metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η6-Benzene)(carbonato-κ2O,O′)[di­cyclohex­yl(naphthalen-1-ylmeth­yl)phosphane-κP]ruthenium(II) chloro­form tris­­olvate

aDivision of Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical grove, Neuros, #07-01, 138665, Singapore, and bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: matthias.beller@catalysis.de

(Received 21 May 2014; accepted 16 June 2014; online 21 June 2014)

The title compound, [Ru(CO3)(η6-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl2(η6-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C—H⋯O and C—H⋯Cl hydrogen-bonding inter­actions between adjacent metal complexes and between the complexes and the solvent mol­ecules. The asymmetric unit contains one metal complex and three chloro­form solvent mol­ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro­form solvent mol­ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Keywords: crystal structure.

Related literature

For crystal structures of related carbonatophosphane ruthenium(II) complexes, see: Allen et al. (2009[Allen, O. R., Dalgarno, S. J., Field, L. D., Jensen, P. & Willis, A. C. (2009). Organometallics, 28, 2385-2390.]); Blosser et al. (2004[Blosser, P. W., Gallucci, J. C. & Wojcicki, A. (2004). J. Mol. Catal. A Chem. 224, 133-144.]); Davies et al. (2013[Davies, C. J. E., Lowe, J. P., Mahon, M. F., Poulten, R. C. & Whittlesey, M. K. (2013). Organometallics, 32, 4927-4937.]); Dell'Amico et al. (2000[Dell'Amico, D. B., Calderazzo, F., Labella, L. & Marchetti, F. (2000). J. Organomet. Chem. 596, 144-151.]); Demerseman et al. (2006[Demerseman, B., Mbaye, M. D., Sémeril, D., Toupet, L., Bruneau, C. & Dixneuf, P. H. (2006). Eur. J. Inorg. Chem. pp. 1174-1181.]); Drake et al. (2013[Drake, J. L., Manna, C. M. & Byers, J. A. (2013). Organometallics, 32, 6891-6894.]). The starting complex [RuCl2(η6-C6H6)(C6H11)2PCH2C10H7)] was described by Gowrisankar et al. (2014[Gowrisankar, S., Neumann, H., Spannenberg, A. & Beller, M. (2014). Organometallics, 33, 94-99.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(CO3)(C6H6)(C23H31P)]·3CHCl3

  • Mr = 935.74

  • Orthorhombic, P b c a

  • a = 22.1730 (4) Å

  • b = 15.1385 (3) Å

  • c = 23.6954 (5) Å

  • V = 7953.7 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 9.40 mm−1

  • T = 150 K

  • 0.64 × 0.08 × 0.05 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.065, Tmax = 0.651

  • 68879 measured reflections

  • 6998 independent reflections

  • 5815 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.07

  • 6998 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.51 3.179 (5) 127
C29—H29A⋯Cl3ii 0.99 2.68 3.457 (6) 135
C31—H31⋯O3iii 1.00 2.06 3.004 (5) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was prepared in a two step synthesis: In the presence of 60 bar hydrogen, the benzene ruthenium dichloride dimer and the dicyclohexyl(1-naphthoyl)phosphane ligand react to give the [RuCl2(η6-C6H6){(C6H11)2PCH2C10H7)}] complex in 80% yield. Here, the carbonyl group of the ligand is reduced to a methylen unit (Gowrisankar et al., 2014). In the second step the reduced complex was carbonated at room temperature in methanol with 10 equivalent of NaHCO3 to yield the title compound, [Ru(CO3)(η6-C6H6){(C6H11)2PCH2C10H7)}], as a chloroform solvate after recrystallization from a CHCl3/heptane mixture. Related carbonatophosphane ruthenium complexes are known from the literature (Allen et al., 2009; Blosser et al., 2004; Davies et al., 2013; Dell'Amico et al., 2000; Demerseman et al., 2006; Drake et al., 2013).

The asymmetric unit contains one complex and one chloroform solvent molecule (Fig. 1). Contributions of two further strongly disordered solvent molecules (chloroform) were removed from the diffraction data with the SQUEEZE option in PLATON (Spek, 2009). The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand (C6H11)2P(CH2C10H7) in a piano-stool geometry. The phosphane ligand is linked through its P atom with a Ru—P bond length of 2.3705 (8) Å; both cyclohexyl rings at the P atom adopt a chair conformation. The molecular structure shows a planar arrangement of the Ru(CO3) fragment (mean deviation of the best plane defined by Ru1, O1, C1, O2, O3 is 0.036 Å). As expected, the exocyclic C—O bond in the Ru(CO3) unit is with 1.242 (4) Å significantly shorter than the two endocyclic C—O bonds (C1—O1 = 1.326 (4) and C1—O2 = 1.309 (4) Å). The complex molecules as well as complex and solvent molecules are linked by C—H···Cl and C—H···O hydrogen bonds (Fig. 2).

The 31P-NMR spectrum of the title complex shows a singulett at 42.5 p.p.m., whereas the reduced complex [RuCl2(η6-C6H6){(C6H11)2PCH2C10H7)}] exhibits an upfield shift to 39.1 p.p.m..

Related literature top

For crystal structures of related carbonatophosphane ruthenium(II) complexes, see: Allen et al. (2009); Blosser et al. (2004); Davies et al. (2013); Dell'Amico et al. (2000); Demerseman et al. (2006); Drake et al. (2013). The starting complex [RuCl2(η6-C6H6)(C6H11)2PCH2C10H7)] was described by Gowrisankar et al. (2014).

Experimental top

At room temperature, a mixture consisting of [RuCl2(η6-C6H6){(C6H11)2P(1-methylnaphthyl)}] (20 mg, 0.034 mmol), NaHCO3(63 mg, 0.34 mmol) and methanol (5 ml) was stirred under argon in a Schlenk tube. The orange suspension changed to a yellow solution. The reaction was completed within 10 min and the solution was filtered over celite. The solvent was removed in vacuo and 18 mg (94%) of a yellow solid was obtained. Crystals suitable for X-ray analysis were grown from a CHCl3/heptane mixture at 245 K. 1H NMR (300 MHz, CDCl3) δ 8.18 (d, J = 8.6 Hz, 1H, naphthyl), 7.88–7.75 (m, 2H, naphthyl), 7.63–7.30 (m, 3H, naphthyl), 7.33 (m, 1H, naphthyl), 5.07 (s, 6H, benzene), 3.55 (d, J = 10.2 Hz, 2H, CH2), 2.14–1.95 (m, 4H, Cy), 1.95–1.79 (m, 4H, Cy), 1.79–1.65 (m, 4H, Cy), 1.67–1.47 (m, 2H, Cy), 1.32–1.01 (m, 8H, Cy). 31P{1H} NMR (121 MHz, CDCl3): δ 42.5.

Refinement top

H atoms were placed in idealized positions with d(C—H) = 0.95 - 1.00 Å (CH), 0.99 Å (CH2) and refined using a riding model with Uiso(H) fixed at 1.2Ueq(C). Contributions of further disordered solvent molecules were removed from the diffraction data with PLATON / SQUEEZE (Spek, 2009). SQUEEZE estimated the electron count in the void volume of 1149 Å3 to be 501; two voids are given. The highest peak in the final difference Fourier map is located 0.86 Å from Ru1 and the deepest hole 0.75 Å from Cl3.

Structure description top

The title compound was prepared in a two step synthesis: In the presence of 60 bar hydrogen, the benzene ruthenium dichloride dimer and the dicyclohexyl(1-naphthoyl)phosphane ligand react to give the [RuCl2(η6-C6H6){(C6H11)2PCH2C10H7)}] complex in 80% yield. Here, the carbonyl group of the ligand is reduced to a methylen unit (Gowrisankar et al., 2014). In the second step the reduced complex was carbonated at room temperature in methanol with 10 equivalent of NaHCO3 to yield the title compound, [Ru(CO3)(η6-C6H6){(C6H11)2PCH2C10H7)}], as a chloroform solvate after recrystallization from a CHCl3/heptane mixture. Related carbonatophosphane ruthenium complexes are known from the literature (Allen et al., 2009; Blosser et al., 2004; Davies et al., 2013; Dell'Amico et al., 2000; Demerseman et al., 2006; Drake et al., 2013).

The asymmetric unit contains one complex and one chloroform solvent molecule (Fig. 1). Contributions of two further strongly disordered solvent molecules (chloroform) were removed from the diffraction data with the SQUEEZE option in PLATON (Spek, 2009). The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand (C6H11)2P(CH2C10H7) in a piano-stool geometry. The phosphane ligand is linked through its P atom with a Ru—P bond length of 2.3705 (8) Å; both cyclohexyl rings at the P atom adopt a chair conformation. The molecular structure shows a planar arrangement of the Ru(CO3) fragment (mean deviation of the best plane defined by Ru1, O1, C1, O2, O3 is 0.036 Å). As expected, the exocyclic C—O bond in the Ru(CO3) unit is with 1.242 (4) Å significantly shorter than the two endocyclic C—O bonds (C1—O1 = 1.326 (4) and C1—O2 = 1.309 (4) Å). The complex molecules as well as complex and solvent molecules are linked by C—H···Cl and C—H···O hydrogen bonds (Fig. 2).

The 31P-NMR spectrum of the title complex shows a singulett at 42.5 p.p.m., whereas the reduced complex [RuCl2(η6-C6H6){(C6H11)2PCH2C10H7)}] exhibits an upfield shift to 39.1 p.p.m..

For crystal structures of related carbonatophosphane ruthenium(II) complexes, see: Allen et al. (2009); Blosser et al. (2004); Davies et al. (2013); Dell'Amico et al. (2000); Demerseman et al. (2006); Drake et al. (2013). The starting complex [RuCl2(η6-C6H6)(C6H11)2PCH2C10H7)] was described by Gowrisankar et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atoms at the 30% probability level for the displacement ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound showing hydrogen bonds as dashed lines.
(η6-Benzene)(carbonato-κ2O,O')[dicyclohexyl(naphthalen-1-ylmethyl)phosphane-κP]ruthenium(II) chloroform trisolvate top
Crystal data top
[Ru(CO3)(C6H6)(C23H31P)]·3CHCl3Dx = 1.563 Mg m3
Mr = 935.74Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9902 reflections
a = 22.1730 (4) Åθ = 3.7–66.2°
b = 15.1385 (3) ŵ = 9.40 mm1
c = 23.6954 (5) ÅT = 150 K
V = 7953.7 (3) Å3Needle, yellow
Z = 80.64 × 0.08 × 0.05 mm
F(000) = 3792
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6998 independent reflections
Radiation source: microfocus5815 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.062
Detector resolution: 8.3333 pixels mm-1θmax = 66.6°, θmin = 3.7°
ω and φ scansh = 2625
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1717
Tmin = 0.065, Tmax = 0.651l = 2827
68879 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.050P)2 + 8.4698P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
6998 reflectionsΔρmax = 1.17 e Å3
352 parametersΔρmin = 0.79 e Å3
Crystal data top
[Ru(CO3)(C6H6)(C23H31P)]·3CHCl3V = 7953.7 (3) Å3
Mr = 935.74Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 22.1730 (4) ŵ = 9.40 mm1
b = 15.1385 (3) ÅT = 150 K
c = 23.6954 (5) Å0.64 × 0.08 × 0.05 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5815 reflections with I > 2σ(I)
Tmin = 0.065, Tmax = 0.651Rint = 0.062
68879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.07Δρmax = 1.17 e Å3
6998 reflectionsΔρmin = 0.79 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C310.03361 (18)0.8411 (3)0.0554 (2)0.0638 (12)
H310.07320.81840.06950.077*
Cl10.00779 (7)0.92264 (10)0.10140 (6)0.0870 (4)
Cl20.04409 (5)0.88587 (10)0.01171 (6)0.0783 (4)
Cl30.01875 (5)0.75354 (8)0.05459 (7)0.0812 (4)
C10.18339 (13)0.1129 (2)0.06775 (15)0.0346 (7)
C20.1466 (2)0.1023 (3)0.0075 (2)0.0668 (14)
H20.12350.07400.03610.080*
C30.12336 (17)0.1126 (3)0.0464 (2)0.0598 (12)
H30.08360.09310.05440.072*
C40.15773 (19)0.1512 (2)0.0888 (2)0.0572 (11)
H40.14240.15370.12620.069*
C50.21390 (18)0.1860 (2)0.07708 (19)0.0509 (9)
H50.23620.21520.10570.061*
C60.23753 (16)0.1778 (2)0.02288 (19)0.0489 (9)
H60.27610.20220.01500.059*
C70.2066 (2)0.1351 (3)0.01994 (19)0.0580 (11)
H70.22410.12760.05620.070*
C80.31201 (14)0.1025 (2)0.11038 (15)0.0371 (7)
H8A0.27700.10580.13620.045*
H8B0.30360.14380.07890.045*
C90.36532 (14)0.1397 (2)0.14218 (16)0.0387 (8)
C100.41559 (16)0.1674 (3)0.1131 (2)0.0533 (10)
H100.41720.16100.07330.064*
C110.46469 (19)0.2052 (3)0.1421 (3)0.0810 (18)
H110.49890.22470.12150.097*
C120.4639 (2)0.2142 (4)0.1988 (3)0.0815 (17)
H120.49800.23870.21740.098*
C130.4139 (2)0.1880 (3)0.2304 (2)0.0621 (12)
C140.4120 (3)0.1993 (4)0.2895 (2)0.0862 (18)
H140.44680.22100.30840.103*
C150.3619 (4)0.1801 (4)0.3205 (3)0.101 (2)
H150.36150.18870.36020.121*
C160.3109 (3)0.1471 (4)0.2924 (2)0.0869 (17)
H160.27570.13370.31360.104*
C170.3106 (2)0.1339 (3)0.23569 (19)0.0598 (11)
H170.27510.11200.21820.072*
C180.36244 (16)0.1520 (2)0.20162 (17)0.0443 (8)
C190.34391 (14)0.0887 (2)0.13099 (14)0.0356 (7)
H190.34040.14820.11290.043*
C200.30672 (17)0.0935 (2)0.18484 (16)0.0461 (8)
H20A0.31110.03760.20620.055*
H20B0.26360.10100.17520.055*
C210.3276 (2)0.1705 (3)0.22123 (19)0.0596 (11)
H21A0.30370.17210.25650.072*
H21B0.32080.22670.20080.072*
C220.3943 (2)0.1608 (4)0.2353 (2)0.0681 (13)
H22A0.40770.21260.25750.082*
H22B0.40030.10740.25870.082*
C230.43187 (18)0.1536 (3)0.18300 (19)0.0576 (11)
H23A0.47460.14450.19370.069*
H23B0.42920.20960.16150.069*
C240.41101 (15)0.0771 (2)0.14555 (17)0.0450 (8)
H24A0.41700.02040.16560.054*
H24B0.43520.07580.11040.054*
C250.36856 (15)0.0046 (2)0.02310 (15)0.0390 (7)
H250.40620.02060.03990.047*
C260.38481 (18)0.0969 (3)0.00015 (18)0.0537 (10)
H26A0.34880.12360.01800.064*
H26B0.39750.13570.03130.064*
C270.4356 (2)0.0903 (4)0.0434 (2)0.0668 (13)
H27A0.44480.14990.05840.080*
H27B0.47240.06740.02480.080*
C280.4183 (2)0.0297 (4)0.0917 (2)0.0828 (17)
H28A0.38430.05590.11290.099*
H28B0.45290.02360.11780.099*
C290.4004 (2)0.0598 (4)0.0700 (2)0.0771 (16)
H29A0.43630.08900.05360.092*
H29B0.38650.09630.10220.092*
C300.35006 (18)0.0565 (3)0.02506 (18)0.0586 (11)
H30A0.31230.03470.04240.070*
H30B0.34260.11660.01020.070*
O10.18027 (9)0.05130 (14)0.10738 (10)0.0363 (5)
O20.20684 (9)0.08313 (15)0.02076 (10)0.0365 (5)
O30.16578 (10)0.19007 (15)0.07473 (12)0.0455 (6)
P10.31196 (3)0.00947 (5)0.08005 (4)0.03076 (17)
Ru10.21220 (2)0.04581 (2)0.05258 (2)0.03286 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C310.040 (2)0.064 (3)0.088 (3)0.0052 (19)0.009 (2)0.016 (2)
Cl10.0890 (9)0.0875 (9)0.0845 (9)0.0228 (7)0.0002 (7)0.0021 (7)
Cl20.0510 (6)0.1074 (10)0.0766 (8)0.0010 (6)0.0000 (5)0.0143 (7)
Cl30.0556 (6)0.0563 (6)0.1317 (12)0.0060 (5)0.0115 (7)0.0108 (7)
C10.0250 (14)0.0301 (17)0.049 (2)0.0032 (12)0.0052 (13)0.0029 (14)
C20.068 (3)0.038 (2)0.094 (4)0.0077 (19)0.050 (3)0.008 (2)
C30.0327 (18)0.037 (2)0.110 (4)0.0105 (15)0.002 (2)0.016 (2)
C40.059 (2)0.0327 (19)0.080 (3)0.0206 (17)0.011 (2)0.0012 (19)
C50.063 (2)0.0221 (16)0.068 (3)0.0063 (15)0.007 (2)0.0026 (16)
C60.0422 (18)0.0268 (17)0.078 (3)0.0011 (14)0.0052 (19)0.0159 (17)
C70.083 (3)0.039 (2)0.052 (2)0.0145 (19)0.008 (2)0.0156 (18)
C80.0340 (16)0.0285 (15)0.049 (2)0.0033 (13)0.0107 (14)0.0073 (14)
C90.0334 (16)0.0254 (15)0.057 (2)0.0059 (12)0.0077 (15)0.0074 (14)
C100.043 (2)0.0402 (19)0.076 (3)0.0020 (16)0.0048 (19)0.0169 (19)
C110.038 (2)0.050 (2)0.154 (6)0.0098 (18)0.013 (3)0.039 (3)
C120.046 (2)0.074 (3)0.125 (5)0.000 (2)0.032 (3)0.047 (3)
C130.064 (3)0.046 (2)0.077 (3)0.0015 (19)0.033 (2)0.009 (2)
C140.121 (5)0.062 (3)0.075 (4)0.013 (3)0.055 (4)0.006 (3)
C150.181 (7)0.065 (3)0.058 (3)0.030 (4)0.031 (4)0.002 (3)
C160.138 (5)0.065 (3)0.058 (3)0.028 (3)0.009 (3)0.008 (2)
C170.075 (3)0.046 (2)0.059 (3)0.012 (2)0.005 (2)0.0082 (19)
C180.0495 (19)0.0279 (16)0.055 (2)0.0054 (14)0.0157 (17)0.0057 (15)
C190.0371 (16)0.0287 (15)0.0411 (18)0.0097 (13)0.0055 (14)0.0017 (14)
C200.0454 (18)0.044 (2)0.049 (2)0.0112 (16)0.0032 (16)0.0035 (17)
C210.066 (3)0.061 (3)0.053 (2)0.015 (2)0.003 (2)0.016 (2)
C220.069 (3)0.077 (3)0.057 (3)0.029 (2)0.015 (2)0.012 (2)
C230.052 (2)0.054 (2)0.066 (3)0.0213 (18)0.019 (2)0.003 (2)
C240.0366 (17)0.0430 (19)0.056 (2)0.0071 (15)0.0097 (16)0.0043 (16)
C250.0353 (16)0.0423 (18)0.0395 (18)0.0049 (14)0.0014 (14)0.0034 (15)
C260.053 (2)0.054 (2)0.054 (2)0.0086 (18)0.0118 (18)0.0227 (19)
C270.061 (3)0.077 (3)0.062 (3)0.016 (2)0.020 (2)0.025 (2)
C280.064 (3)0.118 (5)0.067 (3)0.037 (3)0.020 (2)0.025 (3)
C290.056 (3)0.108 (4)0.067 (3)0.024 (3)0.001 (2)0.030 (3)
C300.048 (2)0.081 (3)0.047 (2)0.014 (2)0.0018 (18)0.016 (2)
O10.0323 (11)0.0287 (11)0.0479 (14)0.0004 (8)0.0041 (10)0.0046 (10)
O20.0351 (11)0.0357 (12)0.0387 (13)0.0009 (9)0.0075 (9)0.0021 (10)
O30.0351 (11)0.0276 (12)0.0739 (18)0.0011 (9)0.0048 (12)0.0023 (12)
P10.0283 (4)0.0257 (4)0.0383 (4)0.0019 (3)0.0040 (3)0.0038 (3)
Ru10.02876 (14)0.02455 (14)0.04527 (16)0.00038 (8)0.00458 (10)0.00306 (10)
Geometric parameters (Å, º) top
C31—Cl21.744 (5)C16—C171.359 (7)
C31—Cl11.743 (5)C16—H160.9500
C31—Cl31.762 (4)C17—C181.431 (6)
C31—H311.0000C17—H170.9500
C1—O31.242 (4)C19—C201.521 (5)
C1—O21.309 (4)C19—C241.537 (4)
C1—O11.326 (4)C19—P11.844 (3)
C1—Ru12.513 (3)C19—H191.0000
C2—C31.386 (7)C20—C211.522 (5)
C2—C71.451 (7)C20—H20A0.9900
C2—Ru12.209 (4)C20—H20B0.9900
C2—H20.9500C21—C221.524 (6)
C3—C41.390 (7)C21—H21A0.9900
C3—Ru12.219 (4)C21—H21B0.9900
C3—H30.9500C22—C231.497 (6)
C4—C51.380 (6)C22—H22A0.9900
C4—Ru12.177 (4)C22—H22B0.9900
C4—H40.9500C23—C241.531 (5)
C5—C61.393 (6)C23—H23A0.9900
C5—Ru12.200 (4)C23—H23B0.9900
C5—H50.9500C24—H24A0.9900
C6—C71.384 (6)C24—H24B0.9900
C6—Ru12.192 (3)C25—C301.525 (5)
C6—H60.9500C25—C261.545 (5)
C7—Ru12.190 (4)C25—P11.844 (3)
C7—H70.9500C25—H251.0000
C8—C91.511 (4)C26—C271.526 (5)
C8—P11.841 (3)C26—H26A0.9900
C8—H8A0.9900C26—H26B0.9900
C8—H8B0.9900C27—C281.516 (8)
C9—C101.376 (5)C27—H27A0.9900
C9—C181.422 (5)C27—H27B0.9900
C10—C111.409 (6)C28—C291.502 (8)
C10—H100.9500C28—H28A0.9900
C11—C121.349 (8)C28—H28B0.9900
C11—H110.9500C29—C301.544 (6)
C12—C131.397 (8)C29—H29A0.9900
C12—H120.9500C29—H29B0.9900
C13—C141.412 (8)C30—H30A0.9900
C13—C181.437 (5)C30—H30B0.9900
C14—C151.363 (9)O1—Ru12.085 (2)
C14—H140.9500O2—Ru12.096 (2)
C15—C161.404 (9)P1—Ru12.3705 (8)
C15—H150.9500
Cl2—C31—Cl1109.8 (3)C23—C22—H22B109.3
Cl2—C31—Cl3111.7 (3)C21—C22—H22B109.3
Cl1—C31—Cl3108.8 (2)H22A—C22—H22B108.0
Cl2—C31—H31108.8C22—C23—C24111.5 (3)
Cl1—C31—H31108.8C22—C23—H23A109.3
Cl3—C31—H31108.8C24—C23—H23A109.3
O3—C1—O2124.2 (3)C22—C23—H23B109.3
O3—C1—O1123.4 (3)C24—C23—H23B109.3
O2—C1—O1112.4 (3)H23A—C23—H23B108.0
O3—C1—Ru1176.4 (2)C23—C24—C19109.6 (3)
O2—C1—Ru156.47 (15)C23—C24—H24A109.8
O1—C1—Ru156.03 (15)C19—C24—H24A109.8
C3—C2—C7119.3 (4)C23—C24—H24B109.8
C3—C2—Ru172.2 (2)C19—C24—H24B109.8
C7—C2—Ru170.1 (2)H24A—C24—H24B108.2
C3—C2—H2120.4C30—C25—C26110.1 (3)
C7—C2—H2120.4C30—C25—P1112.9 (3)
Ru1—C2—H2129.8C26—C25—P1112.5 (3)
C2—C3—C4120.7 (4)C30—C25—H25107.0
C2—C3—Ru171.3 (2)C26—C25—H25107.0
C4—C3—Ru169.9 (2)P1—C25—H25107.0
C2—C3—H3119.7C27—C26—C25110.6 (3)
C4—C3—H3119.7C27—C26—H26A109.5
Ru1—C3—H3132.0C25—C26—H26A109.5
C5—C4—C3120.7 (4)C27—C26—H26B109.5
C5—C4—Ru172.5 (2)C25—C26—H26B109.5
C3—C4—Ru173.2 (2)H26A—C26—H26B108.1
C5—C4—H4119.7C28—C27—C26111.1 (4)
C3—C4—H4119.7C28—C27—H27A109.4
Ru1—C4—H4126.5C26—C27—H27A109.4
C4—C5—C6119.4 (4)C28—C27—H27B109.4
C4—C5—Ru170.7 (2)C26—C27—H27B109.4
C6—C5—Ru171.2 (2)H27A—C27—H27B108.0
C4—C5—H5120.3C29—C28—C27110.8 (4)
C6—C5—H5120.3C29—C28—H28A109.5
Ru1—C5—H5130.3C27—C28—H28A109.5
C7—C6—C5122.1 (4)C29—C28—H28B109.5
C7—C6—Ru171.5 (2)C27—C28—H28B109.5
C5—C6—Ru171.9 (2)H28A—C28—H28B108.1
C7—C6—H6119.0C28—C29—C30113.4 (4)
C5—C6—H6119.0C28—C29—H29A108.9
Ru1—C6—H6130.4C30—C29—H29A108.9
C6—C7—C2117.8 (4)C28—C29—H29B108.9
C6—C7—Ru171.6 (2)C30—C29—H29B108.9
C2—C7—Ru171.4 (2)H29A—C29—H29B107.7
C6—C7—H7121.1C25—C30—C29110.0 (4)
C2—C7—H7121.1C25—C30—H30A109.7
Ru1—C7—H7127.8C29—C30—H30A109.7
C9—C8—P1122.6 (2)C25—C30—H30B109.7
C9—C8—H8A106.7C29—C30—H30B109.7
P1—C8—H8A106.7H30A—C30—H30B108.2
C9—C8—H8B106.7C1—O1—Ru192.15 (19)
P1—C8—H8B106.7C1—O2—Ru192.16 (19)
H8A—C8—H8B106.6C8—P1—C19110.09 (15)
C10—C9—C18119.5 (3)C8—P1—C25104.37 (16)
C10—C9—C8119.9 (4)C19—P1—C25104.11 (15)
C18—C9—C8120.5 (3)C8—P1—Ru1108.75 (10)
C9—C10—C11120.4 (5)C19—P1—Ru1112.78 (11)
C9—C10—H10119.8C25—P1—Ru1116.32 (11)
C11—C10—H10119.8O1—Ru1—O263.14 (9)
C12—C11—C10121.1 (5)O1—Ru1—C494.77 (13)
C12—C11—H11119.4O2—Ru1—C4142.45 (13)
C10—C11—H11119.4O1—Ru1—C7154.77 (14)
C11—C12—C13121.0 (4)O2—Ru1—C7106.83 (13)
C11—C12—H12119.5C4—Ru1—C779.91 (17)
C13—C12—H12119.5O1—Ru1—C6158.39 (14)
C12—C13—C14121.5 (5)O2—Ru1—C6138.42 (14)
C12—C13—C18118.9 (4)C4—Ru1—C666.45 (16)
C14—C13—C18119.6 (5)C7—Ru1—C636.83 (16)
C15—C14—C13122.2 (5)O1—Ru1—C5121.43 (13)
C15—C14—H14118.9O2—Ru1—C5173.76 (13)
C13—C14—H14118.9C4—Ru1—C536.75 (15)
C14—C15—C16118.5 (5)C7—Ru1—C567.20 (16)
C14—C15—H15120.7C6—Ru1—C536.98 (16)
C16—C15—H15120.7O1—Ru1—C2116.80 (15)
C17—C16—C15121.6 (6)O2—Ru1—C295.23 (13)
C17—C16—H16119.2C4—Ru1—C266.72 (19)
C15—C16—H16119.2C7—Ru1—C238.51 (18)
C16—C17—C18121.7 (5)C6—Ru1—C266.96 (15)
C16—C17—H17119.1C5—Ru1—C278.94 (16)
C18—C17—H17119.1O1—Ru1—C393.51 (13)
C9—C18—C17124.7 (3)O2—Ru1—C3110.50 (13)
C9—C18—C13119.0 (4)C4—Ru1—C336.84 (18)
C17—C18—C13116.3 (4)C7—Ru1—C367.43 (18)
C20—C19—C24110.0 (3)C6—Ru1—C377.92 (14)
C20—C19—P1111.8 (2)C5—Ru1—C366.00 (15)
C24—C19—P1116.4 (2)C2—Ru1—C336.48 (18)
C20—C19—H19106.0O1—Ru1—P188.99 (6)
C24—C19—H19106.0O2—Ru1—P186.30 (6)
P1—C19—H19106.0C4—Ru1—P1125.43 (13)
C19—C20—C21110.3 (3)C7—Ru1—P1114.30 (13)
C19—C20—H20A109.6C6—Ru1—P193.47 (9)
C21—C20—H20A109.6C5—Ru1—P197.78 (11)
C19—C20—H20B109.6C2—Ru1—P1151.84 (15)
C21—C20—H20B109.6C3—Ru1—P1162.24 (13)
H20A—C20—H20B108.1O1—Ru1—C131.82 (10)
C20—C21—C22110.2 (4)O2—Ru1—C131.38 (10)
C20—C21—H21A109.6C4—Ru1—C1120.25 (14)
C22—C21—H21A109.6C7—Ru1—C1133.50 (15)
C20—C21—H21B109.6C6—Ru1—C1169.46 (15)
C22—C21—H21B109.6C5—Ru1—C1152.76 (14)
H21A—C21—H21B108.1C2—Ru1—C1107.16 (13)
C23—C22—C21111.5 (4)C3—Ru1—C1102.69 (12)
C23—C22—H22A109.3P1—Ru1—C188.63 (7)
C21—C22—H22A109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.513.179 (5)127
C29—H29A···Cl3ii0.992.683.457 (6)135
C31—H31···O3iii1.002.063.004 (5)156
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.513.179 (5)127.2
C29—H29A···Cl3ii0.992.683.457 (6)135.2
C31—H31···O3iii1.002.063.004 (5)156.2
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z.
 

References

First citationAllen, O. R., Dalgarno, S. J., Field, L. D., Jensen, P. & Willis, A. C. (2009). Organometallics, 28, 2385–2390.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlosser, P. W., Gallucci, J. C. & Wojcicki, A. (2004). J. Mol. Catal. A Chem. 224, 133–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavies, C. J. E., Lowe, J. P., Mahon, M. F., Poulten, R. C. & Whittlesey, M. K. (2013). Organometallics, 32, 4927–4937.  Web of Science CSD CrossRef CAS Google Scholar
First citationDell'Amico, D. B., Calderazzo, F., Labella, L. & Marchetti, F. (2000). J. Organomet. Chem. 596, 144–151.  CAS Google Scholar
First citationDemerseman, B., Mbaye, M. D., Sémeril, D., Toupet, L., Bruneau, C. & Dixneuf, P. H. (2006). Eur. J. Inorg. Chem. pp. 1174–1181.  Web of Science CSD CrossRef Google Scholar
First citationDrake, J. L., Manna, C. M. & Byers, J. A. (2013). Organometallics, 32, 6891–6894.  Web of Science CSD CrossRef CAS Google Scholar
First citationGowrisankar, S., Neumann, H., Spannenberg, A. & Beller, M. (2014). Organometallics, 33, 94–99.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds