organic compounds
6-[(2-Methylphenyl)sulfanyl]-5-propylpyrimidine-2,4(1H,3H)-dione
aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, bKing Abdullah Institute for Nanotechnology (KAIN), King Saud University, Riyadh 11451, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hfun.c@ksu.edu.sa
In the title pyrimidine-2,4-dione derivative, C14H16N2O2S, the dihedral angle between the six-membered rings is 77.81 (10)°. The molecule is twisted about the Cp—S (p = pyrimidine) bond, with a C—S—C—N torsion angle of −59.01 (17)°. An intramolecular C—H⋯S hydrogen bond generates an S(5) ring motif. In the crystal, bifurcated acceptor N—H⋯O and C—H⋯O hydrogen bonds generate inversion-related dimers incorporating R21(9) and R22(8) loops. These dimers are connected into a chain extending along the a-axis direction by a second pair of inversion-related N—H⋯O hydrogen bonds, forming another R22(8) loop. The is further stabilized by weak intermolecular C—H⋯π interactions, generating a three-dimensional network.
CCDC reference: 1007120
Related literature
For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011, 2014); Tanaka et al. (1995); Hopkins et al. (1996); Russ et al. (2003); Al-Deeb et al. (2013); Nencka et al. (2006); El-Emam et al. (2004); El-Brollosy et al. (2009, 2011). For related pyrimidine-2,4-dione structures, see: Al-Omary et al. (2014); Wang et al. (2006). For reference bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1007120
https://doi.org/10.1107/S1600536814013269/sj5409sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536814013269/sj5409Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536814013269/sj5409Isup3.cml
A mixture of 6-chloro-5-propyluracil (943 mg, 0.005 mol), o-thiocresol (621 mg, 0.005 mol) and potassium hydroxide (281 mg, 0.005 mol), in ethanol (10 ml), was heated under reflux for 3 h. The solvent was then distilled off in vaccuo and the residue was washed with cold water, dried and crystallized from ethanol to yield 940 mg (68%) of the title compound (C14H16N2O2S) as colorless needle crystals. M·P.: 210–212 °C.
1H NMR (DMSO-d6, 500.13 MHz): δ 0.84 (t, 3H, CH2CH3, J = 7.0 Hz), 1.37–1.40 (m, 2H, CH2CH3), 2.33 (s, 3H, Ar—CH3), 2.43 (t, 2H, CH2CH2CH3, J = 7.0 Hz), 6.92–7.02 (m, 3H, Ar—H), 7.26–7.28 (m, 1H, Ar—H), 10.91 (s, 1H, NH), 11.24 (s, 1H, NH). 13 C NMR (DMSO-d6, 125.76 MHz): δ 13.72 (CH2CH3), 22.06 (CH2CH3), 20.12 (Ar—CH3), 28.22 (CH2CH2CH3), 117.44 (Pyrimidine C-5), 125.90, 126.50, 129.88, 130.20, 133.18, 140.56 (Ar—C), 143.02 (Pyrimidine C-6), 150.53 (C=O), 163.23 (C=O).
The nitrogen-bound H-atoms were located in a difference Fourier map and were refined freely. Other H atoms were positioned geometrically (C=H 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl group.
Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities (Al-Abdullah et al., 2014, Al-Deeb et al., 2013) including antiviral activity against HIV (Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004), and HSV viruses (Russ et al., 2003). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Nencka et al., 2006). In a continuation of our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Abdullah et al., 2011; El-Brollosy et al., 2009), we have synthesized the title compound (I) as a potential chemotherapeutic agent.
In the title compound (Fig. 1), the two six-membered rings (C1–C6 and C8–C11/N1/N2) are essentially planar, with maximum deviations of -0.012 (2) Å at atom C5 and 0.020 (2) Å at atom C10, respectively. The molecule is bent at the S atom with C6–S1–C8–N1 torsion angle of -59.01 (17)°. The heterocycle containing the structural unit CON2H2CO forms a dihedral of 77.81 (10)° with the adjacent benzene ring. Bond lengths and angles in (I) show normal values (Allen et al., 1987) and are comparable with those in related structures (Al-Omary et al., 2014; El-Brollosy et al., 2011; Wang et al., 2006). An intramolecular C—H···S hydrogen bond generates an S(5) ring motif. In the π interactions (Table 1) involving the centroids of the six-membered C8–C11/N1/N2 (Cg1) and C1–C6 benzene (Cg2) rings.
bifurcated acceptor N1–H1N1···O1 and C7–H7B···O1 (Table 1) hydrogen bonds link the two adjacent molecules into centrosymmetric inversion related dimers incorparating R21(9) and R22(8) loops (Fig. 2, Bernstein et al., 1995). These dimers are connected into a chain extending along a-axis direction via a pair of N2–H1N2···O2 hydrogen bonds (Table 1) resulting in another R22(8) loop (Fig. 2, Bernstein et al., 1995). The stability is further consolidated by weak intermolecular C–H···For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011, 2014); Tanaka et al. (1995); Hopkins et al. (1996); Russ et al. (2003); Al-Deeb et al. (2013); Nencka et al. (2006); El-Emam et al. (2004); El-Brollosy et al. (2009,2011). For related pyrimidine-2,4-dione structures, see: Al-Omary et al. (2014); Wang et al. (2006). For reference bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids. | |
Fig. 2. Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines. H-atoms not involved in the hydrogen bonding are omited for clarity. |
C14H16N2O2S | F(000) = 584 |
Mr = 276.36 | Dx = 1.353 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7715 reflections |
a = 10.3434 (8) Å | θ = 2.6–30.3° |
b = 5.3355 (3) Å | µ = 0.24 mm−1 |
c = 24.4948 (18) Å | T = 293 K |
β = 91.171 (3)° | Plate, colourless |
V = 1351.52 (16) Å3 | 0.42 × 0.11 × 0.06 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 4165 independent reflections |
Radiation source: fine-focus sealed tube | 2968 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.088 |
φ and ω scans | θmax = 30.7°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −14→14 |
Tmin = 0.906, Tmax = 0.986 | k = −7→7 |
32195 measured reflections | l = −34→35 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0398P)2 + 1.8642P] where P = (Fo2 + 2Fc2)/3 |
4165 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
C14H16N2O2S | V = 1351.52 (16) Å3 |
Mr = 276.36 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.3434 (8) Å | µ = 0.24 mm−1 |
b = 5.3355 (3) Å | T = 293 K |
c = 24.4948 (18) Å | 0.42 × 0.11 × 0.06 mm |
β = 91.171 (3)° |
Bruker APEXII CCD diffractometer | 4165 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2968 reflections with I > 2σ(I) |
Tmin = 0.906, Tmax = 0.986 | Rint = 0.088 |
32195 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.56 e Å−3 |
4165 reflections | Δρmin = −0.37 e Å−3 |
182 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.06364 (5) | −0.09820 (10) | 0.09629 (2) | 0.01784 (14) | |
O1 | 0.14557 (13) | 0.6290 (3) | −0.02258 (6) | 0.0174 (3) | |
O2 | 0.50699 (13) | 0.2361 (3) | 0.04241 (6) | 0.0185 (3) | |
N1 | 0.12191 (17) | 0.2935 (3) | 0.03381 (7) | 0.0144 (4) | |
N2 | 0.32504 (16) | 0.4210 (4) | 0.00837 (7) | 0.0141 (4) | |
C1 | 0.0464 (2) | 0.3038 (4) | 0.16726 (9) | 0.0199 (5) | |
H1A | 0.1358 | 0.3149 | 0.1645 | 0.024* | |
C2 | −0.0179 (2) | 0.4673 (5) | 0.20078 (9) | 0.0239 (5) | |
H2A | 0.0274 | 0.5909 | 0.2199 | 0.029* | |
C3 | −0.1512 (2) | 0.4459 (5) | 0.20570 (10) | 0.0262 (5) | |
H3A | −0.1952 | 0.5532 | 0.2288 | 0.031* | |
C4 | −0.2185 (2) | 0.2647 (5) | 0.17622 (10) | 0.0237 (5) | |
H4A | −0.3075 | 0.2514 | 0.1801 | 0.028* | |
C5 | −0.1558 (2) | 0.1012 (4) | 0.14083 (9) | 0.0195 (4) | |
C6 | −0.0214 (2) | 0.1221 (4) | 0.13752 (8) | 0.0163 (4) | |
C7 | −0.2318 (2) | −0.0789 (5) | 0.10612 (10) | 0.0247 (5) | |
H7A | −0.2013 | −0.2463 | 0.1128 | 0.037* | |
H7B | −0.2214 | −0.0378 | 0.0683 | 0.037* | |
H7C | −0.3217 | −0.0684 | 0.1150 | 0.037* | |
C8 | 0.17527 (19) | 0.1011 (4) | 0.06450 (8) | 0.0139 (4) | |
C9 | 0.19324 (18) | 0.4591 (4) | 0.00465 (8) | 0.0136 (4) | |
C10 | 0.38780 (19) | 0.2403 (4) | 0.03944 (8) | 0.0140 (4) | |
C11 | 0.30560 (19) | 0.0645 (4) | 0.06833 (8) | 0.0136 (4) | |
C12 | 0.3691 (2) | −0.1357 (4) | 0.10241 (8) | 0.0154 (4) | |
H12A | 0.4479 | −0.1886 | 0.0849 | 0.018* | |
H12B | 0.3119 | −0.2795 | 0.1039 | 0.018* | |
C13 | 0.4024 (2) | −0.0509 (4) | 0.16085 (9) | 0.0220 (5) | |
H13A | 0.4635 | 0.0867 | 0.1597 | 0.026* | |
H13B | 0.3246 | 0.0095 | 0.1780 | 0.026* | |
C14 | 0.4602 (3) | −0.2630 (5) | 0.19489 (10) | 0.0304 (6) | |
H14A | 0.4831 | −0.2017 | 0.2306 | 0.046* | |
H14B | 0.5362 | −0.3257 | 0.1776 | 0.046* | |
H14C | 0.3980 | −0.3955 | 0.1979 | 0.046* | |
H1N2 | 0.367 (2) | 0.530 (5) | −0.0072 (10) | 0.017 (6)* | |
H1N1 | 0.042 (3) | 0.304 (5) | 0.0290 (10) | 0.024 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0144 (2) | 0.0136 (3) | 0.0258 (3) | −0.0032 (2) | 0.00659 (19) | 0.0002 (2) |
O1 | 0.0098 (6) | 0.0184 (8) | 0.0241 (8) | −0.0012 (6) | 0.0003 (6) | 0.0051 (6) |
O2 | 0.0089 (7) | 0.0201 (8) | 0.0264 (8) | −0.0011 (6) | 0.0001 (6) | 0.0052 (7) |
N1 | 0.0064 (8) | 0.0165 (9) | 0.0202 (9) | −0.0015 (7) | 0.0003 (7) | 0.0019 (7) |
N2 | 0.0070 (7) | 0.0167 (9) | 0.0185 (9) | −0.0019 (7) | 0.0016 (6) | 0.0028 (7) |
C1 | 0.0178 (10) | 0.0194 (11) | 0.0226 (11) | −0.0012 (9) | 0.0027 (9) | 0.0026 (9) |
C2 | 0.0301 (12) | 0.0210 (12) | 0.0207 (11) | −0.0014 (10) | 0.0017 (10) | 0.0004 (9) |
C3 | 0.0282 (12) | 0.0257 (13) | 0.0249 (12) | 0.0081 (10) | 0.0072 (10) | 0.0019 (10) |
C4 | 0.0175 (10) | 0.0287 (13) | 0.0251 (12) | 0.0053 (9) | 0.0058 (9) | 0.0032 (10) |
C5 | 0.0165 (10) | 0.0203 (11) | 0.0219 (11) | −0.0011 (9) | 0.0027 (8) | 0.0051 (9) |
C6 | 0.0146 (9) | 0.0177 (10) | 0.0166 (10) | 0.0011 (8) | 0.0034 (8) | 0.0045 (8) |
C7 | 0.0194 (11) | 0.0250 (12) | 0.0298 (12) | −0.0024 (10) | 0.0006 (9) | 0.0016 (10) |
C8 | 0.0131 (9) | 0.0126 (9) | 0.0160 (9) | −0.0038 (8) | 0.0015 (7) | −0.0006 (8) |
C9 | 0.0077 (8) | 0.0175 (10) | 0.0156 (10) | −0.0031 (7) | 0.0003 (7) | −0.0026 (8) |
C10 | 0.0121 (9) | 0.0143 (10) | 0.0157 (10) | 0.0004 (8) | −0.0001 (8) | −0.0013 (8) |
C11 | 0.0127 (9) | 0.0131 (10) | 0.0150 (9) | −0.0019 (8) | 0.0001 (7) | −0.0015 (8) |
C12 | 0.0120 (9) | 0.0131 (10) | 0.0211 (10) | −0.0004 (8) | 0.0010 (8) | −0.0004 (8) |
C13 | 0.0250 (11) | 0.0189 (12) | 0.0221 (11) | 0.0005 (9) | −0.0022 (9) | 0.0010 (9) |
C14 | 0.0389 (15) | 0.0267 (13) | 0.0253 (13) | 0.0045 (11) | −0.0075 (11) | 0.0032 (10) |
S1—C8 | 1.763 (2) | C4—H4A | 0.9300 |
S1—C6 | 1.792 (2) | C5—C6 | 1.399 (3) |
O1—C9 | 1.223 (3) | C5—C7 | 1.496 (3) |
O2—C10 | 1.234 (2) | C7—H7A | 0.9600 |
N1—C9 | 1.362 (3) | C7—H7B | 0.9600 |
N1—C8 | 1.381 (3) | C7—H7C | 0.9600 |
N1—H1N1 | 0.83 (3) | C8—C11 | 1.363 (3) |
N2—C9 | 1.380 (2) | C10—C11 | 1.459 (3) |
N2—C10 | 1.382 (3) | C11—C12 | 1.499 (3) |
N2—H1N2 | 0.82 (3) | C12—C13 | 1.534 (3) |
C1—C2 | 1.379 (3) | C12—H12A | 0.9700 |
C1—C6 | 1.394 (3) | C12—H12B | 0.9700 |
C1—H1A | 0.9300 | C13—C14 | 1.521 (3) |
C2—C3 | 1.391 (3) | C13—H13A | 0.9700 |
C2—H2A | 0.9300 | C13—H13B | 0.9700 |
C3—C4 | 1.386 (4) | C14—H14A | 0.9600 |
C3—H3A | 0.9300 | C14—H14B | 0.9600 |
C4—C5 | 1.398 (3) | C14—H14C | 0.9600 |
C8—S1—C6 | 100.76 (10) | C11—C8—N1 | 121.85 (18) |
C9—N1—C8 | 123.55 (17) | C11—C8—S1 | 122.60 (16) |
C9—N1—H1N1 | 115.4 (19) | N1—C8—S1 | 115.52 (14) |
C8—N1—H1N1 | 120.6 (19) | O1—C9—N1 | 123.35 (18) |
C9—N2—C10 | 126.26 (18) | O1—C9—N2 | 122.14 (18) |
C9—N2—H1N2 | 112.9 (17) | N1—C9—N2 | 114.51 (18) |
C10—N2—H1N2 | 120.4 (17) | O2—C10—N2 | 120.18 (19) |
C2—C1—C6 | 120.5 (2) | O2—C10—C11 | 123.46 (19) |
C2—C1—H1A | 119.7 | N2—C10—C11 | 116.35 (17) |
C6—C1—H1A | 119.7 | C8—C11—C10 | 117.37 (19) |
C1—C2—C3 | 119.4 (2) | C8—C11—C12 | 124.19 (18) |
C1—C2—H2A | 120.3 | C10—C11—C12 | 118.36 (17) |
C3—C2—H2A | 120.3 | C11—C12—C13 | 113.39 (18) |
C4—C3—C2 | 120.0 (2) | C11—C12—H12A | 108.9 |
C4—C3—H3A | 120.0 | C13—C12—H12A | 108.9 |
C2—C3—H3A | 120.0 | C11—C12—H12B | 108.9 |
C3—C4—C5 | 121.6 (2) | C13—C12—H12B | 108.9 |
C3—C4—H4A | 119.2 | H12A—C12—H12B | 107.7 |
C5—C4—H4A | 119.2 | C14—C13—C12 | 111.74 (19) |
C4—C5—C6 | 117.4 (2) | C14—C13—H13A | 109.3 |
C4—C5—C7 | 120.6 (2) | C12—C13—H13A | 109.3 |
C6—C5—C7 | 122.0 (2) | C14—C13—H13B | 109.3 |
C1—C6—C5 | 121.0 (2) | C12—C13—H13B | 109.3 |
C1—C6—S1 | 120.23 (16) | H13A—C13—H13B | 107.9 |
C5—C6—S1 | 118.71 (17) | C13—C14—H14A | 109.5 |
C5—C7—H7A | 109.5 | C13—C14—H14B | 109.5 |
C5—C7—H7B | 109.5 | H14A—C14—H14B | 109.5 |
H7A—C7—H7B | 109.5 | C13—C14—H14C | 109.5 |
C5—C7—H7C | 109.5 | H14A—C14—H14C | 109.5 |
H7A—C7—H7C | 109.5 | H14B—C14—H14C | 109.5 |
H7B—C7—H7C | 109.5 | ||
C6—C1—C2—C3 | 1.5 (3) | C8—N1—C9—O1 | 179.84 (19) |
C1—C2—C3—C4 | −1.3 (4) | C8—N1—C9—N2 | −0.4 (3) |
C2—C3—C4—C5 | −0.5 (4) | C10—N2—C9—O1 | 177.7 (2) |
C3—C4—C5—C6 | 2.0 (3) | C10—N2—C9—N1 | −2.1 (3) |
C3—C4—C5—C7 | −175.1 (2) | C9—N2—C10—O2 | −174.9 (2) |
C2—C1—C6—C5 | 0.1 (3) | C9—N2—C10—C11 | 3.9 (3) |
C2—C1—C6—S1 | −177.36 (17) | N1—C8—C11—C10 | 1.2 (3) |
C4—C5—C6—C1 | −1.8 (3) | S1—C8—C11—C10 | 179.05 (15) |
C7—C5—C6—C1 | 175.2 (2) | N1—C8—C11—C12 | 177.94 (19) |
C4—C5—C6—S1 | 175.71 (17) | S1—C8—C11—C12 | −4.2 (3) |
C7—C5—C6—S1 | −7.3 (3) | O2—C10—C11—C8 | 175.5 (2) |
C8—S1—C6—C1 | −44.05 (19) | N2—C10—C11—C8 | −3.3 (3) |
C8—S1—C6—C5 | 138.44 (18) | O2—C10—C11—C12 | −1.5 (3) |
C9—N1—C8—C11 | 0.8 (3) | N2—C10—C11—C12 | 179.76 (18) |
C9—N1—C8—S1 | −177.26 (16) | C8—C11—C12—C13 | −90.1 (2) |
C6—S1—C8—C11 | 122.99 (18) | C10—C11—C12—C13 | 86.6 (2) |
C6—S1—C8—N1 | −59.01 (17) | C11—C12—C13—C14 | 177.06 (19) |
Cg1 and Cg2 are the centroids of C1–C6 and C8–C11/N1/N2 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12B···S1 | 0.97 | 2.75 | 3.166 (2) | 107 |
N2—H1N2···O2i | 0.82 (2) | 2.01 (2) | 2.829 (2) | 171 (2) |
N1—H1N1···O1ii | 0.83 (3) | 1.98 (3) | 2.805 (2) | 173 (2) |
C7—H7B···O1ii | 0.96 | 2.58 | 3.289 (3) | 131 |
C2—H2A···Cg2iii | 0.93 | 2.91 | 3.700 (2) | 144 |
C7—H7B···Cg1iv | 0.96 | 2.85 | 3.632 (3) | 140 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) −x, y+1/2, −z+1/2; (iv) −x, −y, −z. |
Cg1 and Cg2 are the centroids of C1–C6 and C8–C11/N1/N2 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12B···S1 | 0.9700 | 2.7500 | 3.166 (2) | 107.00 |
N2—H1N2···O2i | 0.82 (2) | 2.01 (2) | 2.829 (2) | 171 (2) |
N1—H1N1···O1ii | 0.83 (3) | 1.98 (3) | 2.805 (2) | 173 (2) |
C7—H7B···O1ii | 0.9600 | 2.5800 | 3.289 (3) | 131.00 |
C2—H2A···Cg2iii | 0.93 | 2.91 | 3.700 (2) | 144 |
C7—H7B···Cg1iv | 0.96 | 2.85 | 3.632 (3) | 140 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) −x, y+1/2, −z+1/2; (iv) −x, −y, −z. |
Acknowledgements
The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.
References
Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642–4647. Web of Science CAS PubMed Google Scholar
Al-Abdullah, E. S., Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R., Habib, E. E. & El-Emam, A. A. (2014). Drug Res. 64, 31–39. CAS Google Scholar
Al-Deeb, O. A., Al-Turkistani, A. A., El-Brollosy, N. R., Habib, E. E. & El-Emam, A. A. (2013). Heterocycl. Commun. 19, 411–419. CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o179–o180. CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. 342, 663–670. CAS Google Scholar
El-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2011). Acta Cryst. E67, o2839. Web of Science CSD CrossRef IUCr Journals Google Scholar
El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc. 25, 991–996. CAS Google Scholar
Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600. CrossRef CAS PubMed Web of Science Google Scholar
Nencka, R., Votruba, I., Hrebabecky, H., Tloustova, E., Horska, K., Masojidkova, M. & Holy, A. (2006). Bioorg. Med. Chem. Lett. 16, 1335–1337. Web of Science CrossRef PubMed CAS Google Scholar
Russ, P., Schelling, P., Scapozza, L., Folkers, G., De Clercq, E. & Marquez, V. E. (2003). J. Med. Chem. 46, 5045–5054. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., Clercq, E. D. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860–2865. CrossRef CAS PubMed Web of Science Google Scholar
Wang, X., Lou, Q., Guo, Y., Xu, Y., Zhang, Z. & Liu, J. (2006). Org. Biomol. Chem. 4, 3252–3258. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities (Al-Abdullah et al., 2014, Al-Deeb et al., 2013) including antiviral activity against HIV (Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004), and HSV viruses (Russ et al., 2003). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Nencka et al., 2006). In a continuation of our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Abdullah et al., 2011; El-Brollosy et al., 2009), we have synthesized the title compound (I) as a potential chemotherapeutic agent.
In the title compound (Fig. 1), the two six-membered rings (C1–C6 and C8–C11/N1/N2) are essentially planar, with maximum deviations of -0.012 (2) Å at atom C5 and 0.020 (2) Å at atom C10, respectively. The molecule is bent at the S atom with C6–S1–C8–N1 torsion angle of -59.01 (17)°. The heterocycle containing the structural unit CON2H2CO forms a dihedral of 77.81 (10)° with the adjacent benzene ring. Bond lengths and angles in (I) show normal values (Allen et al., 1987) and are comparable with those in related structures (Al-Omary et al., 2014; El-Brollosy et al., 2011; Wang et al., 2006). An intramolecular C—H···S hydrogen bond generates an S(5) ring motif. In the crystal structure, bifurcated acceptor N1–H1N1···O1 and C7–H7B···O1 (Table 1) hydrogen bonds link the two adjacent molecules into centrosymmetric inversion related dimers incorparating R21(9) and R22(8) loops (Fig. 2, Bernstein et al., 1995). These dimers are connected into a chain extending along a-axis direction via a pair of N2–H1N2···O2 hydrogen bonds (Table 1) resulting in another R22(8) loop (Fig. 2, Bernstein et al., 1995). The crystal structure stability is further consolidated by weak intermolecular C–H···π interactions (Table 1) involving the centroids of the six-membered C8–C11/N1/N2 (Cg1) and C1–C6 benzene (Cg2) rings.