organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Morpholin-4-yl)-4-(2-nitro­phen­yl)spiro­[azetidine-3,9′-xanthen]-2-one

aIlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 9 June 2014; accepted 10 June 2014; online 14 June 2014)

In the title compound, C22H21N3O5, the β-lactam (azetidin-2-one) ring is nearly planar [maximum deviation = 0.010 (1) Å] and makes dihedral angles of 69.22 (5), 55.32 (5) and 89.42 (4)° with the least-squares planes formed by the four C atoms of the morpholine ring, which adopts a chair conformation, the benzene ring and the xanthene ring system, respectively. In the crystal, C—H⋯O hydrogen-bond contacts connect neighbouring mol­ecules into infinite zigzag chains running parallel to the b axis.

Related literature

For general background to β-lactams, see: Arya et al. (2014[Arya, N., Jagdale, A. Y., Patil, T. A., Yeramwar, S. S., Holikatti, S. S., Dwivedi, J., Shishoo, Ch. J. & Jain, K. S. (2014). Eur. J. Med. Chem. 74, 619-656.]); Ebrahimi & Jarrahpour (2014[Ebrahimi, E. & Jarrahpour, A. (2014). Iran. J. Sci. Technol. 38A1, 49-53.]); Singh & Sudheesh (2014[Singh, G. S. & Sudheesh, S. (2014). Arkivoc, i, 337-385.]); Zeng et al. (2014[Zeng, X.-H., Wang, H.-M., Yan, Y.-M., Wu, L. & Ding, M.-W. (2014). Tetrahedron, 70, 3647-3652.]); Zarei et al. (2013[Zarei, M., Karimi-Jaberi, Z. & Movahedi, A. (2013). Synth. Commun. 43, 728-734.]); Jarrahpour & Ebrahimi (2010[Jarrahpour, A. & Ebrahimi, E. (2010). Molecules, 15, 515-531.]); Mehta et al. (2010[Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541-5560.]); Singh et al. (2011[Singh, G. S., D'hooghe, M. & De Kimpe, N. (2011). Tetrahedron, 67, 1989-2012.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For similar structures, see: Akkurt et al. (2008a[Akkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o2466-o2467.],b[Akkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o902-o903.]); Yalçın et al. (2009[Yalçın, Ş. P., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o626-o627.]); Çelik et al. (2009a[Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009a). Acta Cryst. E65, o501-o502.],b[Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009b). Acta Cryst. E65, o2522-o2523.], 2014[Çelik, Í., Akkurt, M., Jarrahpour, A., Heiran, R. & Özdemir, N. (2014). Acta Cryst. E70, o369-o370.]).

[Scheme 1]

Experimental

Crystal data
  • C25H21N3O5

  • Mr = 443.45

  • Monoclinic, P 21 /c

  • a = 9.4272 (5) Å

  • b = 18.8525 (8) Å

  • c = 12.4345 (6) Å

  • β = 95.443 (4)°

  • V = 2199.97 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.50 × 0.44 × 0.40 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.956, Tmax = 0.974

  • 13801 measured reflections

  • 5223 independent reflections

  • 3421 reflections with I > 2σ(I)

  • Rint = 0.195

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.098

  • S = 1.00

  • 5223 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.98 2.55 3.5310 (16) 174
C6—H6⋯O1ii 0.93 2.56 3.3828 (17) 148
C11—H11⋯O2iii 0.93 2.50 3.389 (2) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

2-Azetidinones, commonly known as β-lactams, constitute a most important class of antibiotics in both human and veterinary medicine (Arya et al., 2014; Singh & Sudheesh, 2014; Zeng et al., 2014; Zarei et al., 2013). In addition to their well recognized antibiotic activity, β-lactams exhibit various other biological activities such as thrombin, human, HIV-1 protease, human leukocyte elastase, cholesterol absorption inhibition and antifungal, anticancer, antidiabetic and potential antimalarial properties (Mehta et al., 2010; Singh et al., 2011; Ebrahimi & Jarrahpour, 2014). The synthesis and chemistry of spiro-fused 2-azetidinones has grown steadily over the years and many newly synthesized spiro-fused 2-azetidinones have been reported in the literature (Jarrahpour & Ebrahimi, 2010; Singh et al., 2011).

The β-lactam (azetidin-2-one) ring of the title compound (I, Fig. 1) is nearly planar, with a maximum deviation of -0.010 (1) Å for C1 from the mean plane. Atom O1 lies almost in the β-lactam plane, with a deviation of 0.069 (1) Å. The β-lactam ring makes a dihedral angle of 55.32 (5)° with the benzene ring C16—C21.

The xanthene ring system is V-shaped, with a dihedral angle between the (C4–C9) and (C10–C15) benzene rings of 19.07 (7)°. Its central ring, C2/C4/C9/O2/C10/C15, is not planar, with puckering parameters: QT = 0.2438 (13) Å, θ = 98.1 (3)° and φ = 2.0 (3)° (Cremer & Pople, 1975).

The mean plane of the xanthene ring system forms dihedral angles of 89.42 (4), 43.44 (3) and 22.80 (5)° (Nardelli, 1995), with the β-lactam ring, the benzene ring (C16–C21) and the least-squares plane formed by the four C atoms of the morpholine ring (N2/O5/C22–C25), respectively.

The bond lengths and angles in (I) are comparable with those observed in similar compounds that we have reported previously (Akkurt et al., 2008a,b; Çelik et al., 2009a,b; Çelik et al., 2014; Yalçın et al., 2009).

In the crystal structure, molecules are linked by C—H···O hydrogen contacts (Table 1) into infinite zigzag chains running parallel to the b axis. Figs. 2, 3 and 4 show the projections along the a, b and c axes of the crystal packing of (I), respectively.

Related literature top

For general background to β-lactams, see: Arya et al. (2014); Ebrahimi & Jarrahpour (2014); Singh & Sudheesh (2014); Zeng et al. (2014); Zarei et al. (2013); Jarrahpour & Ebrahimi (2010); Mehta et al. (2010); Singh et al. (2011). For geometric analysis, see: Cremer & Pople (1975); Nardelli (1995). For similar structures, see: Akkurt et al. (2008a,b); Yalçın et al. (2009); Çelik et al. (2009a,b, 2014).

Experimental top

A mixture of N-(2-nitrobenzylidene)morpholin-4-amine (0.24 g, 1.00 mmol), 9H-xanthen-9-carboxylic acid (0.34 g, 1.50 mmol), tosyl chloride (0.28 g, 1.50 mmol) and triethylamine (0.25 g, 2.50 mmol) was stirred in dry CH2Cl2 at room temperature. After 24 h, the mixture was washed with HCl 1 M (20 ml), saturated NaHCO3 (20 ml), brine (20 ml), dried over Na2SO4 and the solvent was evaporated to give the crude product which was purified by column chromatography (eluent 2:1 n-hexane/EtOAc) as light yellow crystalline solid (yield 41%). mp: 471- 473 K. IR (KBr, cm-1): 1759 (CO, β-lactam), 1346, 1523 (NO2). 1H-NMR (CDCl3) δ (p.p.m.): 3.52–3.76 (CH2 morpholine ring, m, 8H), 5.38 (H-3, s, 1H), 6.62–8.10 (ArH, m, 12H). 13C-NMR (CDCl3) δ (p.p.m.): 53.8 (CH2—N), 61.4 (C-3), 66.8 (CH2—O), 73.9 (C-4), 114.9, 116.8, 116.9, 120.5, 122.2, 123.9, 124.8, 125.1, 127.8, 128.9, 129.3, 129.5, 131.1, 133.1, 147.5, 152.1, 152.3 (aromatic carbons), 169.7 (CO, β-lactam). Anal. calcd for C25H21N3O5: C 67.71, H 4.77, N 9.48%. Found: C 67.80, H 4.66, N 9.45%.

Refinement top

All H atoms were positioned geometrically and were refined using a riding model, with C—H = 0.93 (aromatic), 0.97 Å (methylene) 0.98 Å(methine), respectively, and Uiso(H) = 1.2 Ueq(C). Reflections (1 4 1), (0 3 2), (-1 2 2), (-2 0 2), (1 3 0) and (1 5 0) were omitted due to the large disagreement between Fobs and Fcalc. Owing to the poor quality of the crystal, the data obtained were rather poor and the value of Rint remained high (0.195).

Structure description top

2-Azetidinones, commonly known as β-lactams, constitute a most important class of antibiotics in both human and veterinary medicine (Arya et al., 2014; Singh & Sudheesh, 2014; Zeng et al., 2014; Zarei et al., 2013). In addition to their well recognized antibiotic activity, β-lactams exhibit various other biological activities such as thrombin, human, HIV-1 protease, human leukocyte elastase, cholesterol absorption inhibition and antifungal, anticancer, antidiabetic and potential antimalarial properties (Mehta et al., 2010; Singh et al., 2011; Ebrahimi & Jarrahpour, 2014). The synthesis and chemistry of spiro-fused 2-azetidinones has grown steadily over the years and many newly synthesized spiro-fused 2-azetidinones have been reported in the literature (Jarrahpour & Ebrahimi, 2010; Singh et al., 2011).

The β-lactam (azetidin-2-one) ring of the title compound (I, Fig. 1) is nearly planar, with a maximum deviation of -0.010 (1) Å for C1 from the mean plane. Atom O1 lies almost in the β-lactam plane, with a deviation of 0.069 (1) Å. The β-lactam ring makes a dihedral angle of 55.32 (5)° with the benzene ring C16—C21.

The xanthene ring system is V-shaped, with a dihedral angle between the (C4–C9) and (C10–C15) benzene rings of 19.07 (7)°. Its central ring, C2/C4/C9/O2/C10/C15, is not planar, with puckering parameters: QT = 0.2438 (13) Å, θ = 98.1 (3)° and φ = 2.0 (3)° (Cremer & Pople, 1975).

The mean plane of the xanthene ring system forms dihedral angles of 89.42 (4), 43.44 (3) and 22.80 (5)° (Nardelli, 1995), with the β-lactam ring, the benzene ring (C16–C21) and the least-squares plane formed by the four C atoms of the morpholine ring (N2/O5/C22–C25), respectively.

The bond lengths and angles in (I) are comparable with those observed in similar compounds that we have reported previously (Akkurt et al., 2008a,b; Çelik et al., 2009a,b; Çelik et al., 2014; Yalçın et al., 2009).

In the crystal structure, molecules are linked by C—H···O hydrogen contacts (Table 1) into infinite zigzag chains running parallel to the b axis. Figs. 2, 3 and 4 show the projections along the a, b and c axes of the crystal packing of (I), respectively.

For general background to β-lactams, see: Arya et al. (2014); Ebrahimi & Jarrahpour (2014); Singh & Sudheesh (2014); Zeng et al. (2014); Zarei et al. (2013); Jarrahpour & Ebrahimi (2010); Mehta et al. (2010); Singh et al. (2011). For geometric analysis, see: Cremer & Pople (1975); Nardelli (1995). For similar structures, see: Akkurt et al. (2008a,b); Yalçın et al. (2009); Çelik et al. (2009a,b, 2014).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Hydrogen bonding and molecular packing of (I) viewed along the a axis. Only H atoms involved in H bonding are shown.
[Figure 3] Fig. 3. Hydrogen bonding and molecular packing of (I) viewed along the b axis. Only H atoms involved in H bonding are shown.
[Figure 4] Fig. 4. Hydrogen bonding and molecular packing of (I) viewed along the c axis. Only H atoms involved in H bonding are shown.
1-(Morpholin-4-yl)-4-(2-nitrophenyl)spiro[azetidine-3,9'-xanthen]-2-one top
Crystal data top
C25H21N3O5F(000) = 928
Mr = 443.45Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14473 reflections
a = 9.4272 (5) Åθ = 1.6–28.4°
b = 18.8525 (8) ŵ = 0.10 mm1
c = 12.4345 (6) ÅT = 296 K
β = 95.443 (4)°Block, light yellow
V = 2199.97 (18) Å30.50 × 0.44 × 0.40 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
5223 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3421 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.195
Detector resolution: 6.67 pixels mm-1θmax = 27.9°, θmin = 2.0°
ω scansh = 128
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2424
Tmin = 0.956, Tmax = 0.974l = 1616
13801 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0511P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5223 reflectionsΔρmax = 0.15 e Å3
299 parametersΔρmin = 0.11 e Å3
Crystal data top
C25H21N3O5V = 2199.97 (18) Å3
Mr = 443.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4272 (5) ŵ = 0.10 mm1
b = 18.8525 (8) ÅT = 296 K
c = 12.4345 (6) Å0.50 × 0.44 × 0.40 mm
β = 95.443 (4)°
Data collection top
Stoe IPDS 2
diffractometer
5223 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3421 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.974Rint = 0.195
13801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
5223 reflectionsΔρmin = 0.11 e Å3
299 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56523 (11)0.77674 (4)0.39775 (8)0.0607 (3)
O20.88039 (12)0.56659 (6)0.40826 (8)0.0725 (4)
O30.59829 (13)0.48451 (5)0.40169 (9)0.0738 (4)
O40.6611 (2)0.42173 (8)0.27221 (13)0.1293 (7)
O50.05898 (13)0.80037 (7)0.43054 (10)0.0862 (5)
N10.40654 (11)0.68165 (5)0.36241 (8)0.0475 (3)
N20.26494 (11)0.70325 (5)0.37024 (8)0.0504 (3)
N30.58819 (15)0.46781 (6)0.30725 (11)0.0673 (5)
C10.53326 (14)0.71537 (6)0.38183 (9)0.0459 (4)
C20.61723 (13)0.64499 (6)0.38092 (9)0.0439 (4)
C30.46359 (13)0.60880 (6)0.36101 (9)0.0444 (4)
C40.71522 (13)0.63736 (6)0.29281 (9)0.0450 (4)
C50.68634 (14)0.66829 (7)0.19146 (10)0.0527 (4)
C60.77624 (16)0.65986 (8)0.11144 (11)0.0610 (5)
C70.89724 (16)0.61957 (8)0.13129 (12)0.0648 (5)
C80.92974 (16)0.58875 (8)0.23033 (12)0.0665 (5)
C90.83854 (14)0.59821 (7)0.31040 (10)0.0536 (4)
C100.81733 (15)0.58925 (7)0.49807 (10)0.0554 (4)
C110.88545 (17)0.56948 (9)0.59700 (12)0.0697 (6)
C120.83068 (17)0.59109 (8)0.68992 (12)0.0668 (5)
C130.71169 (18)0.63341 (7)0.68493 (11)0.0631 (5)
C140.64380 (16)0.65115 (7)0.58589 (10)0.0555 (4)
C150.69405 (14)0.62872 (6)0.48998 (10)0.0465 (4)
C160.42467 (13)0.56881 (6)0.25733 (10)0.0477 (4)
C170.48294 (15)0.50353 (6)0.23145 (10)0.0536 (4)
C180.44357 (19)0.46854 (8)0.13552 (12)0.0691 (6)
C190.34418 (19)0.49821 (9)0.06166 (12)0.0749 (6)
C200.28575 (18)0.56245 (10)0.08314 (12)0.0736 (6)
C210.32615 (15)0.59701 (8)0.17932 (11)0.0605 (5)
C220.23610 (17)0.71132 (8)0.48318 (11)0.0640 (5)
C230.08391 (19)0.73546 (10)0.48559 (15)0.0822 (7)
C240.0851 (2)0.79149 (11)0.32138 (15)0.0905 (7)
C250.23701 (19)0.77036 (8)0.31261 (12)0.0712 (6)
H30.440300.581600.424100.0530*
H50.604200.695300.177500.0630*
H60.755200.681300.044500.0730*
H70.957600.613200.077100.0780*
H81.012100.561800.243800.0800*
H110.967500.541800.600400.0840*
H120.874400.577000.756700.0800*
H130.677400.649900.748000.0760*
H140.562000.678900.582900.0670*
H180.484500.425100.121300.0830*
H190.316500.474800.002800.0900*
H200.218600.583000.032900.0880*
H210.285600.640800.192000.0730*
H22A0.300500.746000.518800.0770*
H22B0.250400.666500.520800.0770*
H23A0.020400.699500.452300.0990*
H23B0.063000.741000.560000.0990*
H24A0.065100.835500.282600.1090*
H24B0.022100.755300.288500.1090*
H25A0.253500.764800.237300.0850*
H25B0.300700.806900.343900.0850*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0664 (6)0.0398 (4)0.0748 (6)0.0032 (4)0.0010 (5)0.0022 (4)
O20.0706 (7)0.0878 (7)0.0609 (6)0.0346 (6)0.0163 (5)0.0220 (5)
O30.0973 (9)0.0551 (6)0.0684 (6)0.0094 (5)0.0043 (6)0.0026 (5)
O40.1586 (16)0.1034 (10)0.1227 (11)0.0737 (10)0.0035 (10)0.0381 (8)
O50.0755 (8)0.0936 (8)0.0909 (8)0.0321 (6)0.0160 (6)0.0121 (7)
N10.0447 (6)0.0409 (5)0.0574 (6)0.0033 (4)0.0068 (4)0.0024 (4)
N20.0436 (6)0.0549 (6)0.0531 (6)0.0091 (5)0.0072 (4)0.0030 (5)
N30.0818 (9)0.0435 (6)0.0781 (9)0.0063 (6)0.0150 (7)0.0064 (6)
C10.0496 (7)0.0411 (6)0.0469 (6)0.0007 (5)0.0039 (5)0.0007 (5)
C20.0447 (7)0.0385 (6)0.0487 (6)0.0007 (5)0.0057 (5)0.0010 (5)
C30.0455 (7)0.0391 (6)0.0496 (6)0.0004 (5)0.0093 (5)0.0006 (5)
C40.0441 (7)0.0401 (6)0.0512 (7)0.0027 (5)0.0061 (5)0.0021 (5)
C50.0507 (8)0.0522 (7)0.0549 (7)0.0017 (6)0.0033 (6)0.0068 (6)
C60.0670 (10)0.0655 (8)0.0514 (7)0.0037 (7)0.0104 (7)0.0098 (6)
C70.0629 (9)0.0732 (9)0.0613 (8)0.0010 (7)0.0224 (7)0.0042 (7)
C80.0559 (9)0.0780 (9)0.0680 (9)0.0149 (7)0.0182 (7)0.0120 (7)
C90.0512 (8)0.0549 (7)0.0557 (7)0.0056 (6)0.0097 (6)0.0095 (6)
C100.0553 (8)0.0580 (7)0.0533 (7)0.0044 (6)0.0079 (6)0.0104 (6)
C110.0618 (10)0.0788 (10)0.0678 (9)0.0127 (7)0.0022 (7)0.0209 (8)
C120.0745 (11)0.0693 (9)0.0543 (8)0.0103 (8)0.0062 (7)0.0119 (7)
C130.0820 (11)0.0556 (8)0.0514 (8)0.0096 (7)0.0054 (7)0.0032 (6)
C140.0644 (9)0.0490 (7)0.0530 (7)0.0001 (6)0.0047 (6)0.0043 (6)
C150.0483 (7)0.0411 (6)0.0498 (7)0.0037 (5)0.0036 (5)0.0022 (5)
C160.0472 (7)0.0465 (6)0.0511 (7)0.0076 (5)0.0138 (5)0.0034 (5)
C170.0606 (8)0.0454 (6)0.0569 (7)0.0063 (6)0.0170 (6)0.0046 (6)
C180.0864 (12)0.0576 (8)0.0669 (9)0.0111 (8)0.0263 (8)0.0158 (7)
C190.0825 (12)0.0869 (11)0.0567 (9)0.0200 (9)0.0140 (8)0.0232 (8)
C200.0652 (10)0.0960 (12)0.0588 (9)0.0075 (8)0.0017 (7)0.0118 (8)
C210.0547 (9)0.0666 (8)0.0597 (8)0.0003 (6)0.0029 (6)0.0091 (7)
C220.0656 (9)0.0724 (9)0.0555 (8)0.0085 (7)0.0137 (7)0.0006 (7)
C230.0694 (11)0.1011 (13)0.0805 (11)0.0075 (9)0.0295 (9)0.0102 (10)
C240.0804 (13)0.1075 (14)0.0826 (11)0.0427 (10)0.0030 (9)0.0028 (10)
C250.0759 (11)0.0749 (10)0.0639 (9)0.0288 (8)0.0119 (7)0.0130 (7)
Geometric parameters (Å, º) top
O1—C11.2072 (14)C16—C171.3977 (17)
O2—C91.3786 (16)C16—C211.3839 (19)
O2—C101.3817 (17)C17—C181.3827 (19)
O3—N31.2108 (17)C18—C191.368 (2)
O4—N31.214 (2)C19—C201.367 (3)
O5—C231.411 (2)C20—C211.383 (2)
O5—C241.412 (2)C22—C231.508 (2)
N1—N21.4078 (15)C24—C251.500 (3)
N1—C11.3546 (16)C3—H30.9800
N1—C31.4757 (15)C5—H50.9300
N2—C221.4635 (17)C6—H60.9300
N2—C251.4655 (18)C7—H70.9300
N3—C171.4659 (19)C8—H80.9300
C1—C21.5456 (17)C11—H110.9300
C2—C31.5989 (17)C12—H120.9300
C2—C41.5055 (17)C13—H130.9300
C2—C151.5071 (17)C14—H140.9300
C3—C161.5084 (17)C18—H180.9300
C4—C51.3919 (17)C19—H190.9300
C4—C91.3769 (18)C20—H200.9300
C5—C61.3761 (19)C21—H210.9300
C6—C71.373 (2)C22—H22A0.9700
C7—C81.370 (2)C22—H22B0.9700
C8—C91.387 (2)C23—H23A0.9700
C10—C111.384 (2)C23—H23B0.9700
C10—C151.3756 (19)C24—H24A0.9700
C11—C121.371 (2)C24—H24B0.9700
C12—C131.373 (2)C25—H25A0.9700
C13—C141.3743 (19)C25—H25B0.9700
C14—C151.3902 (18)
C9—O2—C10118.08 (11)C16—C21—C20122.45 (14)
C23—O5—C24109.10 (14)N2—C22—C23108.31 (12)
N2—N1—C1132.68 (10)O5—C23—C22111.54 (14)
N2—N1—C3128.25 (9)O5—C24—C25110.85 (14)
C1—N1—C397.05 (9)N2—C25—C24108.79 (14)
N1—N2—C22111.11 (10)N1—C3—H3112.00
N1—N2—C25110.09 (10)C2—C3—H3112.00
C22—N2—C25109.78 (10)C16—C3—H3112.00
O3—N3—O4122.62 (15)C4—C5—H5119.00
O3—N3—C17119.36 (12)C6—C5—H5119.00
O4—N3—C17118.02 (14)C5—C6—H6120.00
O1—C1—N1132.94 (12)C7—C6—H6120.00
O1—C1—C2134.74 (12)C6—C7—H7120.00
N1—C1—C292.26 (9)C8—C7—H7120.00
C1—C2—C384.86 (9)C7—C8—H8120.00
C1—C2—C4115.94 (9)C9—C8—H8120.00
C1—C2—C15111.77 (9)C10—C11—H11120.00
C3—C2—C4117.12 (9)C12—C11—H11120.00
C3—C2—C15113.79 (9)C11—C12—H12120.00
C4—C2—C15111.09 (10)C13—C12—H12120.00
N1—C3—C285.81 (8)C12—C13—H13120.00
N1—C3—C16114.57 (9)C14—C13—H13120.00
C2—C3—C16119.27 (10)C13—C14—H14119.00
C2—C4—C5122.55 (11)C15—C14—H14119.00
C2—C4—C9120.18 (10)C17—C18—H18120.00
C5—C4—C9117.26 (11)C19—C18—H18120.00
C4—C5—C6121.69 (12)C18—C19—H19120.00
C5—C6—C7119.47 (13)C20—C19—H19120.00
C6—C7—C8120.49 (14)C19—C20—H20120.00
C7—C8—C9119.32 (14)C21—C20—H20120.00
O2—C9—C4122.59 (11)C16—C21—H21119.00
O2—C9—C8115.65 (12)C20—C21—H21119.00
C4—C9—C8121.76 (12)N2—C22—H22A110.00
O2—C10—C11115.87 (13)N2—C22—H22B110.00
O2—C10—C15122.24 (11)C23—C22—H22A110.00
C11—C10—C15121.89 (13)C23—C22—H22B110.00
C10—C11—C12119.27 (15)H22A—C22—H22B108.00
C11—C12—C13120.38 (14)O5—C23—H23A109.00
C12—C13—C14119.40 (13)O5—C23—H23B109.00
C13—C14—C15121.81 (13)C22—C23—H23A109.00
C2—C15—C10120.43 (11)C22—C23—H23B109.00
C2—C15—C14122.43 (12)H23A—C23—H23B108.00
C10—C15—C14117.13 (12)O5—C24—H24A109.00
C3—C16—C17124.60 (11)O5—C24—H24B109.00
C3—C16—C21119.98 (11)C25—C24—H24A109.00
C17—C16—C21115.42 (12)C25—C24—H24B109.00
N3—C17—C16120.88 (11)H24A—C24—H24B108.00
N3—C17—C18116.45 (12)N2—C25—H25A110.00
C16—C17—C18122.65 (13)N2—C25—H25B110.00
C17—C18—C19119.66 (14)C24—C25—H25A110.00
C18—C19—C20119.61 (14)C24—C25—H25B110.00
C19—C20—C21120.21 (15)H25A—C25—H25B108.00
C9—O2—C10—C11164.66 (13)C15—C2—C3—C16131.34 (11)
C9—O2—C10—C1515.67 (19)C15—C2—C4—C5160.75 (11)
C10—O2—C9—C416.61 (19)C1—C2—C4—C9148.72 (11)
C10—O2—C9—C8162.73 (13)C15—C2—C4—C919.71 (15)
C23—O5—C24—C2561.03 (18)C15—C2—C3—N1112.75 (10)
C24—O5—C23—C2260.87 (18)C2—C3—C16—C1770.79 (16)
N2—N1—C1—O111.8 (2)C2—C3—C16—C21108.37 (14)
C3—N1—N2—C25149.25 (11)N1—C3—C16—C218.93 (17)
C1—N1—N2—C2271.02 (15)N1—C3—C16—C17170.23 (11)
C3—N1—N2—C2288.92 (13)C5—C4—C9—C81.01 (19)
N2—N1—C3—C2166.66 (11)C2—C4—C5—C6179.05 (12)
C1—N1—C3—C21.38 (9)C2—C4—C9—C8178.56 (12)
N2—N1—C3—C1672.97 (14)C5—C4—C9—O2178.30 (12)
C3—N1—C1—O1176.04 (14)C2—C4—C9—O22.14 (19)
N2—N1—C1—C2165.68 (11)C9—C4—C5—C60.51 (19)
C1—N1—N2—C2550.80 (16)C4—C5—C6—C70.5 (2)
C3—N1—C1—C21.42 (9)C5—C6—C7—C80.9 (2)
C1—N1—C3—C16121.74 (11)C6—C7—C8—C90.5 (2)
C22—N2—C25—C2458.02 (15)C7—C8—C9—C40.6 (2)
N1—N2—C22—C23179.19 (11)C7—C8—C9—O2178.80 (13)
C25—N2—C22—C2357.18 (16)C11—C10—C15—C143.1 (2)
N1—N2—C25—C24179.37 (12)O2—C10—C11—C12178.81 (14)
O3—N3—C17—C18159.81 (14)O2—C10—C15—C14177.26 (12)
O4—N3—C17—C16161.84 (14)C11—C10—C15—C2175.75 (13)
O3—N3—C17—C1618.9 (2)O2—C10—C15—C23.91 (19)
O4—N3—C17—C1819.4 (2)C15—C10—C11—C121.5 (2)
N1—C1—C2—C4116.42 (11)C10—C11—C12—C131.7 (2)
N1—C1—C2—C15114.90 (10)C11—C12—C13—C143.1 (2)
O1—C1—C2—C3176.08 (14)C12—C13—C14—C151.5 (2)
N1—C1—C2—C31.31 (8)C13—C14—C15—C2177.22 (12)
O1—C1—C2—C466.19 (18)C13—C14—C15—C101.6 (2)
O1—C1—C2—C1562.49 (18)C3—C16—C17—C18179.68 (13)
C1—C2—C3—N11.20 (8)C17—C16—C21—C201.2 (2)
C4—C2—C3—N1115.37 (10)C21—C16—C17—N3179.79 (12)
C1—C2—C3—C16117.11 (10)C3—C16—C17—N31.0 (2)
C4—C2—C3—C160.54 (15)C21—C16—C17—C181.1 (2)
C1—C2—C4—C531.73 (16)C3—C16—C21—C20179.54 (13)
C4—C2—C15—C1020.60 (16)N3—C17—C18—C19178.99 (14)
C4—C2—C15—C14160.64 (11)C16—C17—C18—C190.3 (2)
C3—C2—C4—C9113.39 (13)C17—C18—C19—C200.6 (3)
C3—C2—C4—C566.16 (15)C18—C19—C20—C210.5 (3)
C1—C2—C15—C10151.80 (12)C19—C20—C21—C160.5 (2)
C1—C2—C15—C1429.43 (16)N2—C22—C23—O559.13 (17)
C3—C2—C15—C10114.15 (13)O5—C24—C25—N259.98 (18)
C3—C2—C15—C1464.62 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.982.553.5310 (16)174
C6—H6···O1ii0.932.563.3828 (17)148
C11—H11···O2iii0.932.503.389 (2)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.982.553.5310 (16)174
C6—H6···O1ii0.932.563.3828 (17)148
C11—H11···O2iii0.932.503.389 (2)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAkkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o2466–o2467.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o902–o903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArya, N., Jagdale, A. Y., Patil, T. A., Yeramwar, S. S., Holikatti, S. S., Dwivedi, J., Shishoo, Ch. J. & Jain, K. S. (2014). Eur. J. Med. Chem. 74, 619–656.  Web of Science CrossRef CAS PubMed Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009a). Acta Cryst. E65, o501–o502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009b). Acta Cryst. E65, o2522–o2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Heiran, R. & Özdemir, N. (2014). Acta Cryst. E70, o369–o370.  CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEbrahimi, E. & Jarrahpour, A. (2014). Iran. J. Sci. Technol. 38A1, 49–53.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A. & Ebrahimi, E. (2010). Molecules, 15, 515–531.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541–5560.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G. S., D'hooghe, M. & De Kimpe, N. (2011). Tetrahedron, 67, 1989–2012.  Web of Science CrossRef CAS Google Scholar
First citationSingh, G. S. & Sudheesh, S. (2014). Arkivoc, i, 337–385.  Web of Science CrossRef Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYalçın, Ş. P., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o626–o627.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZarei, M., Karimi-Jaberi, Z. & Movahedi, A. (2013). Synth. Commun. 43, 728–734.  Web of Science CrossRef CAS Google Scholar
First citationZeng, X.-H., Wang, H.-M., Yan, Y.-M., Wu, L. & Ding, M.-W. (2014). Tetrahedron, 70, 3647–3652.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds