organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diafenthiuron: 1-tert-butyl-3-(2,6-diiso­propyl-4-phen­­oxy­phen­yl)thio­urea

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr

(Received 16 June 2014; accepted 18 June 2014; online 25 June 2014)

The title compound, C23H32N2OS, is a thio­urea-based insecticide. The dihedral angle between the phenyl ring and the diisopropyl benzene ring plane is 73.18 (6)°, while that between the plane of the thio­urea group and the diisopropyl benzene ring is 86.00 (5)°. Disorder was modelled for the S atom and the two methyl C atoms of the isopropyl group over two sets of sites with an occupancy ratio of 0.742 (4):0.258 (4). In the crystal, N—H⋯S hydrogen bonds link adjacent mol­ecules, forming R22(8) inversion dimers that pack into chains along the b-axis direction.

Keywords: crystal structure.

Related literature

For information on the toxicity and insecticidal properties of the title compound, see: Ishaaya et al. (1993[Ishaaya, I., Mendelson, Z. & Horowitz, A. R. (1993). Phytoparasitica, 21, 199-204.]). For a related structure, see: Zhang et al. (2010[Zhang, X., Huang, J., Song, J., Xu, K. & Ban, Q. (2010). Chin. J. Chem. 28, 1902-1906.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H32N2OS

  • Mr = 384.57

  • Monoclinic, P 21 /c

  • a = 12.8656 (2) Å

  • b = 17.9807 (3) Å

  • c = 10.1671 (2) Å

  • β = 102.655 (1)°

  • V = 2294.84 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 173 K

  • 0.50 × 0.30 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.971

  • 39926 measured reflections

  • 5279 independent reflections

  • 4117 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.03

  • 5279 reflections

  • 281 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.88 2.53 3.3739 (15) 160
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Diafenthiuron (systematic name: 1 - t-butyl-3-(2,6-diisopropyl-4-phenoxyphenyl)thiourea), is a type of thiourea insecticide which acts specifically on phytophagous mites, whiteflies and aphids (Ishaaya et al., 1993), and its crystal structure is reported herein. In this compound (Fig. 1), the dihedral angle between the phenyl ring and diisopropyl phenyl ring is 73.18 (6)°. The diheral angle between thiourea group plane and the diisopropyl phenyl is 86.00 (5)°. Disorder was modeled for one S atom (S1) and two C atoms (C16 and C17) of isopropyl group over two sets of sites with an occupancy ratio of 0.742 (4):0.258 (4). All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Zhang et al., 2010). In the crystal structure (Fig. 2), N2–H2N···S1 hydrogen bonds link adjacent molecules to form R22(8) inversion dimers (Bernstein et al., 1995), packed into chains along the b axis direction.

Related literature top

For information on the toxicity and insecticidal properties of the title compound, see: Ishaaya et al. (1993). For a related structure, see: Zhang et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

During refinement, one S1 atom and two C16 and C17 atoms of the isopropyl group were found to be disordered and were refined over two sites. The corresponding site-occupation factors were refined so that their sum was unity [0.742 (4) and 0.258 (4)]. All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for amine N—H, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H, d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for CH3 groups, and d(C—H) = 1.00 Å, Uiso = 1.2Ueq(C) for Csp3—H.

Structure description top

Diafenthiuron (systematic name: 1 - t-butyl-3-(2,6-diisopropyl-4-phenoxyphenyl)thiourea), is a type of thiourea insecticide which acts specifically on phytophagous mites, whiteflies and aphids (Ishaaya et al., 1993), and its crystal structure is reported herein. In this compound (Fig. 1), the dihedral angle between the phenyl ring and diisopropyl phenyl ring is 73.18 (6)°. The diheral angle between thiourea group plane and the diisopropyl phenyl is 86.00 (5)°. Disorder was modeled for one S atom (S1) and two C atoms (C16 and C17) of isopropyl group over two sets of sites with an occupancy ratio of 0.742 (4):0.258 (4). All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Zhang et al., 2010). In the crystal structure (Fig. 2), N2–H2N···S1 hydrogen bonds link adjacent molecules to form R22(8) inversion dimers (Bernstein et al., 1995), packed into chains along the b axis direction.

For information on the toxicity and insecticidal properties of the title compound, see: Ishaaya et al. (1993). For a related structure, see: Zhang et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. Only atoms of the major disorder components are shown.
[Figure 2] Fig. 2. Crystal packing of the title compound with N—H···S hydrogen bonds shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity. Only atoms of the major disorder components are shown.
1-tert-Butyl-3-(2,6-diisopropyl-4-phenoxyphenyl)thiourea top
Crystal data top
C23H32N2OSF(000) = 832
Mr = 384.57Dx = 1.113 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9944 reflections
a = 12.8656 (2) Åθ = 2.6–26.5°
b = 17.9807 (3) ŵ = 0.16 mm1
c = 10.1671 (2) ÅT = 173 K
β = 102.655 (1)°Block, colourless
V = 2294.84 (7) Å30.50 × 0.30 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5279 independent reflections
Radiation source: fine-focus sealed tube4117 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.927, Tmax = 0.971k = 2322
39926 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.7379P]
where P = (Fo2 + 2Fc2)/3
5279 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.25 e Å3
19 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H32N2OSV = 2294.84 (7) Å3
Mr = 384.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8656 (2) ŵ = 0.16 mm1
b = 17.9807 (3) ÅT = 173 K
c = 10.1671 (2) Å0.50 × 0.30 × 0.19 mm
β = 102.655 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5279 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4117 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.971Rint = 0.034
39926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04519 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
5279 reflectionsΔρmin = 0.23 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.56002 (13)1.08803 (6)0.37193 (18)0.0552 (3)0.742 (4)
S1'0.5179 (4)1.0709 (2)0.3222 (4)0.0580 (10)0.258 (4)
O10.85776 (9)0.69041 (6)0.51145 (12)0.0536 (3)
N10.69688 (10)1.00011 (7)0.27909 (12)0.0403 (3)
H1N0.73180.95770.28970.048*
N20.61785 (9)0.95071 (6)0.43823 (12)0.0369 (3)
H2N0.56800.95320.48510.044*
C10.72543 (12)1.05027 (8)0.17740 (15)0.0419 (3)
C20.80932 (13)1.00766 (9)0.12308 (17)0.0482 (4)
H2A0.86900.99510.19760.072*
H2B0.83501.03860.05750.072*
H2C0.77790.96190.07920.072*
C30.62948 (15)1.06426 (14)0.0633 (2)0.0745 (6)
H3A0.60291.01680.02180.112*
H3B0.65031.09630.00450.112*
H3C0.57341.08870.09890.112*
C40.77343 (18)1.12213 (10)0.2428 (2)0.0714 (6)
H4A0.71951.14940.27810.107*
H4B0.79771.15270.17570.107*
H4C0.83401.11050.31680.107*
C50.62684 (12)1.00853 (8)0.35760 (15)0.0426 (4)
C60.68322 (10)0.88509 (7)0.45404 (13)0.0315 (3)
C70.65135 (10)0.82379 (7)0.37036 (13)0.0328 (3)
C80.71330 (11)0.75966 (8)0.39362 (14)0.0358 (3)
H80.69360.71720.33820.043*
C90.80322 (11)0.75739 (7)0.49667 (15)0.0362 (3)
C100.83576 (11)0.81891 (7)0.57626 (15)0.0364 (3)
H100.89880.81680.64520.044*
C110.77584 (11)0.88429 (7)0.55526 (14)0.0344 (3)
C120.55233 (12)0.82694 (9)0.25731 (15)0.0431 (4)
H120.53280.88050.24040.052*
C130.45888 (14)0.78824 (13)0.2968 (2)0.0728 (6)
H13A0.47680.73590.31740.109*
H13B0.39630.79120.22210.109*
H13C0.44320.81250.37650.109*
C140.57182 (19)0.79454 (14)0.12726 (19)0.0823 (7)
H14A0.63190.82030.10250.123*
H14B0.50790.80090.05540.123*
H14C0.58820.74140.13980.123*
C150.81007 (14)0.95275 (8)0.64085 (18)0.0516 (4)
H15A0.79000.99760.58260.062*0.742 (4)
H15B0.75560.99320.62080.062*0.258 (4)
C160.7452 (3)0.95541 (14)0.7595 (2)0.0611 (8)0.742 (4)
H16A0.76840.91440.82250.092*0.742 (4)
H16B0.66880.95060.72050.092*0.742 (4)
H16C0.75901.00290.80760.092*0.742 (4)
C170.9244 (2)0.95782 (14)0.7033 (4)0.0769 (12)0.742 (4)
H17A0.93891.00510.75190.115*0.742 (4)
H17B0.96580.95530.63320.115*0.742 (4)
H17C0.94470.91650.76650.115*0.742 (4)
C16'0.8471 (10)0.9434 (5)0.7755 (9)0.090 (3)0.258 (4)
H16D0.90830.90960.79120.136*0.258 (4)
H16E0.79060.92220.81490.136*0.258 (4)
H16F0.86900.99160.81740.136*0.258 (4)
C17'0.9296 (6)0.9760 (4)0.5818 (9)0.062 (2)0.258 (4)
H17D0.96061.02190.62540.093*0.258 (4)
H17E0.91140.98300.48390.093*0.258 (4)
H17F0.98140.93540.60430.093*0.258 (4)
C180.95008 (11)0.68370 (7)0.61207 (16)0.0391 (3)
C190.94465 (13)0.67609 (9)0.74495 (17)0.0478 (4)
H190.87780.67740.77020.057*
C201.03768 (15)0.66652 (10)0.84113 (18)0.0566 (4)
H201.03490.66150.93330.068*
C211.13450 (14)0.66421 (9)0.8046 (2)0.0599 (5)
H211.19830.65810.87130.072*
C221.13828 (13)0.67082 (10)0.6715 (2)0.0610 (5)
H221.20500.66870.64600.073*
C231.04608 (13)0.68058 (9)0.57400 (18)0.0494 (4)
H231.04900.68510.48180.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0692 (7)0.0346 (4)0.0751 (8)0.0234 (4)0.0446 (6)0.0193 (4)
S1'0.074 (2)0.0464 (16)0.0643 (19)0.0307 (14)0.0377 (16)0.0220 (13)
O10.0517 (6)0.0351 (6)0.0629 (7)0.0185 (5)0.0116 (5)0.0140 (5)
N10.0508 (7)0.0319 (6)0.0442 (7)0.0112 (5)0.0236 (6)0.0083 (5)
N20.0453 (6)0.0309 (6)0.0405 (7)0.0131 (5)0.0223 (5)0.0078 (5)
C10.0491 (8)0.0382 (8)0.0434 (8)0.0027 (6)0.0212 (7)0.0101 (6)
C20.0540 (9)0.0492 (9)0.0481 (9)0.0023 (7)0.0256 (8)0.0016 (7)
C30.0602 (11)0.1049 (17)0.0611 (12)0.0191 (11)0.0191 (10)0.0378 (12)
C40.0924 (14)0.0408 (10)0.0954 (15)0.0085 (9)0.0518 (13)0.0068 (10)
C50.0529 (8)0.0347 (7)0.0465 (8)0.0136 (6)0.0244 (7)0.0094 (6)
C60.0362 (7)0.0275 (6)0.0344 (7)0.0069 (5)0.0155 (6)0.0044 (5)
C70.0336 (6)0.0339 (7)0.0327 (7)0.0048 (5)0.0109 (6)0.0033 (6)
C80.0388 (7)0.0316 (7)0.0365 (7)0.0035 (5)0.0069 (6)0.0048 (6)
C90.0371 (7)0.0282 (7)0.0433 (8)0.0073 (5)0.0087 (6)0.0024 (6)
C100.0355 (7)0.0296 (7)0.0420 (8)0.0021 (5)0.0040 (6)0.0006 (6)
C110.0398 (7)0.0260 (6)0.0386 (7)0.0003 (5)0.0113 (6)0.0001 (6)
C120.0435 (8)0.0433 (8)0.0394 (8)0.0100 (6)0.0025 (6)0.0031 (7)
C130.0411 (9)0.0935 (16)0.0742 (14)0.0062 (9)0.0082 (9)0.0153 (12)
C140.0935 (15)0.1036 (17)0.0394 (10)0.0422 (13)0.0080 (10)0.0099 (11)
C150.0663 (10)0.0259 (7)0.0555 (10)0.0003 (7)0.0021 (8)0.0046 (7)
C160.100 (2)0.0433 (13)0.0420 (13)0.0090 (13)0.0198 (14)0.0127 (10)
C170.0589 (15)0.0409 (14)0.118 (3)0.0077 (11)0.0098 (17)0.0191 (16)
C16'0.162 (10)0.055 (5)0.056 (5)0.022 (6)0.029 (6)0.020 (4)
C17'0.061 (4)0.047 (4)0.075 (5)0.018 (3)0.006 (4)0.019 (4)
C180.0390 (7)0.0250 (6)0.0501 (9)0.0080 (5)0.0025 (6)0.0045 (6)
C190.0459 (8)0.0450 (9)0.0539 (10)0.0050 (7)0.0140 (7)0.0062 (7)
C200.0714 (12)0.0469 (10)0.0464 (10)0.0068 (8)0.0018 (9)0.0007 (8)
C210.0484 (9)0.0441 (9)0.0749 (13)0.0078 (7)0.0133 (9)0.0070 (9)
C220.0383 (8)0.0556 (11)0.0893 (15)0.0021 (7)0.0145 (9)0.0087 (10)
C230.0524 (9)0.0428 (9)0.0558 (10)0.0033 (7)0.0176 (8)0.0010 (7)
Geometric parameters (Å, º) top
S1—C51.6906 (17)C13—H13A0.9800
S1'—C51.769 (3)C13—H13B0.9800
O1—C91.3853 (16)C13—H13C0.9800
O1—C181.3927 (17)C14—H14A0.9800
N1—C51.3370 (18)C14—H14B0.9800
N1—C11.4776 (18)C14—H14C0.9800
N1—H1N0.8800C15—C16'1.357 (9)
N2—C51.3446 (18)C15—C171.472 (3)
N2—C61.4373 (16)C15—C161.610 (3)
N2—H2N0.8800C15—C17'1.818 (8)
C1—C31.519 (2)C15—H15A1.0000
C1—C41.521 (2)C15—H15B1.0000
C1—C21.523 (2)C16—H16A0.9800
C2—H2A0.9800C16—H16B0.9800
C2—H2B0.9800C16—H16C0.9800
C2—H2C0.9800C17—H17A0.9800
C3—H3A0.9800C17—H17B0.9800
C3—H3B0.9800C17—H17C0.9800
C3—H3C0.9800C16'—H16D0.9800
C4—H4A0.9800C16'—H16E0.9800
C4—H4B0.9800C16'—H16F0.9800
C4—H4C0.9800C17'—H17D0.9800
C6—C111.3935 (19)C17'—H17E0.9800
C6—C71.3979 (19)C17'—H17F0.9800
C7—C81.3923 (18)C18—C231.374 (2)
C7—C121.5184 (19)C18—C191.375 (2)
C8—C91.3809 (19)C19—C201.380 (2)
C8—H80.9500C19—H190.9500
C9—C101.3802 (19)C20—C211.376 (3)
C10—C111.3963 (18)C20—H200.9500
C10—H100.9500C21—C221.370 (3)
C11—C151.516 (2)C21—H210.9500
C12—C141.515 (2)C22—C231.380 (2)
C12—C131.518 (2)C22—H220.9500
C12—H121.0000C23—H230.9500
C9—O1—C18119.03 (11)H13A—C13—H13C109.5
C5—N1—C1130.69 (12)H13B—C13—H13C109.5
C5—N1—H1N114.7C12—C14—H14A109.5
C1—N1—H1N114.7C12—C14—H14B109.5
C5—N2—C6125.21 (11)H14A—C14—H14B109.5
C5—N2—H2N117.4C12—C14—H14C109.5
C6—N2—H2N117.4H14A—C14—H14C109.5
N1—C1—C3110.53 (13)H14B—C14—H14C109.5
N1—C1—C4110.60 (14)C16'—C15—C1758.4 (5)
C3—C1—C4112.18 (16)C16'—C15—C11118.1 (4)
N1—C1—C2104.55 (12)C17—C15—C11115.80 (16)
C3—C1—C2109.17 (14)C16'—C15—C1651.2 (5)
C4—C1—C2109.51 (14)C17—C15—C16107.9 (2)
C1—C2—H2A109.5C11—C15—C16108.72 (14)
C1—C2—H2B109.5C16'—C15—C17'103.1 (5)
H2A—C2—H2B109.5C17—C15—C17'44.8 (3)
C1—C2—H2C109.5C11—C15—C17'99.0 (3)
H2A—C2—H2C109.5C16—C15—C17'148.8 (3)
H2B—C2—H2C109.5C16'—C15—H15A133.2
C1—C3—H3A109.5C17—C15—H15A108.1
C1—C3—H3B109.5C11—C15—H15A108.1
H3A—C3—H3B109.5C16—C15—H15A108.1
C1—C3—H3C109.5C17'—C15—H15A75.4
H3A—C3—H3C109.5C16'—C15—H15B111.8
H3B—C3—H3C109.5C17—C15—H15B129.2
C1—C4—H4A109.5C11—C15—H15B111.8
C1—C4—H4B109.5C16—C15—H15B71.1
H4A—C4—H4B109.5C17'—C15—H15B111.8
C1—C4—H4C109.5H15A—C15—H15B38.1
H4A—C4—H4C109.5C15—C16—H16A109.5
H4B—C4—H4C109.5C15—C16—H16B109.5
N1—C5—N2115.83 (12)C15—C16—H16C109.5
N1—C5—S1124.69 (11)C15—C17—H17A109.5
N2—C5—S1119.21 (11)C15—C17—H17B109.5
N1—C5—S1'123.91 (15)C15—C17—H17C109.5
N2—C5—S1'116.37 (16)C15—C16'—H16D109.5
S1—C5—S1'24.00 (14)C15—C16'—H16E109.5
C11—C6—C7122.05 (11)H16D—C16'—H16E109.5
C11—C6—N2118.41 (12)C15—C16'—H16F109.5
C7—C6—N2119.52 (12)H16D—C16'—H16F109.5
C8—C7—C6117.97 (12)H16E—C16'—H16F109.5
C8—C7—C12120.90 (12)C15—C17'—H17D109.5
C6—C7—C12121.13 (12)C15—C17'—H17E109.5
C9—C8—C7120.44 (13)H17D—C17'—H17E109.5
C9—C8—H8119.8C15—C17'—H17F109.5
C7—C8—H8119.8H17D—C17'—H17F109.5
C10—C9—C8121.15 (12)H17E—C17'—H17F109.5
C10—C9—O1123.49 (12)C23—C18—C19121.01 (14)
C8—C9—O1115.35 (12)C23—C18—O1118.12 (15)
C9—C10—C11119.91 (13)C19—C18—O1120.77 (14)
C9—C10—H10120.0C18—C19—C20119.05 (16)
C11—C10—H10120.0C18—C19—H19120.5
C6—C11—C10118.41 (12)C20—C19—H19120.5
C6—C11—C15120.62 (12)C21—C20—C19120.54 (17)
C10—C11—C15120.97 (13)C21—C20—H20119.7
C14—C12—C13110.29 (18)C19—C20—H20119.7
C14—C12—C7111.99 (13)C22—C21—C20119.62 (16)
C13—C12—C7111.38 (13)C22—C21—H21120.2
C14—C12—H12107.7C20—C21—H21120.2
C13—C12—H12107.7C21—C22—C23120.63 (17)
C7—C12—H12107.7C21—C22—H22119.7
C12—C13—H13A109.5C23—C22—H22119.7
C12—C13—H13B109.5C18—C23—C22119.15 (17)
H13A—C13—H13B109.5C18—C23—H23120.4
C12—C13—H13C109.5C22—C23—H23120.4
C5—N1—C1—C362.1 (2)N2—C6—C11—C153.65 (19)
C5—N1—C1—C462.8 (2)C9—C10—C11—C60.6 (2)
C5—N1—C1—C2179.42 (16)C9—C10—C11—C15179.73 (14)
C1—N1—C5—N2178.36 (15)C8—C7—C12—C1445.2 (2)
C1—N1—C5—S17.7 (3)C6—C7—C12—C14134.69 (17)
C1—N1—C5—S1'21.4 (3)C8—C7—C12—C1378.84 (19)
C6—N2—C5—N15.7 (2)C6—C7—C12—C13101.27 (17)
C6—N2—C5—S1168.61 (14)C6—C11—C15—C16'137.5 (6)
C6—N2—C5—S1'164.4 (2)C10—C11—C15—C16'42.1 (6)
C5—N2—C6—C1190.80 (18)C6—C11—C15—C17156.1 (2)
C5—N2—C6—C790.60 (18)C10—C11—C15—C1724.3 (3)
C11—C6—C7—C82.2 (2)C6—C11—C15—C1682.22 (19)
N2—C6—C7—C8176.32 (12)C10—C11—C15—C1697.40 (19)
C11—C6—C7—C12177.67 (13)C6—C11—C15—C17'112.3 (3)
N2—C6—C7—C123.78 (19)C10—C11—C15—C17'68.1 (3)
C6—C7—C8—C90.1 (2)C9—O1—C18—C23108.24 (16)
C12—C7—C8—C9179.97 (13)C9—O1—C18—C1975.44 (18)
C7—C8—C9—C102.0 (2)C23—C18—C19—C201.2 (2)
C7—C8—C9—O1179.17 (13)O1—C18—C19—C20177.37 (14)
C18—O1—C9—C100.5 (2)C18—C19—C20—C210.3 (2)
C18—O1—C9—C8179.27 (14)C19—C20—C21—C220.6 (3)
C8—C9—C10—C111.6 (2)C20—C21—C22—C230.7 (3)
O1—C9—C10—C11179.64 (14)C19—C18—C23—C221.0 (2)
C7—C6—C11—C102.6 (2)O1—C18—C23—C22177.33 (14)
N2—C6—C11—C10175.98 (12)C21—C22—C23—C180.1 (3)
C7—C6—C11—C15177.79 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.882.533.3739 (15)160
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.882.533.3739 (15)160
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1B3003337).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIshaaya, I., Mendelson, Z. & Horowitz, A. R. (1993). Phytoparasitica, 21, 199–204.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Huang, J., Song, J., Xu, K. & Ban, Q. (2010). Chin. J. Chem. 28, 1902–1906.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds