018*
H12B0.31190.27950.10390.018*
C130.4024 (2)0.0509 (4)0.16085 (9)0.0220 (5)
H13A0.46350.08670.15970.026*
H13B0.32460.00950.17800.026*
C140.4602 (3)0.2630 (5)0.19489 (10)0.0304 (6)
H14A0.48310.20170.23060.046*
H14B0.53620.32570.17760.046*
H14C0.39800.39550.19790.046*
H1N20.367 (2)0.530 (5)0.0072 (10)0.017 (6)*
H1N10.042 (3)0.304 (5)0.0290 (10)0.024 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0144 (2)0.0136 (3)0.0258 (3)0.0032 (2)0.00659 (19)0.0002 (2)
O10.0098 (6)0.0184 (8)0.0241 (8)0.0012 (6)0.0003 (6)0.0051 (6)
O20.0089 (7)0.0201 (8)0.0264 (8)0.0011 (6)0.0001 (6)0.0052 (7)
N10.0064 (8)0.0165 (9)0.0202 (9)0.0015 (7)0.0003 (7)0.0019 (7)
N20.0070 (7)0.0167 (9)0.0185 (9)0.0019 (7)0.0016 (6)0.0028 (7)
C10.0178 (10)0.0194 (11)0.0226 (11)0.0012 (9)0.0027 (9)0.0026 (9)
C20.0301 (12)0.0210 (12)0.0207 (11)0.0014 (10)0.0017 (10)0.0004 (9)
C30.0282 (12)0.0257 (13)0.0249 (12)0.0081 (10)0.0072 (10)0.0019 (10)
C40.0175 (10)0.0287 (13)0.0251 (12)0.0053 (9)0.0058 (9)0.0032 (10)
C50.0165 (10)0.0203 (11)0.0219 (11)0.0011 (9)0.0027 (8)0.0051 (9)
C60.0146 (9)0.0177 (10)0.0166 (10)0.0011 (8)0.0034 (8)0.0045 (8)
C70.0194 (11)0.0250 (12)0.0298 (12)0.0024 (10)0.0006 (9)0.0016 (10)
C80.0131 (9)0.0126 (9)0.0160 (9)0.0038 (8)0.0015 (7)0.0006 (8)
C90.0077 (8)0.0175 (10)0.0156 (10)0.0031 (7)0.0003 (7)0.0026 (8)
C100.0121 (9)0.0143 (10)0.0157 (10)0.0004 (8)0.0001 (8)0.0013 (8)
C110.0127 (9)0.0131 (10)0.0150 (9)0.0019 (8)0.0001 (7)0.0015 (8)
C120.0120 (9)0.0131 (10)0.0211 (10)0.0004 (8)0.0010 (8)0.0004 (8)
C130.0250 (11)0.0189 (12)0.0221 (11)0.0005 (9)0.0022 (9)0.0010 (9)
C140.0389 (15)0.0267 (13)0.0253 (13)0.0045 (11)0.0075 (11)0.0032 (10)
Geometric parameters (Å, º) top
S1—C81.763 (2)C4—H4A0.9300
S1—C61.792 (2)C5—C61.399 (3)
O1—C91.223 (3)C5—C71.496 (3)
O2—C101.234 (2)C7—H7A0.9600
N1—C91.362 (3)C7—H7B0.9600
N1—C81.381 (3)C7—H7C0.9600
N1—H1N10.83 (3)C8—C111.363 (3)
N2—C91.380 (2)C10—C111.459 (3)
N2—C101.382 (3)C11—C121.499 (3)
N2—H1N20.82 (3)C12—C131.534 (3)
C1—C21.379 (3)C12—H12A0.9700
C1—C61.394 (3)C12—H12B0.9700
C1—H1A0.9300C13—C141.521 (3)
C2—C31.391 (3)C13—H13A0.9700
C2—H2A0.9300C13—H13B0.9700
C3—C41.386 (4)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.398 (3)C14—H14C0.9600
C8—S1—C6100.76 (10)C11—C8—N1121.85 (18)
C9—N1—C8123.55 (17)C11—C8—S1122.60 (16)
C9—N1—H1N1115.4 (19)N1—C8—S1115.52 (14)
C8—N1—H1N1120.6 (19)O1—C9—N1123.35 (18)
C9—N2—C10126.26 (18)O1—C9—N2122.14 (18)
C9—N2—H1N2112.9 (17)N1—C9—N2114.51 (18)
C10—N2—H1N2120.4 (17)O2—C10—N2120.18 (19)
C2—C1—C6120.5 (2)O2—C10—C11123.46 (19)
C2—C1—H1A119.7N2—C10—C11116.35 (17)
C6—C1—H1A119.7C8—C11—C10117.37 (19)
C1—C2—C3119.4 (2)C8—C11—C12124.19 (18)
C1—C2—H2A120.3C10—C11—C12118.36 (17)
C3—C2—H2A120.3C11—C12—C13113.39 (18)
C4—C3—C2120.0 (2)C11—C12—H12A108.9
C4—C3—H3A120.0C13—C12—H12A108.9
C2—C3—H3A120.0C11—C12—H12B108.9
C3—C4—C5121.6 (2)C13—C12—H12B108.9
C3—C4—H4A119.2H12A—C12—H12B107.7
C5—C4—H4A119.2C14—C13—C12111.74 (19)
C4—C5—C6117.4 (2)C14—C13—H13A109.3
C4—C5—C7120.6 (2)C12—C13—H13A109.3
C6—C5—C7122.0 (2)C14—C13—H13B109.3
C1—C6—C5121.0 (2)C12—C13—H13B109.3
C1—C6—S1120.23 (16)H13A—C13—H13B107.9
C5—C6—S1118.71 (17)C13—C14—H14A109.5
C5—C7—H7A109.5C13—C14—H14B109.5
C5—C7—H7B109.5H14A—C14—H14B109.5
H7A—C7—H7B109.5C13—C14—H14C109.5
C5—C7—H7C109.5H14A—C14—H14C109.5
H7A—C7—H7C109.5H14B—C14—H14C109.5
H7B—C7—H7C109.5
C6—C1—C2—C31.5 (3)C8—N1—C9—O1179.84 (19)
C1—C2—C3—C41.3 (4)C8—N1—C9—N20.4 (3)
C2—C3—C4—C50.5 (4)C10—N2—C9—O1177.7 (2)
C3—C4—C5—C62.0 (3)C10—N2—C9—N12.1 (3)
C3—C4—C5—C7175.1 (2)C9—N2—C10—O2174.9 (2)
C2—C1—C6—C50.1 (3)C9—N2—C10—C113.9 (3)
C2—C1—C6—S1177.36 (17)N1—C8—C11—C101.2 (3)
C4—C5—C6—C11.8 (3)S1—C8—C11—C10179.05 (15)
C7—C5—C6—C1175.2 (2)N1—C8—C11—C12177.94 (19)
C4—C5—C6—S1175.71 (17)S1—C8—C11—C124.2 (3)
C7—C5—C6—S17.3 (3)O2—C10—C11—C8175.5 (2)
C8—S1—C6—C144.05 (19)N2—C10—C11—C83.3 (3)
C8—S1—C6—C5138.44 (18)O2—C10—C11—C121.5 (3)
C9—N1—C8—C110.8 (3)N2—C10—C11—C12179.76 (18)
C9—N1—C8—S1177.26 (16)C8—C11—C12—C1390.1 (2)
C6—S1—C8—C11122.99 (18)C10—C11—C12—C1386.6 (2)
C6—S1—C8—N159.01 (17)C11—C12—C13—C14177.06 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of C1–C6 and C8–C11/N1/N2 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12B···S10.972.753.166 (2)107
N2—H1N2···O2i0.82 (2)2.01 (2)2.829 (2)171 (2)
N1—H1N1···O1ii0.83 (3)1.98 (3)2.805 (2)173 (2)
C7—H7B···O1ii0.962.583.289 (3)131
C2—H2A···Cg2iii0.932.913.700 (2)144
C7—H7B···Cg1iv0.962.853.632 (3)140
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of C1–C6 and C8–C11/N1/N2 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12B···S10.97002.75003.166 (2)107.00
N2—H1N2···O2i0.82 (2)2.01 (2)2.829 (2)171 (2)
N1—H1N1···O1ii0.83 (3)1.98 (3)2.805 (2)173 (2)
C7—H7B···O1ii0.96002.58003.289 (3)131.00
C2—H2A···Cg2iii0.932.913.700 (2)144
C7—H7B···Cg1iv0.962.853.632 (3)140
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y, z.
 

Footnotes

Thomson Reuters ResearcherID: C-3194-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAl-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642–4647.  Web of Science CAS PubMed Google Scholar
First citationAl-Abdullah, E. S., Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R., Habib, E. E. & El-Emam, A. A. (2014). Drug Res. 64, 31–39.  CAS Google Scholar
First citationAl-Deeb, O. A., Al-Turkistani, A. A., El-Brollosy, N. R., Habib, E. E. & El-Emam, A. A. (2013). Heterocycl. Commun. 19, 411–419.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationAl-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o179–o180.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. 342, 663–670.  CAS Google Scholar
First citationEl-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2011). Acta Cryst. E67, o2839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc. 25, 991–996.  CAS Google Scholar
First citationHopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNencka, R., Votruba, I., Hrebabecky, H., Tloustova, E., Horska, K., Masojidkova, M. & Holy, A. (2006). Bioorg. Med. Chem. Lett. 16, 1335–1337.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuss, P., Schelling, P., Scapozza, L., Folkers, G., De Clercq, E. & Marquez, V. E. (2003). J. Med. Chem. 46, 5045–5054.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., Clercq, E. D. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860–2865.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, X., Lou, Q., Guo, Y., Xu, Y., Zhang, Z. & Liu, J. (2006). Org. Biomol. Chem. 4, 3252–3258.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds