organic compounds
6-Chloro-7-methyl-4-oxo-4H-chromene-3-carbaldehyde
aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp
In the title compound, C11H7ClO3, a chlorinated and methylated 3-formylchromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0670 Å), with the largest deviation from the least-squares plane [0.2349 (17) Å] being for the pyran carbonyl O atom. In the crystal, molecules are linked through π–π stacking interactions along the a axis [centroid–centroid distance between the pyran rings = 3.824 (6) Å] and two stacks are connected by type I halogen–halogen interactions between the Cl atoms [Cl⋯Cl = 3.397 (3) Å].
Keywords: crystal structure.
CCDC reference: 1008807
Related literature
For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013). For halogen–halogen interactions, see: Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).
Experimental
Crystal data
|
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.
Supporting information
CCDC reference: 1008807
https://doi.org/10.1107/S1600536814014226/tk5320sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536814014226/tk5320Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536814014226/tk5320Isup3.cml
Halogen bonding and halogen···halogen interactions have recently attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry, and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014). We have recently reported the crystal structures of halogenated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014). Both halogen bonding between the formyl oxygen atom and the chlorine atom at 8-position and type I halogen···halogen interaction between the chlorine atoms at 6-position are observed in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig. 3, (top). On the other hand, a van der Waals contact between the formyl oxygen atom and the chlorine atom at 6-position is found in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 3, middle). As part of our interest in these types of chemical bonding, we herein report the
of a monochlorinated and methylated 3-formylchromone derivative 6-chloro-7-methyl-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal the of the vicinal electron-donating group on the chlorine atom at 6-position and its interaction mode.The mean deviation of the least-square plane for the non-hydrogen atoms is 0.0670 Å, and the largest deviation is 0.2349 (17) Å for O3 (Fig. 1).
In the crystal, the molecules are stacked with the translation-symmetry equivalenti [centroid–centroid distance between the pyran rings = 3.824 (6) Å, i: x + 1, y, z], as shown in Fig. 2. In addition, a type I halogen···halogen interaction is observed between the chlorine atoms at 6-position [Cl1···Cl1ii = 3.397 (3) Å, C5–Cl1–Cl1ii = 148.41 (7)°, ii: –x, –y, –z], as shown in Fig. 3 (bottom). Thus, a contact between the formyl oxygen atom and the chlorine atom at 6-position is not observed in the title compound. The chemical nature of the chlorine atom at 6-position in the title compound should be similar to that of the chlorine one at 6-position in 6,8-dichloro-4-oxochromene-3-carbaldehyde.
Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetonitrile solution of the commercially available title compound at room temperature.
Halogen bonding and halogen···halogen interactions have recently attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry, and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014). We have recently reported the crystal structures of halogenated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014). Both halogen bonding between the formyl oxygen atom and the chlorine atom at 8-position and type I halogen···halogen interaction between the chlorine atoms at 6-position are observed in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig. 3, (top). On the other hand, a van der Waals contact between the formyl oxygen atom and the chlorine atom at 6-position is found in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 3, middle). As part of our interest in these types of chemical bonding, we herein report the
of a monochlorinated and methylated 3-formylchromone derivative 6-chloro-7-methyl-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal the of the vicinal electron-donating group on the chlorine atom at 6-position and its interaction mode.The mean deviation of the least-square plane for the non-hydrogen atoms is 0.0670 Å, and the largest deviation is 0.2349 (17) Å for O3 (Fig. 1).
In the crystal, the molecules are stacked with the translation-symmetry equivalenti [centroid–centroid distance between the pyran rings = 3.824 (6) Å, i: x + 1, y, z], as shown in Fig. 2. In addition, a type I halogen···halogen interaction is observed between the chlorine atoms at 6-position [Cl1···Cl1ii = 3.397 (3) Å, C5–Cl1–Cl1ii = 148.41 (7)°, ii: –x, –y, –z], as shown in Fig. 3 (bottom). Thus, a contact between the formyl oxygen atom and the chlorine atom at 6-position is not observed in the title compound. The chemical nature of the chlorine atom at 6-position in the title compound should be similar to that of the chlorine one at 6-position in 6,8-dichloro-4-oxochromene-3-carbaldehyde.
For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013). For halogen–halogen interactions, see: Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).
Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetonitrile solution of the commercially available title compound at room temperature.
detailsThe C(sp2)-bound hydrogen atoms were placed in geometrical positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. One reflection (0 0 20) was omitted because of systematic error.
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell
WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).C11H7ClO3 | Z = 2 |
Mr = 222.63 | F(000) = 228.00 |
Triclinic, P1 | Dx = 1.603 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 3.824 (6) Å | Cell parameters from 25 reflections |
b = 6.111 (9) Å | θ = 15.1–17.5° |
c = 19.962 (10) Å | µ = 0.39 mm−1 |
α = 81.83 (7)° | T = 100 K |
β = 88.82 (7)° | Plate, colorless |
γ = 87.04 (12)° | 0.45 × 0.20 × 0.10 mm |
V = 461.1 (10) Å3 |
Rigaku AFC-7R diffractometer | θmax = 27.5° |
ω–2θ scans | h = −4→2 |
2677 measured reflections | k = −7→7 |
2092 independent reflections | l = −25→25 |
1784 reflections with F2 > 2σ(F2) | 3 standard reflections every 150 reflections |
Rint = 0.076 | intensity decay: −0.3% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0479P)2 + 0.2265P] where P = (Fo2 + 2Fc2)/3 |
2092 reflections | (Δ/σ)max < 0.001 |
137 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C11H7ClO3 | γ = 87.04 (12)° |
Mr = 222.63 | V = 461.1 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 3.824 (6) Å | Mo Kα radiation |
b = 6.111 (9) Å | µ = 0.39 mm−1 |
c = 19.962 (10) Å | T = 100 K |
α = 81.83 (7)° | 0.45 × 0.20 × 0.10 mm |
β = 88.82 (7)° |
Rigaku AFC-7R diffractometer | Rint = 0.076 |
2677 measured reflections | 3 standard reflections every 150 reflections |
2092 independent reflections | intensity decay: −0.3% |
1784 reflections with F2 > 2σ(F2) |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.43 e Å−3 |
2092 reflections | Δρmin = −0.44 e Å−3 |
137 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.17920 (11) | 0.14364 (6) | 0.056454 (19) | 0.01599 (13) | |
O1 | 0.4150 (4) | 0.24855 (18) | 0.33907 (6) | 0.0147 (3) | |
O2 | −0.0788 (4) | −0.30118 (19) | 0.30226 (6) | 0.0175 (3) | |
O3 | 0.2039 (4) | −0.2523 (3) | 0.49681 (6) | 0.0257 (3) | |
C1 | 0.3352 (5) | 0.0873 (3) | 0.38908 (8) | 0.0149 (4) | |
C2 | 0.1817 (5) | −0.1014 (3) | 0.38028 (8) | 0.0143 (4) | |
C3 | 0.0832 (5) | −0.1417 (3) | 0.31299 (8) | 0.0125 (3) | |
C4 | 0.1395 (4) | 0.0114 (3) | 0.19037 (8) | 0.0124 (3) | |
C5 | 0.2401 (4) | 0.1770 (3) | 0.14057 (8) | 0.0125 (3) | |
C6 | 0.3901 (4) | 0.3707 (3) | 0.15567 (8) | 0.0123 (3) | |
C7 | 0.4419 (4) | 0.3892 (3) | 0.22300 (8) | 0.0131 (3) | |
C8 | 0.1912 (4) | 0.0316 (3) | 0.25829 (8) | 0.0117 (3) | |
C9 | 0.3461 (4) | 0.2198 (3) | 0.27341 (8) | 0.0122 (3) | |
C10 | 0.4919 (5) | 0.5510 (3) | 0.10037 (9) | 0.0158 (4) | |
C11 | 0.1133 (5) | −0.2676 (3) | 0.43982 (9) | 0.0185 (4) | |
H1 | 0.3904 | 0.1068 | 0.4340 | 0.0179* | |
H2 | 0.0357 | −0.1156 | 0.1786 | 0.0149* | |
H3 | 0.5426 | 0.5171 | 0.2349 | 0.0157* | |
H4A | 0.6025 | 0.6673 | 0.1203 | 0.0190* | |
H5B | 0.2824 | 0.6139 | 0.0758 | 0.0190* | |
H6C | 0.6571 | 0.4893 | 0.0690 | 0.0190* | |
H7 | −0.0088 | −0.3940 | 0.4331 | 0.0222* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0226 (3) | 0.0153 (2) | 0.0106 (2) | −0.00165 (14) | −0.00239 (13) | −0.00318 (13) |
O1 | 0.0210 (6) | 0.0146 (6) | 0.0093 (6) | −0.0054 (5) | −0.0015 (5) | −0.0026 (4) |
O2 | 0.0222 (7) | 0.0151 (6) | 0.0160 (6) | −0.0074 (5) | −0.0018 (5) | −0.0024 (5) |
O3 | 0.0382 (8) | 0.0262 (7) | 0.0129 (7) | −0.0108 (6) | −0.0028 (6) | 0.0009 (5) |
C1 | 0.0178 (8) | 0.0169 (8) | 0.0102 (8) | −0.0016 (6) | −0.0000 (6) | −0.0019 (6) |
C2 | 0.0161 (8) | 0.0148 (8) | 0.0121 (8) | −0.0014 (6) | 0.0000 (6) | −0.0018 (6) |
C3 | 0.0119 (7) | 0.0129 (7) | 0.0130 (8) | −0.0000 (6) | −0.0002 (6) | −0.0030 (6) |
C4 | 0.0123 (8) | 0.0113 (7) | 0.0142 (8) | −0.0005 (6) | −0.0012 (6) | −0.0039 (6) |
C5 | 0.0125 (8) | 0.0140 (7) | 0.0116 (7) | 0.0012 (6) | −0.0012 (6) | −0.0037 (6) |
C6 | 0.0101 (7) | 0.0113 (7) | 0.0151 (8) | 0.0011 (6) | −0.0000 (6) | −0.0015 (6) |
C7 | 0.0128 (8) | 0.0108 (7) | 0.0160 (8) | −0.0011 (6) | −0.0004 (6) | −0.0032 (6) |
C8 | 0.0119 (8) | 0.0110 (7) | 0.0125 (8) | −0.0000 (6) | −0.0016 (6) | −0.0026 (6) |
C9 | 0.0124 (8) | 0.0136 (7) | 0.0114 (8) | 0.0001 (6) | −0.0017 (6) | −0.0044 (6) |
C10 | 0.0198 (8) | 0.0120 (7) | 0.0152 (8) | −0.0021 (6) | 0.0010 (6) | 0.0001 (6) |
C11 | 0.0237 (9) | 0.0177 (8) | 0.0143 (8) | −0.0054 (7) | −0.0004 (7) | −0.0015 (6) |
Cl1—C5 | 1.7418 (19) | C6—C7 | 1.384 (3) |
O1—C1 | 1.341 (3) | C6—C10 | 1.505 (3) |
O1—C9 | 1.379 (3) | C7—C9 | 1.395 (3) |
O2—C3 | 1.228 (3) | C8—C9 | 1.394 (3) |
O3—C11 | 1.214 (3) | C1—H1 | 0.950 |
C1—C2 | 1.355 (3) | C4—H2 | 0.950 |
C2—C3 | 1.460 (3) | C7—H3 | 0.950 |
C2—C11 | 1.478 (3) | C10—H4A | 0.980 |
C3—C8 | 1.477 (3) | C10—H5B | 0.980 |
C4—C5 | 1.378 (3) | C10—H6C | 0.980 |
C4—C8 | 1.398 (3) | C11—H7 | 0.950 |
C5—C6 | 1.414 (3) | ||
Cl1···C10 | 3.061 (5) | O3···H7iv | 3.3646 |
O1···C3 | 2.874 (5) | O3···H7viii | 2.5400 |
O2···C1 | 3.580 (5) | C1···H7ii | 3.5865 |
O2···C4 | 2.865 (4) | C2···H1vii | 3.4323 |
O2···C11 | 2.895 (3) | C2···H7iv | 3.5942 |
O3···C1 | 2.825 (4) | C3···H3v | 3.5438 |
C1···C7 | 3.584 (4) | C3···H3vi | 3.2093 |
C1···C8 | 2.751 (3) | C4···H2iv | 3.4855 |
C2···C9 | 2.772 (4) | C4···H3vi | 3.3323 |
C4···C7 | 2.797 (5) | C4···H4Av | 3.4637 |
C5···C9 | 2.742 (3) | C4···H4Avi | 3.1405 |
C6···C8 | 2.821 (4) | C4···H5Bvi | 3.5800 |
Cl1···Cl1i | 3.397 (3) | C5···H2iv | 3.4899 |
O1···O2ii | 3.259 (5) | C5···H4Avi | 3.4169 |
O1···O2iii | 3.432 (5) | C5···H6Cvii | 3.0939 |
O1···C2iv | 3.578 (6) | C6···H2ii | 3.4420 |
O1···C3iv | 3.487 (6) | C6···H4Avii | 3.4668 |
O2···O1v | 3.432 (5) | C6···H6Cvii | 3.3186 |
O2···O1vi | 3.259 (5) | C7···H2ii | 3.3414 |
O2···C2vii | 3.452 (5) | C7···H3vii | 3.4983 |
O2···C3vii | 3.313 (6) | C8···H3vi | 3.4446 |
O2···C7v | 3.282 (4) | C9···H3vii | 3.5296 |
O2···C7vi | 3.222 (5) | C10···H2ii | 3.1715 |
O2···C8vii | 3.422 (6) | C10···H2iii | 3.5202 |
O2···C9vi | 3.389 (5) | C10···H4Avii | 3.4653 |
O3···O3viii | 3.462 (5) | C10···H5Biv | 3.0874 |
O3···O3ix | 3.400 (5) | C10···H6Cvii | 3.3170 |
O3···C1ix | 3.271 (4) | C10···H6Cxii | 3.4850 |
O3···C1x | 3.212 (4) | C11···H1vii | 3.4892 |
O3···C11viii | 3.306 (5) | C11···H1ix | 3.3664 |
C1···O3ix | 3.271 (4) | C11···H1x | 3.4654 |
C1···O3x | 3.212 (4) | C11···H7iv | 3.4101 |
C1···C2iv | 3.390 (6) | C11···H7viii | 3.0703 |
C1···C3iv | 3.530 (5) | H1···O3ix | 2.8065 |
C2···O1vii | 3.578 (6) | H1···O3x | 2.3848 |
C2···O2iv | 3.452 (5) | H1···C2iv | 3.4323 |
C2···C1vii | 3.390 (6) | H1···C11iv | 3.4892 |
C3···O1vii | 3.487 (6) | H1···C11ix | 3.3664 |
C3···O2iv | 3.313 (6) | H1···C11x | 3.4654 |
C3···C1vii | 3.530 (5) | H1···H1x | 2.8906 |
C3···C9vii | 3.522 (6) | H1···H7ii | 3.3381 |
C4···C6vii | 3.537 (6) | H2···C4vii | 3.4855 |
C4···C7vii | 3.548 (6) | H2···C5vii | 3.4899 |
C5···C6vii | 3.424 (6) | H2···C6vi | 3.4420 |
C5···C10vii | 3.599 (6) | H2···C7vi | 3.3414 |
C6···C4iv | 3.537 (6) | H2···C10v | 3.5202 |
C6···C5iv | 3.424 (6) | H2···C10vi | 3.1715 |
C7···O2ii | 3.222 (5) | H2···H3v | 3.0807 |
C7···O2iii | 3.282 (4) | H2···H3vi | 2.9969 |
C7···C4iv | 3.548 (6) | H2···H4Av | 2.5702 |
C7···C8iv | 3.533 (6) | H2···H4Avi | 2.8020 |
C8···O2iv | 3.422 (6) | H2···H5Bvi | 2.9247 |
C8···C7vii | 3.533 (6) | H3···O2ii | 2.9512 |
C8···C9vii | 3.396 (6) | H3···O2iii | 2.4107 |
C9···O2ii | 3.389 (5) | H3···C3ii | 3.2093 |
C9···C3iv | 3.522 (6) | H3···C3iii | 3.5438 |
C9···C8iv | 3.396 (6) | H3···C4ii | 3.3323 |
C10···C5iv | 3.599 (6) | H3···C7iv | 3.4983 |
C11···O3viii | 3.306 (5) | H3···C8ii | 3.4446 |
C11···C11viii | 3.581 (5) | H3···C9iv | 3.5296 |
Cl1···H2 | 2.7736 | H3···H2ii | 2.9969 |
Cl1···H5B | 3.0008 | H3···H2iii | 3.0807 |
Cl1···H6C | 2.9039 | H4A···Cl1ii | 3.3558 |
O1···H3 | 2.5156 | H4A···C4ii | 3.1405 |
O2···H2 | 2.6042 | H4A···C4iii | 3.4637 |
O2···H7 | 2.6084 | H4A···C5ii | 3.4169 |
O3···H1 | 2.4980 | H4A···C6iv | 3.4668 |
C1···H7 | 3.2820 | H4A···C10iv | 3.4653 |
C3···H1 | 3.2957 | H4A···H2ii | 2.8020 |
C3···H2 | 2.6739 | H4A···H2iii | 2.5702 |
C3···H7 | 2.6867 | H4A···H5Biv | 2.7486 |
C5···H3 | 3.2635 | H5B···Cl1ii | 3.2097 |
C5···H4A | 3.3351 | H5B···Cl1xi | 3.3310 |
C5···H5B | 2.8070 | H5B···Cl1xii | 3.5195 |
C5···H6C | 2.7698 | H5B···C4ii | 3.5800 |
C6···H2 | 3.2984 | H5B···C10vii | 3.0874 |
C7···H4A | 2.5561 | H5B···H2ii | 2.9247 |
C7···H5B | 3.1190 | H5B···H4Avii | 2.7486 |
C7···H6C | 3.1491 | H5B···H6Cvii | 2.5591 |
C8···H3 | 3.2892 | H5B···H6Cxii | 3.0471 |
C9···H1 | 3.1874 | H6C···Cl1iv | 2.8645 |
C9···H2 | 3.2616 | H6C···Cl1xii | 3.1901 |
C10···H3 | 2.6736 | H6C···C5iv | 3.0939 |
C11···H1 | 2.5574 | H6C···C6iv | 3.3186 |
H1···H7 | 3.4925 | H6C···C10iv | 3.3170 |
H3···H4A | 2.3514 | H6C···C10xii | 3.4850 |
H3···H5B | 3.3096 | H6C···H5Biv | 2.5591 |
H3···H6C | 3.3584 | H6C···H5Bxii | 3.0471 |
Cl1···H4Avi | 3.3558 | H6C···H6Cxii | 3.0105 |
Cl1···H5Bvi | 3.2097 | H7···O1vi | 3.4049 |
Cl1···H5Bxi | 3.3310 | H7···O3vii | 3.3646 |
Cl1···H5Bxii | 3.5195 | H7···O3viii | 2.5400 |
Cl1···H6Cvii | 2.8645 | H7···C1vi | 3.5865 |
Cl1···H6Cxii | 3.1901 | H7···C2vii | 3.5942 |
O1···H7ii | 3.4049 | H7···C11vii | 3.4101 |
O2···H3v | 2.4107 | H7···C11viii | 3.0703 |
O2···H3vi | 2.9512 | H7···H1vi | 3.3381 |
O3···H1ix | 2.8065 | H7···H7viii | 2.7996 |
O3···H1x | 2.3848 | ||
C1—O1—C9 | 118.32 (15) | O1—C9—C7 | 116.26 (16) |
O1—C1—C2 | 124.81 (17) | O1—C9—C8 | 121.84 (15) |
C1—C2—C3 | 120.85 (15) | C7—C9—C8 | 121.90 (17) |
C1—C2—C11 | 119.27 (17) | O3—C11—C2 | 123.93 (18) |
C3—C2—C11 | 119.87 (17) | O1—C1—H1 | 117.595 |
O2—C3—C2 | 123.93 (15) | C2—C1—H1 | 117.592 |
O2—C3—C8 | 122.62 (17) | C5—C4—H2 | 120.213 |
C2—C3—C8 | 113.45 (16) | C8—C4—H2 | 120.226 |
C5—C4—C8 | 119.56 (17) | C6—C7—H3 | 120.052 |
Cl1—C5—C4 | 118.24 (15) | C9—C7—H3 | 120.055 |
Cl1—C5—C6 | 119.54 (13) | C6—C10—H4A | 109.463 |
C4—C5—C6 | 122.22 (17) | C6—C10—H5B | 109.471 |
C5—C6—C7 | 117.93 (15) | C6—C10—H6C | 109.471 |
C5—C6—C10 | 121.19 (17) | H4A—C10—H5B | 109.473 |
C7—C6—C10 | 120.87 (16) | H4A—C10—H6C | 109.475 |
C6—C7—C9 | 119.89 (17) | H5B—C10—H6C | 109.474 |
C3—C8—C4 | 121.00 (16) | O3—C11—H7 | 118.044 |
C3—C8—C9 | 120.54 (16) | C2—C11—H7 | 118.029 |
C4—C8—C9 | 118.46 (15) | ||
C1—O1—C9—C7 | −178.36 (12) | H2—C4—C5—C6 | 178.9 |
C1—O1—C9—C8 | 1.3 (2) | H2—C4—C8—C3 | −0.6 |
C9—O1—C1—C2 | −1.9 (3) | H2—C4—C8—C9 | 179.6 |
C9—O1—C1—H1 | 178.1 | Cl1—C5—C6—C7 | −178.56 (10) |
O1—C1—C2—C3 | −1.1 (3) | Cl1—C5—C6—C10 | 1.2 (2) |
O1—C1—C2—C11 | 179.01 (13) | C4—C5—C6—C7 | 1.3 (3) |
H1—C1—C2—C3 | 178.9 | C4—C5—C6—C10 | −178.89 (13) |
H1—C1—C2—C11 | −1.0 | C5—C6—C7—C9 | −0.1 (3) |
C1—C2—C3—O2 | −174.55 (15) | C5—C6—C7—H3 | 179.9 |
C1—C2—C3—C8 | 4.3 (2) | C5—C6—C10—H4A | −176.9 |
C1—C2—C11—O3 | −4.2 (3) | C5—C6—C10—H5B | 63.1 |
C1—C2—C11—H7 | 175.8 | C5—C6—C10—H6C | −56.9 |
C3—C2—C11—O3 | 175.88 (15) | C7—C6—C10—H4A | 2.8 |
C3—C2—C11—H7 | −4.1 | C7—C6—C10—H5B | −117.1 |
C11—C2—C3—O2 | 5.3 (3) | C7—C6—C10—H6C | 122.8 |
C11—C2—C3—C8 | −175.85 (13) | C10—C6—C7—C9 | −179.90 (13) |
O2—C3—C8—C4 | −5.7 (3) | C10—C6—C7—H3 | 0.1 |
O2—C3—C8—C9 | 174.08 (14) | C6—C7—C9—O1 | 178.34 (13) |
C2—C3—C8—C4 | 175.51 (13) | C6—C7—C9—C8 | −1.3 (3) |
C2—C3—C8—C9 | −4.8 (2) | H3—C7—C9—O1 | −1.7 |
C5—C4—C8—C3 | 179.37 (13) | H3—C7—C9—C8 | 178.7 |
C5—C4—C8—C9 | −0.4 (3) | C3—C8—C9—O1 | 2.2 (3) |
C8—C4—C5—Cl1 | 178.80 (12) | C3—C8—C9—C7 | −178.17 (13) |
C8—C4—C5—C6 | −1.1 (3) | C4—C8—C9—O1 | −178.08 (13) |
H2—C4—C5—Cl1 | −1.2 | C4—C8—C9—C7 | 1.6 (3) |
Symmetry codes: (i) −x, −y, −z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x−1, y−1, z; (vi) x, y−1, z; (vii) x−1, y, z; (viii) −x, −y−1, −z+1; (ix) −x, −y, −z+1; (x) −x+1, −y, −z+1; (xi) −x, −y+1, −z; (xii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C11H7ClO3 |
Mr | 222.63 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 3.824 (6), 6.111 (9), 19.962 (10) |
α, β, γ (°) | 81.83 (7), 88.82 (7), 87.04 (12) |
V (Å3) | 461.1 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.39 |
Crystal size (mm) | 0.45 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Rigaku AFC-7R |
Absorption correction | – |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 2677, 2092, 1784 |
Rint | 0.076 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.094, 1.08 |
No. of reflections | 2092 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.44 |
Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).
Acknowledgements
The University of Shizuoka is acknowledged for instrumental support.
References
Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. Web of Science CrossRef PubMed CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ishikawa, Y. (2014). Acta Cryst. E70, o514. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416. CSD CrossRef IUCr Journals Google Scholar
Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science CrossRef PubMed CAS Google Scholar
Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. Web of Science CrossRef CAS PubMed Google Scholar
Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.