organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(3S,3aS,5R,8S,8aS)-3,8-Di­methyl­hexa­hydro-1H,4H-3a,8a-ep­­oxy­azulen-5-yl]propan-2-ol

aSchool of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 June 2014; accepted 11 June 2014; online 14 June 2014)

Four independent mol­ecules (AD) comprise the asymmetric unit of the title compound, C15H26O2, which differ only in the relative orientations of the terminal –C(Me)2OH groups [e.g. the range of Cmethyl­ene—Cmethine—Cquaternary—Ohy­droxy torsion angles is 52.7 (7)–57.1 (6)°, where the Cmethyl­ene atom is bound to an epoxide C atom]. The five-membered rings adopt envelope conformations, with the methyl­ene C atom adjacent to the methine C atom being the flap atom in each case. In each mol­ecule, the conformation of the seven-membered ring is a half-chair, with the Cmethyl­ene—Cmethine bond, flanked by methyl­ene C atoms, being the back of the chair. Supra­molecular helical chains along the b axis are found in the crystal packing, sustained by hy­droxy–epoxide O—H⋯O hydrogen bonding. Mol­ecules of A self-associate into a chain as do those of D. A third independent chain comprising B and C mol­ecules is also formed. The studied crystal is a pseudo-merohedral twin (minor component ca 21%).

Related literature

For the preparation of the α- and β-epoxides of guaiol, see: Pesnelle (1966[Pesnelle, P. (1966). Recherches, 15, 34-40.]).

[Scheme 1]

Experimental

Crystal data
  • C15H26O2

  • Mr = 238.36

  • Monoclinic, P 21

  • a = 7.4461 (1) Å

  • b = 11.0289 (2) Å

  • c = 33.7892 (6) Å

  • β = 90.579 (2)°

  • V = 2774.71 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.57 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.666, Tmax = 1.000

  • 21600 measured reflections

  • 10038 independent reflections

  • 9883 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.102

  • wR(F2) = 0.278

  • S = 1.02

  • 10038 reflections

  • 618 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.99 2.804 (6) 162
O4—H4⋯O5ii 0.84 2.00 2.792 (7) 157
O6—H6⋯O3 0.84 1.99 2.821 (7) 171
O8—H8⋯O7iii 0.84 2.00 2.795 (7) 158
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) x, y-1, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+2].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

As has been reported previously (Pesnelle, 1966), the α and β-epoxides of guaiol have been prepared via the epoxidation of guaiol itself. In the present study suitable crystals for X-ray analysis of the minor product, β-ep­oxy guaiol (I), were isolated and the crystal structure is reported on herein.

Four independent molecules, AD, comprise the crystallographic asymmetric unit of (I) with the O1-containing molecule shown in Fig. 1. As seen from the overlay diagram, Fig. 2, the four molecules are virtually superimposable with minor conformational differences noted in the relative orientations of the terminal -C(Me)2OH group as seen, for example, in the values of the C11—C10—C13—O2 (molecule A) and C56—C55—C58—O8 (D) torsion angles of 57.1 (6) and 52.7 (7)°, respectively. In each case, the five-membered ring has an envelope conformation with the C3, C18, C33 and C48 atoms, i.e. the atom adjacent to the methine-C atom, being the flap atom. The seven-membered rings are best described as being based on a half-chair conformation. In this description, for molecule A, the C9 and C10 atoms lie 1.051 (11) and 1.297 (9) Å, respectively, out of the mean plane defined by the remaining five atoms, i.e. C5, C6, C8, C11 and C12 (r.m.s. deviation = 0.0514 Å). The corresponding values for molecule B are 1.063 (10), 1.309 (8) (r.m.s. deviation = 0.0564 Å); for molecule C 1.144 (12), 1.293 (9) (r.m.s. deviation = 0.0303 Å); and for molecule D 1.067 (10), 1.309 (9) (r.m.s. deviation = 0.0526 Å). Finally, the oxygen atoms lie to opposite sides of the molecule.

The most prominent feature of the crystal packing is the formation of hydroxyl-O—H···O(epoxide) hydrogen bonding, Table 1, that leads to helical supra­molecular chains along the b axis. Molecules of A self-associate as illustrated in Fig. 3; molecules of D associate similarly. By contrast, molecules of B and C associate to form a third chain.

Synthesis and crystallization top

A flask containing (-)-guaiol (4.01 g, 18 mmol) in di­chloro­methane (60 mL) was cooled to 273 K and peracetic acid in acetic acid (39%, 3.65 g, 18.7 mmol) was slowly added over 5 minutes. The mixture was stirred for an additional hour at 273 K and then washed with sodium bicarbonate (3 × 50 mL). The organic layer was dried over anhydrous MgSO4 and concentrated in vacuum and the residue purified by column chromatography (10:90, ether/hexane) to afford both the α and β-ep­oxy guaiols in a ratio of approximately 60:40. The minor β-isomer was recrystallised at 253 K from a small amount of ether hexane (10:90) to afford the title compound (1.43 g, 33%) as white crystals. M. pt: 323–326 K. Lit. (Pesnelle, 1966) M. pt: 317-319 K, Rf = 0.31 (50:50, EtOAc/hexane). Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

The H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation: O—H = 0.84 Å, C—H = 0.95 - 1.00 Å with Uiso(H) = 1.5Ueq(O and C-methyl) and = 1.2Ueq(C) for other H atoms. The studied crystal is a pseudo-merohedral twin [the fractional contribution of the minor component refined to 0.210 (3)], precluding the determination of the absolute structure. The latter was assigned based on the chemistry, i.e. the use of (-)-guaiol as reagent. The maximum and minimum residual electron density peaks of 0.69 and 0.45 eÅ-3, respectively, were located 1.02 Å and 0.76 Å from the O3 and C57 atoms, respectively.

Related literature top

For the preparation of the α- and β-epoxides of guaiol, see: Pesnelle (1966).

Structure description top

As has been reported previously (Pesnelle, 1966), the α and β-epoxides of guaiol have been prepared via the epoxidation of guaiol itself. In the present study suitable crystals for X-ray analysis of the minor product, β-ep­oxy guaiol (I), were isolated and the crystal structure is reported on herein.

Four independent molecules, AD, comprise the crystallographic asymmetric unit of (I) with the O1-containing molecule shown in Fig. 1. As seen from the overlay diagram, Fig. 2, the four molecules are virtually superimposable with minor conformational differences noted in the relative orientations of the terminal -C(Me)2OH group as seen, for example, in the values of the C11—C10—C13—O2 (molecule A) and C56—C55—C58—O8 (D) torsion angles of 57.1 (6) and 52.7 (7)°, respectively. In each case, the five-membered ring has an envelope conformation with the C3, C18, C33 and C48 atoms, i.e. the atom adjacent to the methine-C atom, being the flap atom. The seven-membered rings are best described as being based on a half-chair conformation. In this description, for molecule A, the C9 and C10 atoms lie 1.051 (11) and 1.297 (9) Å, respectively, out of the mean plane defined by the remaining five atoms, i.e. C5, C6, C8, C11 and C12 (r.m.s. deviation = 0.0514 Å). The corresponding values for molecule B are 1.063 (10), 1.309 (8) (r.m.s. deviation = 0.0564 Å); for molecule C 1.144 (12), 1.293 (9) (r.m.s. deviation = 0.0303 Å); and for molecule D 1.067 (10), 1.309 (9) (r.m.s. deviation = 0.0526 Å). Finally, the oxygen atoms lie to opposite sides of the molecule.

The most prominent feature of the crystal packing is the formation of hydroxyl-O—H···O(epoxide) hydrogen bonding, Table 1, that leads to helical supra­molecular chains along the b axis. Molecules of A self-associate as illustrated in Fig. 3; molecules of D associate similarly. By contrast, molecules of B and C associate to form a third chain.

For the preparation of the α- and β-epoxides of guaiol, see: Pesnelle (1966).

Synthesis and crystallization top

A flask containing (-)-guaiol (4.01 g, 18 mmol) in di­chloro­methane (60 mL) was cooled to 273 K and peracetic acid in acetic acid (39%, 3.65 g, 18.7 mmol) was slowly added over 5 minutes. The mixture was stirred for an additional hour at 273 K and then washed with sodium bicarbonate (3 × 50 mL). The organic layer was dried over anhydrous MgSO4 and concentrated in vacuum and the residue purified by column chromatography (10:90, ether/hexane) to afford both the α and β-ep­oxy guaiols in a ratio of approximately 60:40. The minor β-isomer was recrystallised at 253 K from a small amount of ether hexane (10:90) to afford the title compound (1.43 g, 33%) as white crystals. M. pt: 323–326 K. Lit. (Pesnelle, 1966) M. pt: 317-319 K, Rf = 0.31 (50:50, EtOAc/hexane). Spectroscopic data for the title compound are available in the archived CIF.

Refinement details top

The H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation: O—H = 0.84 Å, C—H = 0.95 - 1.00 Å with Uiso(H) = 1.5Ueq(O and C-methyl) and = 1.2Ueq(C) for other H atoms. The studied crystal is a pseudo-merohedral twin [the fractional contribution of the minor component refined to 0.210 (3)], precluding the determination of the absolute structure. The latter was assigned based on the chemistry, i.e. the use of (-)-guaiol as reagent. The maximum and minimum residual electron density peaks of 0.69 and 0.45 eÅ-3, respectively, were located 1.02 Å and 0.76 Å from the O3 and C57 atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the independent molecule A in (I), with atom labelling. The displacement ellipsoids are drawn at the 50% probability level. The other molecules are virtually identical and have sequential atom labelling.
[Figure 2] Fig. 2. An overlay diagram of the four independent molecules (A-D) comprising the asymmetric unit in (I). The O1-, O3-, O5- and O7- containing molecules are coloured red, green, blue and pink, respectively. The molecules have been overlapped so that the epoxide rings are coincident.
[Figure 3] Fig. 3. A view of the helical supramolecular chain along the b axis for the O1-containing molecule in (I). The O—H···O interactions are shown as orange dashed lines (see Table 1 for details).
2-[(3S,3aS,5R,8S,8aS)-3,8-Dimethylhexahydro-1H,4H-3a,8a-epoxyazulen-5-yl]propan-2-ol top
Crystal data top
C15H26O2F(000) = 1056
Mr = 238.36Dx = 1.141 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 16057 reflections
a = 7.4461 (1) Åθ = 2.2–74.2°
b = 11.0289 (2) ŵ = 0.57 mm1
c = 33.7892 (6) ÅT = 100 K
β = 90.579 (2)°Block, colourless
V = 2774.71 (8) Å30.35 × 0.30 × 0.25 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
10038 independent reflections
Radiation source: SuperNova (Cu) X-ray Source9883 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 2.6°
ω scanh = 86
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1313
Tmin = 0.666, Tmax = 1.000l = 4241
21600 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.102Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.278H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1597P)2 + 8.6322P]
where P = (Fo2 + 2Fc2)/3
10038 reflections(Δ/σ)max = 0.001
618 parametersΔρmax = 0.69 e Å3
1 restraintΔρmin = 0.45 e Å3
Crystal data top
C15H26O2V = 2774.71 (8) Å3
Mr = 238.36Z = 8
Monoclinic, P21Cu Kα radiation
a = 7.4461 (1) ŵ = 0.57 mm1
b = 11.0289 (2) ÅT = 100 K
c = 33.7892 (6) Å0.35 × 0.30 × 0.25 mm
β = 90.579 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
10038 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
9883 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 1.000Rint = 0.050
21600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1021 restraint
wR(F2) = 0.278H-atom parameters constrained
S = 1.02Δρmax = 0.69 e Å3
10038 reflectionsΔρmin = 0.45 e Å3
618 parameters
Special details top

Experimental. Specroscopic data for the title compound: 1H NMR (500 MHz, CDCl3) δ 2.08 (d, J = 15.0 Hz, 1H), 1.98 (dd, J = 10.0, 5.0 Hz, 1H), 1.98-1.89 (m, 2H), 1.70-1.63 (m, 1H), 1.62-1.44 (m, 4H), 1.37-1.31 (m, 2H), 1.27-1.23 (m, 1H), 1.17 (s, 3H), 1.13 (s, 3H), 1.04 (d, J= 7.2 Hz, 3H), 1.03 (d, J = 7.2, 3H), 0.98-0.92 (m, 1H). 13C NMR (300 MHz, CDCl3) δ 74.3, 72.9, 72.1, 45.8, 37.0, 34.1, 30.6, 27.9, 27.4, 27.3, 27.2, 25.8, 24.8, 18.4, 13.3. MS m/z 238 (1.0), 220 (12), 205 (14), 187 (9), 177 (8), 165 (36), 156 (22), 147 (25), 138 (29), 125 (43), 123 (51), 109 (36), 95 (43), 81 (38), 67 (38), 59 (100). All other physical and spectral data were identical to those previously reported by Pesnelle (1966).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1637 (6)0.0019 (4)0.55216 (14)0.0264 (9)
O20.2032 (6)0.2494 (4)0.44318 (14)0.0263 (10)
H20.16860.32140.44610.039*
O30.3719 (6)0.1231 (4)0.80228 (12)0.0235 (9)
O40.7098 (6)0.1582 (4)0.70230 (15)0.0308 (11)
H40.69260.23300.69950.046*
O50.7594 (6)0.5923 (4)0.69356 (13)0.0244 (9)
O60.3269 (6)0.3766 (4)0.79755 (15)0.0270 (10)
H60.35300.30280.79950.040*
O70.7675 (6)0.5159 (4)0.94286 (12)0.0220 (9)
O81.1765 (8)0.7721 (5)1.03806 (14)0.0347 (12)
H81.16310.84571.04370.052*
C10.1515 (9)0.1911 (7)0.57239 (19)0.0291 (14)
H1A0.23720.18850.55020.044*
H1B0.18120.25890.58990.044*
H1C0.15780.11490.58720.044*
C20.0361 (10)0.2078 (6)0.55675 (17)0.0265 (14)
H2A0.03850.28520.54140.032*
C30.1834 (10)0.2147 (6)0.58879 (18)0.0304 (15)
H3A0.19520.29830.59910.036*
H3B0.15600.15960.61110.036*
C40.3554 (9)0.1752 (6)0.5680 (2)0.0279 (13)
H4A0.41680.24580.55610.033*
H4B0.43890.13510.58680.033*
C50.2935 (10)0.0868 (5)0.53601 (19)0.0259 (13)
C60.4287 (8)0.0396 (7)0.5062 (2)0.0276 (14)
H6A0.50770.10890.49850.033*
C70.5472 (9)0.0569 (7)0.5254 (2)0.0329 (15)
H7A0.60400.02370.54940.049*
H7B0.64020.08200.50680.049*
H7C0.47360.12720.53250.049*
C80.3397 (9)0.0099 (7)0.4681 (2)0.0291 (14)
H8A0.43340.05160.45260.035*
H8B0.25090.07210.47590.035*
C90.2454 (8)0.0797 (7)0.44084 (19)0.0280 (14)
H9A0.20580.03520.41680.034*
H9B0.33510.14040.43240.034*
C100.0818 (8)0.1488 (5)0.45703 (17)0.0189 (11)
H100.12750.22790.46750.023*
C110.0019 (8)0.0808 (6)0.49218 (17)0.0200 (11)
H11A0.12840.10650.49520.024*
H11B0.00070.00740.48690.024*
C120.1011 (9)0.1067 (5)0.52990 (18)0.0233 (13)
C130.0622 (8)0.1791 (6)0.42525 (18)0.0219 (12)
C140.1557 (9)0.0671 (6)0.4092 (2)0.0296 (14)
H14A0.24490.09110.38920.044*
H14B0.21560.02460.43080.044*
H14C0.06690.01330.39710.044*
C150.0192 (10)0.2517 (7)0.3914 (2)0.0310 (14)
H15A0.07420.26960.37150.046*
H15B0.11500.20430.37910.046*
H15C0.06890.32780.40170.046*
C160.6953 (9)0.0599 (7)0.82496 (18)0.0275 (13)
H16A0.77700.06270.80240.041*
H16B0.72950.12260.84420.041*
H16C0.70280.02000.83760.041*
C170.5062 (9)0.0819 (5)0.81076 (17)0.0225 (12)
H170.50190.16260.79730.027*
C180.3648 (9)0.0814 (6)0.84396 (18)0.0254 (13)
H18A0.39720.02180.86480.030*
H18B0.35450.16260.85620.030*
C190.1871 (8)0.0451 (6)0.82303 (17)0.0227 (12)
H19A0.12120.11790.81380.027*
H19B0.10920.00110.84120.027*
C200.2424 (9)0.0325 (5)0.78846 (17)0.0220 (12)
C210.1027 (8)0.0731 (5)0.75806 (17)0.0201 (12)
H210.02380.00190.75210.024*
C220.0153 (8)0.1720 (6)0.7756 (2)0.0247 (13)
H22A0.10430.19810.75580.037*
H22B0.05960.24120.78340.037*
H22C0.07710.14020.79890.037*
C230.1825 (9)0.1157 (6)0.71879 (17)0.0258 (13)
H23A0.27110.18030.72470.031*
H23B0.08470.15300.70290.031*
C240.2758 (9)0.0190 (6)0.69273 (17)0.0247 (13)
H24A0.18520.04270.68520.030*
H24B0.31530.05900.66810.030*
C250.4376 (7)0.0466 (5)0.71093 (16)0.0168 (11)
H250.38910.12010.72440.020*
C260.5282 (8)0.0300 (5)0.74327 (16)0.0185 (11)
H26A0.65560.00560.74610.022*
H26B0.52460.11660.73560.022*
C270.4349 (8)0.0134 (5)0.78202 (17)0.0193 (11)
C280.5770 (8)0.0931 (6)0.68052 (18)0.0231 (13)
C290.6720 (11)0.0105 (7)0.66018 (18)0.0324 (15)
H29A0.75850.02200.64130.049*
H29B0.73550.05980.68000.049*
H29C0.58370.06080.64610.049*
C300.4856 (10)0.1748 (8)0.6498 (2)0.0350 (16)
H30A0.57480.20320.63080.052*
H30B0.39170.12900.63580.052*
H30C0.43170.24470.66310.052*
C310.4955 (11)0.3829 (7)0.6660 (2)0.0336 (15)
H31A0.38820.39080.68230.050*
H31B0.48790.30790.65050.050*
H31C0.50350.45250.64800.050*
C320.6622 (9)0.3790 (6)0.69258 (18)0.0235 (12)
H320.65320.30730.71060.028*
C330.8374 (9)0.3682 (6)0.66847 (16)0.0240 (13)
H33A0.86780.28200.66380.029*
H33B0.82400.40940.64260.029*
C340.9828 (9)0.4295 (6)0.69350 (17)0.0236 (12)
H34A1.04600.36970.71050.028*
H34B1.07170.47060.67650.028*
C350.8810 (9)0.5208 (5)0.71837 (17)0.0236 (13)
C360.9850 (8)0.5873 (6)0.75028 (18)0.0226 (12)
H361.06950.52710.76240.027*
C371.1002 (10)0.6864 (6)0.7322 (2)0.0310 (15)
H37A1.17340.65190.71110.046*
H37B1.17890.72110.75270.046*
H37C1.02250.75000.72130.046*
C380.8717 (9)0.6376 (6)0.78383 (19)0.0267 (14)
H38A0.78000.69270.77240.032*
H38B0.95020.68660.80140.032*
C390.7762 (9)0.5417 (8)0.8090 (2)0.0359 (17)
H39A0.72720.58300.83250.043*
H39B0.86800.48350.81850.043*
C400.6210 (8)0.4676 (6)0.78949 (17)0.0225 (12)
H400.67100.38550.78350.027*
C410.5595 (8)0.5223 (6)0.74944 (18)0.0249 (13)
H41A0.43980.48970.74210.030*
H41B0.54920.61140.75190.030*
C420.6929 (9)0.4916 (5)0.71739 (17)0.0222 (12)
C430.4597 (8)0.4474 (6)0.81784 (19)0.0229 (12)
C440.5221 (10)0.3784 (7)0.8548 (2)0.0311 (14)
H44A0.42000.36610.87240.047*
H44B0.61530.42530.86860.047*
H44C0.57100.29950.84700.047*
C450.3653 (10)0.5643 (6)0.8287 (2)0.0292 (14)
H45A0.26560.54640.84650.044*
H45B0.31870.60320.80460.044*
H45C0.45050.61880.84200.044*
C461.0319 (10)0.7138 (7)0.9105 (2)0.0340 (16)
H46A1.14180.70460.92640.051*
H46B1.04170.78610.89380.051*
H46C1.01550.64210.89370.051*
C470.8719 (9)0.7270 (6)0.93767 (16)0.0238 (13)
H470.88930.80090.95440.029*
C480.6900 (8)0.7390 (6)0.91433 (17)0.0235 (13)
H48A0.66040.82540.90990.028*
H48B0.69860.69840.88830.028*
C490.5451 (9)0.6782 (6)0.93949 (18)0.0241 (13)
H49A0.47960.73890.95540.029*
H49B0.45800.63360.92260.029*
C500.6499 (10)0.5920 (6)0.96589 (16)0.0243 (13)
C510.5465 (8)0.5341 (6)0.99949 (18)0.0209 (12)
H510.46820.59861.01090.025*
C520.4218 (9)0.4353 (7)0.98339 (19)0.0288 (14)
H52A0.34740.46860.96190.043*
H52B0.34450.40601.00460.043*
H52C0.49380.36780.97330.043*
C530.6616 (8)0.4845 (6)1.03340 (17)0.0234 (13)
H53A0.74820.42581.02230.028*
H53B0.58260.43911.05150.028*
C540.7671 (10)0.5783 (7)1.05779 (18)0.0291 (14)
H54A0.83140.53471.07930.035*
H54B0.67940.63301.07050.035*
C550.9050 (8)0.6576 (6)1.03592 (16)0.0202 (12)
H550.83990.73261.02740.024*
C560.9721 (8)0.5963 (6)0.99793 (16)0.0206 (12)
H56A1.09040.63010.99070.025*
H56B0.98630.50811.00240.025*
C570.8369 (8)0.6185 (5)0.96457 (16)0.0179 (11)
C581.0610 (10)0.6993 (6)1.06280 (17)0.0256 (14)
C590.9908 (12)0.7763 (7)1.09692 (19)0.0370 (18)
H59A1.09160.80191.11380.055*
H59B0.90630.72841.11260.055*
H59C0.92940.84801.08630.055*
C601.1761 (10)0.5952 (7)1.07805 (18)0.0312 (15)
H60A1.22010.54771.05560.047*
H60B1.10410.54311.09520.047*
H60C1.27840.62761.09310.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.029 (2)0.014 (2)0.036 (2)0.0009 (18)0.0010 (18)0.0051 (18)
O20.028 (2)0.012 (2)0.040 (2)0.0034 (17)0.0041 (19)0.0029 (18)
O30.028 (2)0.018 (2)0.024 (2)0.0006 (18)0.0006 (17)0.0035 (17)
O40.027 (2)0.021 (2)0.044 (3)0.0116 (19)0.008 (2)0.006 (2)
O50.029 (2)0.016 (2)0.028 (2)0.0012 (18)0.0015 (17)0.0042 (17)
O60.024 (2)0.013 (2)0.043 (2)0.0068 (18)0.0053 (19)0.0004 (19)
O70.026 (2)0.015 (2)0.026 (2)0.0014 (17)0.0038 (16)0.0038 (17)
O80.054 (3)0.023 (2)0.027 (2)0.018 (2)0.011 (2)0.0036 (19)
C10.030 (4)0.033 (4)0.024 (3)0.000 (3)0.000 (2)0.005 (3)
C20.043 (4)0.020 (3)0.016 (3)0.002 (3)0.001 (2)0.000 (2)
C30.048 (4)0.022 (3)0.021 (3)0.005 (3)0.008 (3)0.006 (2)
C40.028 (3)0.020 (3)0.036 (3)0.001 (3)0.009 (3)0.001 (3)
C50.041 (4)0.007 (3)0.030 (3)0.001 (3)0.003 (3)0.003 (2)
C60.016 (3)0.026 (3)0.041 (4)0.006 (3)0.001 (2)0.002 (3)
C70.022 (3)0.027 (4)0.050 (4)0.001 (3)0.000 (3)0.002 (3)
C80.014 (3)0.028 (3)0.045 (4)0.003 (2)0.003 (3)0.011 (3)
C90.016 (3)0.036 (4)0.032 (3)0.003 (3)0.004 (2)0.007 (3)
C100.015 (3)0.013 (3)0.028 (3)0.001 (2)0.001 (2)0.002 (2)
C110.014 (3)0.018 (3)0.028 (3)0.004 (2)0.004 (2)0.007 (2)
C120.034 (3)0.012 (3)0.024 (3)0.007 (2)0.004 (2)0.001 (2)
C130.015 (3)0.024 (3)0.027 (3)0.001 (2)0.002 (2)0.000 (2)
C140.027 (3)0.024 (3)0.038 (3)0.000 (3)0.003 (3)0.009 (3)
C150.029 (3)0.031 (4)0.033 (3)0.001 (3)0.003 (3)0.006 (3)
C160.032 (3)0.027 (3)0.024 (3)0.002 (3)0.003 (2)0.004 (2)
C170.034 (3)0.012 (3)0.021 (3)0.002 (2)0.005 (2)0.001 (2)
C180.033 (3)0.021 (3)0.022 (3)0.006 (3)0.001 (2)0.002 (2)
C190.023 (3)0.019 (3)0.026 (3)0.004 (2)0.004 (2)0.002 (2)
C200.038 (3)0.007 (3)0.021 (3)0.001 (2)0.003 (2)0.001 (2)
C210.019 (3)0.014 (3)0.028 (3)0.001 (2)0.002 (2)0.002 (2)
C220.009 (3)0.024 (3)0.041 (3)0.002 (2)0.005 (2)0.001 (3)
C230.029 (3)0.025 (3)0.024 (3)0.012 (3)0.002 (2)0.000 (2)
C240.031 (3)0.021 (3)0.022 (3)0.008 (3)0.004 (2)0.004 (2)
C250.012 (2)0.013 (3)0.026 (3)0.002 (2)0.001 (2)0.002 (2)
C260.022 (3)0.012 (3)0.021 (3)0.002 (2)0.000 (2)0.003 (2)
C270.025 (3)0.009 (3)0.024 (3)0.004 (2)0.004 (2)0.001 (2)
C280.017 (3)0.023 (3)0.029 (3)0.004 (2)0.001 (2)0.004 (2)
C290.050 (4)0.027 (4)0.020 (3)0.001 (3)0.008 (3)0.002 (2)
C300.034 (4)0.041 (4)0.031 (3)0.002 (3)0.003 (3)0.012 (3)
C310.042 (4)0.030 (4)0.029 (3)0.002 (3)0.005 (3)0.008 (3)
C320.028 (3)0.017 (3)0.026 (3)0.001 (3)0.002 (2)0.000 (2)
C330.040 (4)0.013 (3)0.019 (3)0.001 (3)0.005 (2)0.002 (2)
C340.034 (3)0.013 (3)0.023 (3)0.005 (2)0.001 (2)0.001 (2)
C350.041 (4)0.008 (3)0.022 (3)0.003 (2)0.003 (2)0.005 (2)
C360.023 (3)0.015 (3)0.030 (3)0.003 (2)0.002 (2)0.002 (2)
C370.037 (4)0.016 (3)0.039 (3)0.005 (3)0.001 (3)0.004 (3)
C380.022 (3)0.022 (3)0.036 (3)0.006 (2)0.003 (2)0.016 (3)
C390.025 (3)0.055 (5)0.028 (3)0.014 (3)0.000 (2)0.012 (3)
C400.018 (3)0.025 (3)0.025 (3)0.003 (2)0.001 (2)0.007 (2)
C410.019 (3)0.029 (3)0.026 (3)0.002 (3)0.001 (2)0.007 (3)
C420.035 (3)0.009 (3)0.022 (3)0.002 (2)0.003 (2)0.001 (2)
C430.021 (3)0.015 (3)0.033 (3)0.006 (2)0.004 (2)0.001 (2)
C440.034 (4)0.022 (3)0.038 (3)0.004 (3)0.000 (3)0.001 (3)
C450.031 (3)0.022 (3)0.034 (3)0.004 (3)0.003 (3)0.005 (3)
C460.035 (4)0.039 (4)0.027 (3)0.005 (3)0.008 (3)0.007 (3)
C470.040 (4)0.017 (3)0.014 (2)0.001 (3)0.003 (2)0.000 (2)
C480.027 (3)0.024 (3)0.019 (3)0.003 (3)0.000 (2)0.003 (2)
C490.024 (3)0.022 (3)0.026 (3)0.001 (3)0.001 (2)0.002 (2)
C500.044 (4)0.012 (3)0.017 (2)0.009 (3)0.000 (2)0.005 (2)
C510.019 (3)0.014 (3)0.030 (3)0.000 (2)0.002 (2)0.001 (2)
C520.029 (3)0.028 (4)0.030 (3)0.001 (3)0.001 (2)0.007 (3)
C530.021 (3)0.026 (3)0.023 (3)0.010 (2)0.004 (2)0.002 (2)
C540.038 (4)0.028 (3)0.021 (3)0.010 (3)0.004 (2)0.002 (3)
C550.023 (3)0.016 (3)0.021 (3)0.003 (2)0.002 (2)0.004 (2)
C560.024 (3)0.022 (3)0.016 (2)0.006 (2)0.001 (2)0.003 (2)
C570.026 (3)0.008 (2)0.019 (2)0.002 (2)0.001 (2)0.002 (2)
C580.038 (4)0.019 (3)0.020 (3)0.015 (3)0.002 (2)0.002 (2)
C590.057 (5)0.031 (4)0.024 (3)0.021 (3)0.004 (3)0.008 (3)
C600.032 (3)0.038 (4)0.024 (3)0.002 (3)0.003 (2)0.006 (3)
Geometric parameters (Å, º) top
O1—C121.454 (8)C28—C291.513 (9)
O1—C51.456 (8)C28—C301.529 (9)
O2—C131.443 (7)C29—H29A0.9800
O2—H20.8400C29—H29B0.9800
O3—C201.462 (7)C29—H29C0.9800
O3—C271.469 (7)C30—H30A0.9800
O4—C281.421 (7)C30—H30B0.9800
O4—H40.8400C30—H30C0.9800
O5—C351.460 (7)C31—C321.526 (9)
O5—C421.462 (7)C31—H31A0.9800
O6—C431.429 (7)C31—H31B0.9800
O6—H60.8400C31—H31C0.9800
O7—C571.442 (7)C32—C421.514 (8)
O7—C501.446 (7)C32—C331.550 (9)
O8—C581.448 (7)C32—H321.0000
O8—H80.8400C33—C341.525 (9)
C1—C21.509 (10)C33—H33A0.9900
C1—H1A0.9800C33—H33B0.9900
C1—H1B0.9800C34—C351.519 (8)
C1—H1C0.9800C34—H34A0.9900
C2—C121.520 (9)C34—H34B0.9900
C2—C31.535 (9)C35—C421.437 (10)
C2—H2A1.0000C35—C361.511 (8)
C3—C41.531 (10)C36—C371.521 (9)
C3—H3A0.9900C36—C381.525 (8)
C3—H3B0.9900C36—H361.0000
C4—C51.523 (9)C37—H37A0.9800
C4—H4A0.9900C37—H37B0.9800
C4—H4B0.9900C37—H37C0.9800
C5—C121.462 (10)C38—C391.536 (10)
C5—C61.523 (9)C38—H38A0.9900
C6—C71.525 (10)C38—H38B0.9900
C6—C81.542 (9)C39—C401.556 (9)
C6—H6A1.0000C39—H39A0.9900
C7—H7A0.9800C39—H39B0.9900
C7—H7B0.9800C40—C411.547 (8)
C7—H7C0.9800C40—C431.560 (8)
C8—C91.518 (10)C40—H401.0000
C8—H8A0.9900C41—C421.515 (8)
C8—H8B0.9900C41—H41A0.9900
C9—C101.542 (8)C41—H41B0.9900
C9—H9A0.9900C43—C451.515 (9)
C9—H9B0.9900C43—C441.530 (9)
C10—C111.541 (8)C44—H44A0.9800
C10—C131.546 (8)C44—H44B0.9800
C10—H101.0000C44—H44C0.9800
C11—C121.508 (8)C45—H45A0.9800
C11—H11A0.9900C45—H45B0.9800
C11—H11B0.9900C45—H45C0.9800
C13—C141.515 (9)C46—C471.519 (9)
C13—C151.528 (9)C46—H46A0.9800
C14—H14A0.9800C46—H46B0.9800
C14—H14B0.9800C46—H46C0.9800
C14—H14C0.9800C47—C571.527 (8)
C15—H15A0.9800C47—C481.566 (9)
C15—H15B0.9800C47—H471.0000
C15—H15C0.9800C48—C491.535 (9)
C16—C171.503 (10)C48—H48A0.9900
C16—H16A0.9800C48—H48B0.9900
C16—H16B0.9800C49—C501.515 (9)
C16—H16C0.9800C49—H49A0.9900
C17—C271.523 (8)C49—H49B0.9900
C17—C181.546 (8)C50—C571.424 (10)
C17—H171.0000C50—C511.519 (9)
C18—C191.547 (9)C51—C531.526 (8)
C18—H18A0.9900C51—C521.528 (9)
C18—H18B0.9900C51—H511.0000
C19—C201.509 (8)C52—H52A0.9800
C19—H19A0.9900C52—H52B0.9800
C19—H19B0.9900C52—H52C0.9800
C20—C271.467 (9)C53—C541.534 (9)
C20—C211.522 (8)C53—H53A0.9900
C21—C221.525 (8)C53—H53B0.9900
C21—C231.533 (8)C54—C551.543 (8)
C21—H211.0000C54—H54A0.9900
C22—H22A0.9800C54—H54B0.9900
C22—H22B0.9800C55—C581.538 (8)
C22—H22C0.9800C55—C561.538 (8)
C23—C241.552 (9)C55—H551.0000
C23—H23A0.9900C56—C571.523 (8)
C23—H23B0.9900C56—H56A0.9900
C24—C251.529 (8)C56—H56B0.9900
C24—H24A0.9900C58—C601.520 (10)
C24—H24B0.9900C58—C591.529 (9)
C25—C261.532 (8)C59—H59A0.9800
C25—C281.555 (8)C59—H59B0.9800
C25—H251.0000C59—H59C0.9800
C26—C271.500 (8)C60—H60A0.9800
C26—H26A0.9900C60—H60B0.9800
C26—H26B0.9900C60—H60C0.9800
C12—O1—C560.3 (4)H30A—C30—H30B109.5
C13—O2—H2109.5C28—C30—H30C109.5
C20—O3—C2760.1 (4)H30A—C30—H30C109.5
C28—O4—H4109.5H30B—C30—H30C109.5
C35—O5—C4258.9 (4)C32—C31—H31A109.5
C43—O6—H6109.5C32—C31—H31B109.5
C57—O7—C5059.1 (4)H31A—C31—H31B109.5
C58—O8—H8109.5C32—C31—H31C109.5
C2—C1—H1A109.5H31A—C31—H31C109.5
C2—C1—H1B109.5H31B—C31—H31C109.5
H1A—C1—H1B109.5C42—C32—C31114.8 (6)
C2—C1—H1C109.5C42—C32—C33103.3 (5)
H1A—C1—H1C109.5C31—C32—C33112.1 (5)
H1B—C1—H1C109.5C42—C32—H32108.8
C1—C2—C12114.9 (6)C31—C32—H32108.8
C1—C2—C3114.6 (5)C33—C32—H32108.8
C12—C2—C3103.2 (6)C34—C33—C32105.7 (5)
C1—C2—H2A107.9C34—C33—H33A110.6
C12—C2—H2A107.9C32—C33—H33A110.6
C3—C2—H2A107.9C34—C33—H33B110.6
C4—C3—C2104.9 (5)C32—C33—H33B110.6
C4—C3—H3A110.8H33A—C33—H33B108.7
C2—C3—H3A110.8C35—C34—C33104.2 (5)
C4—C3—H3B110.8C35—C34—H34A110.9
C2—C3—H3B110.8C33—C34—H34A110.9
H3A—C3—H3B108.8C35—C34—H34B110.9
C5—C4—C3105.0 (5)C33—C34—H34B110.9
C5—C4—H4A110.7H34A—C34—H34B108.9
C3—C4—H4A110.7C42—C35—O560.6 (4)
C5—C4—H4B110.7C42—C35—C36128.1 (6)
C3—C4—H4B110.7O5—C35—C36117.2 (5)
H4A—C4—H4B108.8C42—C35—C34109.3 (5)
O1—C5—C1259.7 (4)O5—C35—C34110.5 (5)
O1—C5—C4110.1 (5)C36—C35—C34117.5 (6)
C12—C5—C4107.1 (6)C35—C36—C37110.5 (5)
O1—C5—C6118.3 (5)C35—C36—C38115.1 (5)
C12—C5—C6127.6 (6)C37—C36—C38110.8 (5)
C4—C5—C6119.4 (6)C35—C36—H36106.7
C5—C6—C7109.9 (6)C37—C36—H36106.7
C5—C6—C8113.1 (5)C38—C36—H36106.7
C7—C6—C8110.5 (6)C36—C37—H37A109.5
C5—C6—H6A107.7C36—C37—H37B109.5
C7—C6—H6A107.7H37A—C37—H37B109.5
C8—C6—H6A107.7C36—C37—H37C109.5
C6—C7—H7A109.5H37A—C37—H37C109.5
C6—C7—H7B109.5H37B—C37—H37C109.5
H7A—C7—H7B109.5C36—C38—C39115.1 (6)
C6—C7—H7C109.5C36—C38—H38A108.5
H7A—C7—H7C109.5C39—C38—H38A108.5
H7B—C7—H7C109.5C36—C38—H38B108.5
C9—C8—C6117.9 (6)C39—C38—H38B108.5
C9—C8—H8A107.8H38A—C38—H38B107.5
C6—C8—H8A107.8C38—C39—C40118.3 (6)
C9—C8—H8B107.8C38—C39—H39A107.7
C6—C8—H8B107.8C40—C39—H39A107.7
H8A—C8—H8B107.2C38—C39—H39B107.7
C8—C9—C10118.0 (5)C40—C39—H39B107.7
C8—C9—H9A107.8H39A—C39—H39B107.1
C10—C9—H9A107.8C41—C40—C39112.2 (6)
C8—C9—H9B107.8C41—C40—C43111.7 (5)
C10—C9—H9B107.8C39—C40—C43112.8 (5)
H9A—C9—H9B107.1C41—C40—H40106.6
C11—C10—C9111.1 (5)C39—C40—H40106.6
C11—C10—C13110.9 (5)C43—C40—H40106.6
C9—C10—C13113.9 (5)C42—C41—C40110.3 (5)
C11—C10—H10106.8C42—C41—H41A109.6
C9—C10—H10106.8C40—C41—H41A109.6
C13—C10—H10106.8C42—C41—H41B109.6
C12—C11—C10110.7 (5)C40—C41—H41B109.6
C12—C11—H11A109.5H41A—C41—H41B108.1
C10—C11—H11A109.5C35—C42—O560.4 (4)
C12—C11—H11B109.5C35—C42—C32109.8 (5)
C10—C11—H11B109.5O5—C42—C32111.6 (5)
H11A—C11—H11B108.1C35—C42—C41125.4 (5)
O1—C12—C559.9 (4)O5—C42—C41116.9 (5)
O1—C12—C11116.4 (5)C32—C42—C41118.9 (6)
C5—C12—C11125.5 (5)O6—C43—C45105.1 (5)
O1—C12—C2112.1 (5)O6—C43—C44108.8 (5)
C5—C12—C2110.1 (5)C45—C43—C44111.3 (5)
C11—C12—C2118.7 (6)O6—C43—C40108.5 (5)
O2—C13—C14104.8 (5)C45—C43—C40112.9 (5)
O2—C13—C15109.2 (5)C44—C43—C40110.0 (5)
C14—C13—C15110.0 (5)C43—C44—H44A109.5
O2—C13—C10109.1 (5)C43—C44—H44B109.5
C14—C13—C10112.7 (5)H44A—C44—H44B109.5
C15—C13—C10110.8 (5)C43—C44—H44C109.5
C13—C14—H14A109.5H44A—C44—H44C109.5
C13—C14—H14B109.5H44B—C44—H44C109.5
H14A—C14—H14B109.5C43—C45—H45A109.5
C13—C14—H14C109.5C43—C45—H45B109.5
H14A—C14—H14C109.5H45A—C45—H45B109.5
H14B—C14—H14C109.5C43—C45—H45C109.5
C13—C15—H15A109.5H45A—C45—H45C109.5
C13—C15—H15B109.5H45B—C45—H45C109.5
H15A—C15—H15B109.5C47—C46—H46A109.5
C13—C15—H15C109.5C47—C46—H46B109.5
H15A—C15—H15C109.5H46A—C46—H46B109.5
H15B—C15—H15C109.5C47—C46—H46C109.5
C17—C16—H16A109.5H46A—C46—H46C109.5
C17—C16—H16B109.5H46B—C46—H46C109.5
H16A—C16—H16B109.5C46—C47—C57115.1 (6)
C17—C16—H16C109.5C46—C47—C48112.5 (5)
H16A—C16—H16C109.5C57—C47—C48102.3 (5)
H16B—C16—H16C109.5C46—C47—H47108.9
C16—C17—C27114.3 (5)C57—C47—H47108.9
C16—C17—C18114.2 (5)C48—C47—H47108.9
C27—C17—C18102.9 (5)C49—C48—C47107.1 (5)
C16—C17—H17108.4C49—C48—H48A110.3
C27—C17—H17108.4C47—C48—H48A110.3
C18—C17—H17108.4C49—C48—H48B110.3
C17—C18—C19104.8 (5)C47—C48—H48B110.3
C17—C18—H18A110.8H48A—C48—H48B108.6
C19—C18—H18A110.8C50—C49—C48103.8 (5)
C17—C18—H18B110.8C50—C49—H49A111.0
C19—C18—H18B110.8C48—C49—H49A111.0
H18A—C18—H18B108.9C50—C49—H49B111.0
C20—C19—C18105.2 (5)C48—C49—H49B111.0
C20—C19—H19A110.7H49A—C49—H49B109.0
C18—C19—H19A110.7C57—C50—O760.3 (4)
C20—C19—H19B110.7C57—C50—C49110.6 (5)
C18—C19—H19B110.7O7—C50—C49111.0 (5)
H19A—C19—H19B108.8C57—C50—C51127.8 (5)
O3—C20—C2760.2 (4)O7—C50—C51118.2 (5)
O3—C20—C19108.9 (5)C49—C50—C51116.2 (6)
C27—C20—C19107.9 (5)C50—C51—C53115.3 (5)
O3—C20—C21117.3 (5)C50—C51—C52110.2 (5)
C27—C20—C21127.2 (5)C53—C51—C52110.2 (5)
C19—C20—C21120.0 (5)C50—C51—H51106.9
C20—C21—C22109.9 (5)C53—C51—H51106.9
C20—C21—C23114.0 (5)C52—C51—H51106.9
C22—C21—C23110.3 (5)C51—C52—H52A109.5
C20—C21—H21107.4C51—C52—H52B109.5
C22—C21—H21107.4H52A—C52—H52B109.5
C23—C21—H21107.4C51—C52—H52C109.5
C21—C22—H22A109.5H52A—C52—H52C109.5
C21—C22—H22B109.5H52B—C52—H52C109.5
H22A—C22—H22B109.5C51—C53—C54116.2 (6)
C21—C22—H22C109.5C51—C53—H53A108.2
H22A—C22—H22C109.5C54—C53—H53A108.2
H22B—C22—H22C109.5C51—C53—H53B108.2
C21—C23—C24117.4 (5)C54—C53—H53B108.2
C21—C23—H23A107.9H53A—C53—H53B107.4
C24—C23—H23A107.9C53—C54—C55117.7 (5)
C21—C23—H23B107.9C53—C54—H54A107.9
C24—C23—H23B107.9C55—C54—H54A107.9
H23A—C23—H23B107.2C53—C54—H54B107.9
C25—C24—C23116.9 (5)C55—C54—H54B107.9
C25—C24—H24A108.1H54A—C54—H54B107.2
C23—C24—H24A108.1C58—C55—C56112.0 (5)
C25—C24—H24B108.1C58—C55—C54112.9 (5)
C23—C24—H24B108.1C56—C55—C54112.0 (5)
H24A—C24—H24B107.3C58—C55—H55106.5
C24—C25—C26111.4 (5)C56—C55—H55106.5
C24—C25—C28114.8 (5)C54—C55—H55106.5
C26—C25—C28111.2 (5)C57—C56—C55109.2 (5)
C24—C25—H25106.3C57—C56—H56A109.8
C26—C25—H25106.3C55—C56—H56A109.8
C28—C25—H25106.3C57—C56—H56B109.8
C27—C26—C25110.6 (5)C55—C56—H56B109.8
C27—C26—H26A109.5H56A—C56—H56B108.3
C25—C26—H26A109.5C50—C57—O760.6 (4)
C27—C26—H26B109.5C50—C57—C56125.7 (5)
C25—C26—H26B109.5O7—C57—C56118.8 (5)
H26A—C26—H26B108.1C50—C57—C47110.6 (5)
C20—C27—O359.7 (4)O7—C57—C47112.0 (4)
C20—C27—C26125.0 (5)C56—C57—C47116.8 (5)
O3—C27—C26117.4 (5)O8—C58—C60106.2 (6)
C20—C27—C17109.8 (5)O8—C58—C59109.7 (5)
O3—C27—C17112.5 (4)C60—C58—C59111.1 (6)
C26—C27—C17118.6 (5)O8—C58—C55105.9 (5)
O4—C28—C29106.9 (5)C60—C58—C55113.2 (5)
O4—C28—C30110.9 (6)C59—C58—C55110.5 (6)
C29—C28—C30110.1 (6)C58—C59—H59A109.5
O4—C28—C25106.9 (5)C58—C59—H59B109.5
C29—C28—C25111.7 (5)H59A—C59—H59B109.5
C30—C28—C25110.3 (5)C58—C59—H59C109.5
C28—C29—H29A109.5H59A—C59—H59C109.5
C28—C29—H29B109.5H59B—C59—H59C109.5
H29A—C29—H29B109.5C58—C60—H60A109.5
C28—C29—H29C109.5C58—C60—H60B109.5
H29A—C29—H29C109.5H60A—C60—H60B109.5
H29B—C29—H29C109.5C58—C60—H60C109.5
C28—C30—H30A109.5H60A—C60—H60C109.5
C28—C30—H30B109.5H60B—C60—H60C109.5
C1—C2—C3—C4155.7 (6)C42—C32—C33—C3426.9 (6)
C12—C2—C3—C430.0 (7)C31—C32—C33—C34151.1 (6)
C2—C3—C4—C530.1 (7)C32—C33—C34—C3526.4 (6)
C12—O1—C5—C498.5 (6)C42—O5—C35—C36120.5 (6)
C12—O1—C5—C6119.3 (6)C42—O5—C35—C34101.2 (6)
C3—C4—C5—O145.1 (7)C33—C34—C35—C4216.1 (6)
C3—C4—C5—C1218.2 (7)C33—C34—C35—O548.8 (6)
C3—C4—C5—C6173.2 (6)C33—C34—C35—C36172.9 (5)
O1—C5—C6—C762.2 (7)C42—C35—C36—C37131.6 (6)
C12—C5—C6—C7134.3 (6)O5—C35—C36—C3758.9 (7)
C4—C5—C6—C776.5 (7)C34—C35—C36—C3776.5 (7)
O1—C5—C6—C861.8 (8)C42—C35—C36—C385.2 (9)
C12—C5—C6—C810.2 (9)O5—C35—C36—C3867.5 (7)
C4—C5—C6—C8159.5 (6)C34—C35—C36—C38157.1 (6)
C5—C6—C8—C967.6 (8)C35—C36—C38—C3964.3 (8)
C7—C6—C8—C9168.7 (6)C37—C36—C38—C39169.5 (6)
C6—C8—C9—C1062.8 (8)C36—C38—C39—C4068.5 (8)
C8—C9—C10—C1121.9 (8)C38—C39—C40—C4112.4 (9)
C8—C9—C10—C13148.0 (6)C38—C39—C40—C43139.6 (6)
C9—C10—C11—C1281.4 (6)C39—C40—C41—C4276.7 (7)
C13—C10—C11—C12150.9 (5)C43—C40—C41—C42155.5 (5)
C5—O1—C12—C11117.5 (6)C36—C35—C42—O5103.1 (7)
C5—O1—C12—C2101.1 (6)C34—C35—C42—O5103.3 (5)
C4—C5—C12—O1103.7 (5)O5—C35—C42—C32104.3 (5)
C6—C5—C12—O1104.0 (7)C36—C35—C42—C32152.7 (6)
O1—C5—C12—C11102.6 (6)C34—C35—C42—C321.0 (7)
C4—C5—C12—C11153.7 (6)O5—C35—C42—C41103.6 (6)
C6—C5—C12—C111.4 (10)C36—C35—C42—C410.5 (10)
O1—C5—C12—C2104.6 (5)C34—C35—C42—C41153.2 (6)
C4—C5—C12—C20.9 (7)C35—O5—C42—C32101.2 (6)
C6—C5—C12—C2151.4 (6)C35—O5—C42—C41117.3 (6)
C10—C11—C12—O1126.5 (6)C31—C32—C42—C35139.7 (6)
C10—C11—C12—C556.0 (8)C33—C32—C42—C3517.3 (6)
C10—C11—C12—C294.7 (6)C31—C32—C42—O574.7 (7)
C1—C2—C12—O180.1 (7)C33—C32—C42—O547.8 (6)
C3—C2—C12—O145.3 (7)C31—C32—C42—C4166.0 (7)
C1—C2—C12—C5144.8 (5)C33—C32—C42—C41171.6 (5)
C3—C2—C12—C519.4 (7)C40—C41—C42—C3557.2 (8)
C1—C2—C12—C1160.3 (7)C40—C41—C42—O5128.6 (6)
C3—C2—C12—C11174.3 (5)C40—C41—C42—C3292.7 (7)
C11—C10—C13—O257.1 (6)C41—C40—C43—O653.8 (7)
C9—C10—C13—O2176.7 (5)C39—C40—C43—O6178.8 (6)
C11—C10—C13—C1458.9 (7)C41—C40—C43—C4562.3 (7)
C9—C10—C13—C1467.3 (7)C39—C40—C43—C4565.1 (7)
C11—C10—C13—C15177.3 (5)C41—C40—C43—C44172.7 (5)
C9—C10—C13—C1556.5 (7)C39—C40—C43—C4459.9 (7)
C16—C17—C18—C19154.2 (5)C46—C47—C48—C49147.0 (6)
C27—C17—C18—C1929.7 (6)C57—C47—C48—C4922.9 (6)
C17—C18—C19—C2028.6 (6)C47—C48—C49—C5022.5 (6)
C27—O3—C20—C19100.3 (5)C57—O7—C50—C49102.4 (6)
C27—O3—C20—C21119.2 (6)C57—O7—C50—C51119.7 (6)
C18—C19—C20—O347.8 (6)C48—C49—C50—C5713.4 (6)
C18—C19—C20—C2716.0 (6)C48—C49—C50—O751.6 (7)
C18—C19—C20—C21172.9 (5)C48—C49—C50—C51169.6 (5)
O3—C20—C21—C2262.3 (7)C57—C50—C51—C538.4 (9)
C27—C20—C21—C22134.2 (6)O7—C50—C51—C5364.4 (7)
C19—C20—C21—C2273.7 (7)C49—C50—C51—C53159.8 (5)
O3—C20—C21—C2362.1 (7)C57—C50—C51—C52133.9 (6)
C27—C20—C21—C239.8 (8)O7—C50—C51—C5261.1 (7)
C19—C20—C21—C23161.8 (5)C49—C50—C51—C5274.7 (7)
C20—C21—C23—C2467.3 (7)C50—C51—C53—C5465.9 (7)
C22—C21—C23—C24168.5 (5)C52—C51—C53—C54168.7 (5)
C21—C23—C24—C2560.4 (8)C51—C53—C54—C5560.1 (8)
C23—C24—C25—C2625.0 (7)C53—C54—C55—C58151.6 (6)
C23—C24—C25—C28152.5 (6)C53—C54—C55—C5624.1 (8)
C24—C25—C26—C2784.1 (6)C58—C55—C56—C57149.6 (5)
C28—C25—C26—C27146.5 (5)C54—C55—C56—C5782.4 (6)
C19—C20—C27—O3102.0 (5)C49—C50—C57—O7103.1 (5)
C21—C20—C27—O3103.3 (6)C51—C50—C57—O7104.2 (7)
O3—C20—C27—C26103.9 (6)O7—C50—C57—C56106.0 (6)
C19—C20—C27—C26154.1 (5)C49—C50—C57—C56150.9 (5)
C21—C20—C27—C260.7 (9)C51—C50—C57—C561.8 (10)
O3—C20—C27—C17105.0 (5)O7—C50—C57—C47104.4 (5)
C19—C20—C27—C173.0 (6)C49—C50—C57—C471.2 (7)
C21—C20—C27—C17151.7 (6)C51—C50—C57—C47151.4 (6)
C20—O3—C27—C26116.5 (6)C50—O7—C57—C56117.0 (6)
C20—O3—C27—C17100.6 (6)C50—O7—C57—C47102.0 (6)
C25—C26—C27—C2055.0 (7)C55—C56—C57—C5053.7 (8)
C25—C26—C27—O3125.6 (5)C55—C56—C57—O7126.6 (5)
C25—C26—C27—C1793.8 (6)C55—C56—C57—C4794.3 (6)
C16—C17—C27—C20145.1 (5)C46—C47—C57—C50137.3 (6)
C18—C17—C27—C2020.7 (6)C48—C47—C57—C5015.0 (6)
C16—C17—C27—O380.7 (6)C46—C47—C57—O771.7 (7)
C18—C17—C27—O343.8 (6)C48—C47—C57—O750.6 (6)
C16—C17—C27—C2661.7 (7)C46—C47—C57—C5670.1 (7)
C18—C17—C27—C26173.8 (5)C48—C47—C57—C56167.6 (5)
C24—C25—C28—O4176.1 (5)C56—C55—C58—O852.7 (7)
C26—C25—C28—O456.3 (6)C54—C55—C58—O8179.8 (5)
C24—C25—C28—C2967.4 (7)C56—C55—C58—C6063.3 (7)
C26—C25—C28—C2960.2 (7)C54—C55—C58—C6064.2 (7)
C24—C25—C28—C3055.5 (7)C56—C55—C58—C59171.4 (5)
C26—C25—C28—C30176.9 (5)C54—C55—C58—C5961.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.992.804 (6)162
O4—H4···O5ii0.842.002.792 (7)157
O6—H6···O30.841.992.821 (7)171
O8—H8···O7iii0.842.002.795 (7)158
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1, z; (iii) x+2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.992.804 (6)162
O4—H4···O5ii0.842.002.792 (7)157
O6—H6···O30.841.992.821 (7)171
O8—H8···O7iii0.842.002.795 (7)158
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1, z; (iii) x+2, y+1/2, z+2.
 

Acknowledgements

This project was supported in part by the School of Agriculture, Food and Wine, The University of Adelaide, and by Australia's grape growers and wine makers through their investment body, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government. SB thanks the Faculty of Science for a PhD scholarship. Intensity data were provided by the University of Malaya Crystallographic Laboratory. We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPesnelle, P. (1966). Recherches, 15, 34–40.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds