organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-{[(Morpholin-4-yl)imino]­meth­yl}benzo­nitrile

aIlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 14 June 2014; accepted 15 June 2014; online 21 June 2014)

In the title compound, C12H13N3O, the morpholine ring adopts a chair conformation and its mean plane is inclined to that of the benzene ring by 16.78 (12)°. The N—N=C—C bridge, which has an E conformation, has a torsion angle of 173.80 (19)°. In the crystal, mol­ecules stack along the a axis but there are no significant inter­molecular inter­actions present.

Keywords: crystal structure.

Related literature

For background to the importance of Schiff bases, see: Dhar & Taploo (1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]); Zheng et al. (2009[Zheng, Y., Ma, K., Li, H., Li, J., He, J., Sun, X., Li, R. & Ma, J. (2009). Catal. Lett. 128, 465-474.]); Guzen et al. (2007[Guzen, K. P., Guarezemini, A. S., Órfão, A. T. G., Cella, R., Pereira, C. M. P. & Stefani, H. A. (2007). Tetrahedron Lett. 48, 1845-1848.]); Asif (2014[Asif, M. (2014). J. Pharm. Pharm. Sci. 1, 1-10.]); Hisaindee et al. (2013[Hisaindee, S., Al-Kaabi, L., Ajeb, S., Torky, Y., Iratni, R., Saleh, N. & AbuQamar, S. F. (2013). Arabian. J. Chem. In the press. doi:10.1016/j.arabjc.2013.03.013.]). For a related structure, see: Akkurt et al. (2013[Akkurt, M., Jarrahpour, A., Chermahini, M. M., Aberi, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1571.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N3O

  • Mr = 215.25

  • Monoclinic, P 21 /n

  • a = 4.1054 (3) Å

  • b = 12.0509 (8) Å

  • c = 22.9972 (19) Å

  • β = 91.087 (6)°

  • V = 1137.55 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.54 × 0.24 × 0.08 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.971, Tmax = 0.994

  • 6956 measured reflections

  • 2394 independent reflections

  • 878 reflections with I > 2σ(I)

  • Rint = 0.229

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.094

  • S = 0.89

  • 2394 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases, also known as imines or azomethines, are some of the most widely used organic compounds, for example, as pigments and dyes, catalysts, polymer stabilizers, and as intermediates in organic synthesis in particular for the preparation of heterocycles (Dhar & Taploo 1982; Zheng et al., 2009; Guzen et al., 2007). Schiff bases also play an important role in biological systems with several applications, for example, as antifungal, anticancer, antibacterial, antimalarial, antiproliferative, anti-inflammatory and antiviral agents in addition to other biological performances (Asif, 2014; Hisaindee et al., 2013). In view of this interest we synthesized the title compound and report herein on its crystal structure.

In the title molecule, Fig.1, the morpholine ring (N1/O1/C1–C4) adopts a chair conformation [puckering parameters: QT = 0.553 (3) Å, θ = 3.0 (3) ° and φ = 12 (6) °]. The N1–N2C5–C6 torsion angle is is 173.80 (19) °. Bond lengths and angles are similar to those reported for a related structure (Akkurt et al., 2013).

In the crystal structure, there are no classical hydrogen bonds. The crystal packing is stabilized by van der Waals interactions.

Related literature top

For background to the importance of Schiff bases, see: Dhar & Taploo (1982); Zheng et al. (2009); Guzen et al. (2007); Asif (2014); Hisaindee et al. (2013). For a related structure, see: Akkurt et al. (2013).

Experimental top

The title compound was synthesized by refluxing 4-aminomorpholine (1.00 mmol) with 4-cyanobenzeldehyde (1.00 mmol) in ethanol for 30 min. It was then recrystallized from ethanol to give light-yellow prismatic crystals (Yield 86%; M.p.: 401–403 K). Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

All H atoms were placed in calculated positions and refined as riding: C—H = 0.93 and 0.97 Å for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2Ueq(C). The crystals were of poor quality and weakly diffracting, which accounts for the low fraction of measured reflections. Repeated attempts to grow larger crystals were unsuccessful.

Structure description top

Schiff bases, also known as imines or azomethines, are some of the most widely used organic compounds, for example, as pigments and dyes, catalysts, polymer stabilizers, and as intermediates in organic synthesis in particular for the preparation of heterocycles (Dhar & Taploo 1982; Zheng et al., 2009; Guzen et al., 2007). Schiff bases also play an important role in biological systems with several applications, for example, as antifungal, anticancer, antibacterial, antimalarial, antiproliferative, anti-inflammatory and antiviral agents in addition to other biological performances (Asif, 2014; Hisaindee et al., 2013). In view of this interest we synthesized the title compound and report herein on its crystal structure.

In the title molecule, Fig.1, the morpholine ring (N1/O1/C1–C4) adopts a chair conformation [puckering parameters: QT = 0.553 (3) Å, θ = 3.0 (3) ° and φ = 12 (6) °]. The N1–N2C5–C6 torsion angle is is 173.80 (19) °. Bond lengths and angles are similar to those reported for a related structure (Akkurt et al., 2013).

In the crystal structure, there are no classical hydrogen bonds. The crystal packing is stabilized by van der Waals interactions.

For background to the importance of Schiff bases, see: Dhar & Taploo (1982); Zheng et al. (2009); Guzen et al. (2007); Asif (2014); Hisaindee et al. (2013). For a related structure, see: Akkurt et al. (2013).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis.
(E)-4-{[(Morpholin-4-yl)imino]methyl}benzonitrile top
Crystal data top
C12H13N3OF(000) = 456
Mr = 215.25Dx = 1.257 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4198 reflections
a = 4.1054 (3) Åθ = 1.7–27.1°
b = 12.0509 (8) ŵ = 0.08 mm1
c = 22.9972 (19) ÅT = 296 K
β = 91.087 (6)°Prism, light yellow
V = 1137.55 (15) Å30.54 × 0.24 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
2394 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus878 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.229
Detector resolution: 6.67 pixels mm-1θmax = 26.7°, θmin = 1.8°
rotation method scansh = 55
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1315
Tmin = 0.971, Tmax = 0.994l = 2928
6956 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
2394 reflectionsΔρmax = 0.12 e Å3
146 parametersΔρmin = 0.11 e Å3
Crystal data top
C12H13N3OV = 1137.55 (15) Å3
Mr = 215.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.1054 (3) ŵ = 0.08 mm1
b = 12.0509 (8) ÅT = 296 K
c = 22.9972 (19) Å0.54 × 0.24 × 0.08 mm
β = 91.087 (6)°
Data collection top
Stoe IPDS 2
diffractometer
2394 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
878 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.994Rint = 0.229
6956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.89Δρmax = 0.12 e Å3
2394 reflectionsΔρmin = 0.11 e Å3
146 parameters
Special details top

Experimental. Spectropscopic data for the title compound: IR (KBr, cm-1): 1604 (Schiff base C=N), 2214 (nitrile CN). 1H-NMR (250 MHz, CDCl3), δ (p.p.m.): 3.18–3.22 (CH2 morpholine ring, m, 4H), 3.83–3.87 (CH2 morpholine ring, m, 4H), 7.48 (HC=N, s, 1H), 7.54 (ArH, d, J=8.4 Hz, 2H), 7.62 (ArH, d, J=8.2 Hz, 2H). 13C-NMR (62.9 MHz, CDCl3), δ (p.p.m.): 51.3 (CH2N), 66.2 (CH2O), 110.7, 119.0, 126.2, 132.3, 132.6 (aromatic carbons and nitrile), 140.4 (C=N).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3333 (4)0.7856 (2)0.26705 (10)0.0934 (9)
N10.5804 (4)0.92897 (19)0.18135 (10)0.0661 (9)
N20.6187 (4)0.9921 (2)0.13245 (9)0.0642 (9)
N30.9567 (8)1.4147 (2)0.10077 (15)0.1297 (14)
C10.4673 (6)0.8185 (2)0.16642 (12)0.0744 (11)
C20.5031 (6)0.7434 (3)0.21844 (15)0.0919 (15)
C30.4574 (7)0.8916 (3)0.28163 (13)0.0920 (14)
C40.4229 (6)0.9736 (2)0.23245 (12)0.0739 (11)
C50.5801 (5)1.0975 (3)0.13421 (11)0.0671 (10)
C60.6545 (6)1.1639 (2)0.08316 (12)0.0621 (10)
C70.5920 (6)1.2770 (2)0.08316 (13)0.0797 (12)
C80.6662 (7)1.3426 (2)0.03595 (15)0.0865 (14)
C90.8027 (6)1.2960 (3)0.01231 (14)0.0732 (11)
C100.8635 (6)1.1833 (2)0.01327 (14)0.0864 (12)
C110.7892 (6)1.1192 (2)0.03383 (13)0.0817 (12)
C120.8858 (8)1.3627 (3)0.06134 (17)0.0941 (16)
H1A0.593300.789400.134600.0890*
H1B0.240500.821500.153900.0890*
H2A0.419200.670400.208600.1100*
H2B0.732300.735700.228700.1100*
H3A0.686000.884700.292500.1100*
H3B0.343100.919700.315100.1100*
H4A0.194100.987000.223800.0890*
H4B0.523301.043500.243500.0890*
H50.505301.131300.167800.0800*
H70.498401.309300.115500.0950*
H80.623701.418300.036900.1040*
H100.954901.151000.045900.1030*
H110.830601.043400.032500.0980*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0852 (12)0.1033 (19)0.0918 (16)0.0208 (12)0.0086 (12)0.0200 (14)
N10.0643 (13)0.0668 (18)0.0673 (15)0.0065 (11)0.0016 (12)0.0045 (14)
N20.0627 (12)0.0629 (17)0.0669 (15)0.0007 (12)0.0013 (11)0.0014 (13)
N30.191 (3)0.086 (2)0.112 (2)0.031 (2)0.002 (2)0.0243 (19)
C10.0715 (16)0.065 (2)0.087 (2)0.0054 (14)0.0074 (14)0.0055 (17)
C20.0829 (18)0.083 (3)0.110 (3)0.0068 (17)0.0039 (18)0.022 (2)
C30.0882 (19)0.115 (3)0.073 (2)0.023 (2)0.0043 (16)0.015 (2)
C40.0708 (16)0.082 (2)0.069 (2)0.0124 (15)0.0029 (15)0.0037 (17)
C50.0664 (16)0.075 (2)0.0600 (18)0.0006 (15)0.0063 (13)0.0042 (16)
C60.0647 (15)0.0553 (19)0.066 (2)0.0010 (14)0.0046 (14)0.0092 (16)
C70.104 (2)0.062 (2)0.073 (2)0.0079 (17)0.0001 (17)0.0130 (17)
C80.119 (2)0.049 (2)0.091 (3)0.0085 (17)0.013 (2)0.0018 (19)
C90.0852 (18)0.059 (2)0.075 (2)0.0054 (16)0.0061 (17)0.0007 (18)
C100.118 (2)0.064 (2)0.078 (2)0.0066 (18)0.0245 (18)0.0028 (18)
C110.112 (2)0.053 (2)0.081 (2)0.0108 (16)0.0230 (18)0.0010 (18)
C120.125 (3)0.068 (2)0.089 (3)0.0177 (19)0.004 (2)0.007 (2)
Geometric parameters (Å, º) top
O1—C21.423 (4)C9—C121.431 (5)
O1—C31.413 (4)C10—C111.370 (4)
N1—N21.369 (3)C1—H1A0.9700
N1—C11.449 (3)C1—H1B0.9700
N1—C41.455 (3)C2—H2A0.9700
N2—C51.281 (4)C2—H2B0.9700
N3—C121.144 (5)C3—H3A0.9700
C1—C21.505 (4)C3—H3B0.9700
C3—C41.507 (4)C4—H4A0.9700
C5—C61.458 (4)C4—H4B0.9700
C6—C71.387 (3)C5—H50.9300
C6—C111.381 (4)C7—H70.9300
C7—C81.382 (4)C8—H80.9300
C8—C91.373 (5)C10—H100.9300
C9—C101.381 (4)C11—H110.9300
C2—O1—C3109.3 (2)O1—C2—H2A109.00
N2—N1—C1110.9 (2)O1—C2—H2B109.00
N2—N1—C4121.2 (2)C1—C2—H2A109.00
C1—N1—C4112.68 (19)C1—C2—H2B109.00
N1—N2—C5120.6 (2)H2A—C2—H2B108.00
N1—C1—C2109.8 (2)O1—C3—H3A109.00
O1—C2—C1111.6 (3)O1—C3—H3B109.00
O1—C3—C4112.7 (2)C4—C3—H3A109.00
N1—C4—C3109.1 (2)C4—C3—H3B109.00
N2—C5—C6119.4 (2)H3A—C3—H3B108.00
C5—C6—C7119.9 (3)N1—C4—H4A110.00
C5—C6—C11122.7 (2)N1—C4—H4B110.00
C7—C6—C11117.4 (2)C3—C4—H4A110.00
C6—C7—C8121.3 (3)C3—C4—H4B110.00
C7—C8—C9120.0 (3)H4A—C4—H4B108.00
C8—C9—C10119.5 (3)N2—C5—H5120.00
C8—C9—C12120.9 (3)C6—C5—H5120.00
C10—C9—C12119.6 (3)C6—C7—H7119.00
C9—C10—C11119.9 (3)C8—C7—H7119.00
C6—C11—C10121.9 (2)C7—C8—H8120.00
N3—C12—C9178.8 (4)C9—C8—H8120.00
N1—C1—H1A110.00C9—C10—H10120.00
N1—C1—H1B110.00C11—C10—H10120.00
C2—C1—H1A110.00C6—C11—H11119.00
C2—C1—H1B110.00C10—C11—H11119.00
H1A—C1—H1B108.00
C2—O1—C3—C459.5 (3)N2—C5—C6—C115.0 (4)
C3—O1—C2—C159.4 (3)C5—C6—C7—C8178.6 (2)
C4—N1—N2—C514.6 (3)C11—C6—C7—C80.9 (4)
C1—N1—N2—C5150.2 (2)C5—C6—C11—C10178.7 (2)
N2—N1—C1—C2166.62 (18)C7—C6—C11—C100.9 (4)
C4—N1—C1—C253.9 (3)C6—C7—C8—C90.4 (4)
N2—N1—C4—C3172.2 (2)C7—C8—C9—C100.3 (4)
C1—N1—C4—C352.9 (3)C7—C8—C9—C12179.1 (3)
N1—N2—C5—C6173.80 (19)C8—C9—C10—C110.4 (4)
N1—C1—C2—O156.8 (3)C12—C9—C10—C11179.0 (3)
O1—C3—C4—N155.9 (3)C9—C10—C11—C60.2 (4)
N2—C5—C6—C7175.5 (2)

Experimental details

Crystal data
Chemical formulaC12H13N3O
Mr215.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.1054 (3), 12.0509 (8), 22.9972 (19)
β (°) 91.087 (6)
V3)1137.55 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.24 × 0.08
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.971, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
6956, 2394, 878
Rint0.229
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.094, 0.89
No. of reflections2394
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.11

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ and RH thank the Shiraz University Research Council for financial support.

References

First citationAkkurt, M., Jarrahpour, A., Chermahini, M. M., Aberi, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1571.  CSD CrossRef IUCr Journals Google Scholar
First citationAsif, M. (2014). J. Pharm. Pharm. Sci. 1, 1–10.  Google Scholar
First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuzen, K. P., Guarezemini, A. S., Órfão, A. T. G., Cella, R., Pereira, C. M. P. & Stefani, H. A. (2007). Tetrahedron Lett. 48, 1845–1848.  Web of Science CrossRef CAS Google Scholar
First citationHisaindee, S., Al-Kaabi, L., Ajeb, S., Torky, Y., Iratni, R., Saleh, N. & AbuQamar, S. F. (2013). Arabian. J. Chem. In the press. doi:10.1016/j.arabjc.2013.03.013.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZheng, Y., Ma, K., Li, H., Li, J., He, J., Sun, X., Li, R. & Ma, J. (2009). Catal. Lett. 128, 465–474.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds