organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(4-Acetyl­phen­yl)amino]-2-methyl­­idene-4-oxo­butanoic acid

aDepartment of Studies in Chemistry, Mangalore University, Mangaloagangotri 574 199, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, cDepartment of Studies in Chemistry, Industrial Chemistry Section, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 19 May 2014; accepted 30 May 2014; online 7 June 2014)

In the title compound, C13H13NO4, the N—C(=O) bond length of 1.354 (2) Å is indicative of amide-type resonance. The dihedral angle between the mean planes of the benzene ring and oxo­amine group is 36.4 (3)°, while the mean plane of the 2-methyl­idene group is inclined by 84.2 (01)° from that of the oxo­amine group. In the crystal, classical O—H⋯O hydrogen bonds formed by the carb­oxy­lic acid groups and weak N—H⋯O weak inter­actions formed by the amide groups and supported by weak C—H⋯O inter­actions between the 2-methyl­idene, phenyl and acetyl groups with the carb­oxy­lic acid, oxo­amine and acetyl O atoms, together link the mol­ecules into dimeric chains along [010]. The O—H⋯O hydrogen bonds form R22(8) graph-set motifs.

Related literature

For the pharmacological activity of amide derivatives, see: Galanakis et al. (2004[Galanakis, D., Kourounakis, A. P., Tsiakitzis, K. C., Doulgkeris, C., Rekka, E. A., Gavalas, A., Kravaritou, C., Christos, C. & Kourounakis, P. N. (2004). Bioorg. Med. Chem. Lett. 14, 3639-3643.]); Kumar & Knaus (1993[Kumar, P. & Knaus, E. E. (1993). Eur. J. Med. Chem. 28, 881-885.]); Ban et al. (1998[Ban, M., Taguchi, H., Katushima, T., Takahashi, M., Shinoda, K., Watanabe, A. & Tominaga, T. (1998). Bioorg. Med. Chem. 6, 1069-1076.]); Ukrainets et al. (2006[Ukrainets, I. V., Sidorenko, L. V., Petrushovo, L. A. & Gorokhova, O. V. (2006). Chem. Heterocycl. Comput. 42, 64-69.]), Lesyk & Zimenkovsky (2004[Lesyk, R. & Zimenkovsky, B. (2004). Curr. Org. Chem. 8, 1547-1578.]); Gududuru et al. (2004[Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289-5293.]). For related structures, see: Nayak et al. (2013a[Nayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013a). Acta Cryst. E69, o83.],b[Nayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013a). Acta Cryst. E69, o83.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO4

  • Mr = 247.24

  • Triclinic, [P \overline 1]

  • a = 5.0164 (5) Å

  • b = 5.2908 (4) Å

  • c = 21.8464 (18) Å

  • α = 92.833 (6)°

  • β = 90.315 (7)°

  • γ = 96.222 (7)°

  • V = 575.67 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.89 mm−1

  • T = 173 K

  • 0.42 × 0.22 × 0.12 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.756, Tmax = 1.000

  • 3374 measured reflections

  • 2168 independent reflections

  • 1934 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.134

  • S = 1.05

  • 2168 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.97 (5) 1.66 (5) 2.6262 (17) 174 (4)
N1—H1⋯O1ii 0.88 2.29 3.1039 (17) 154
C5—H5B⋯O2iii 1.00 (3) 2.48 (3) 3.434 (2) 160 (2)
C7—H7⋯O1ii 0.95 2.56 3.254 (2) 130
C13—H13A⋯O4iv 0.98 2.50 3.465 (2) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) -x, -y, -z+1; (iv) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Amide bonds play a major role in the elaboration and composition of biological systems, which are the main chemical bonds that link amino acid building blocks together to give proteins. Amide bonds are not limited to biological systems and are indeed present in a huge array of molecules, including major marketed drugs. Amide derivatives possessing anti-inflammatory (Galanakis et al., 2004; Kumar et al., 1993; Ban et al., 1998), antimicrobial (Ukrainets et al., 2006), anti-tubercular (Lesyk et al., 2004) and antiproliferative (Gududuru et al., 2004) activities are reported in the literature. Crystal structures of some amide derivatives related to the title compound include, viz., 4-(4-iodoanilino)-2-methylene-4-oxobutanoic acid and 4-(3-fluoro-4-methylanilino)-2-methylidene-4-oxobutanoic acid (Nayak et al., 2013a,b). Hence in view of its potential pharmacological importance, the title compound 4-[(4-acetylphenyl)amino]-2-methylidene-4-oxobutanoic acid, C13H13NO4, was synthesized from 3-methylidenedihydrofuran-2,5-dione with good yields and its crystal structure is reported here.

In the title compound, The C=C bond is present as its anti-Saytzeff tautomer. The N–C(=O) bond length of 1.354 (2)A (A) is indicative of amide-type resonance (Fig. 1). All other bond lengths are in normal ranges (Allen et al., 1987). In the crystal, classical O—H···O hydrogen bonds formed by the carboxylic groups and N—H···O weak intermolecular interactions formed by the amide groups and supported additionally by weak C—H···O intermolecular interactions between the 2-methylidene, phenyl and acetyl groups with the carboxylic, oxoamine and acetyl oxygen atoms (Table 1), together link the molecules into dimeric chains along [0 1 0] (Fig. 2). The O—H···O hydrogen bonds form R22(8) graph-set motifs. The dihedral angle between the mean planes of the phenyl ring (C6–C10) and oxoamine group (C1/C2/O1/N1) is 36.4 (3)°, while the mean plane of the 2-methylidene group (C2–C5) is further inclined by 84.2 (1)° from that of the oxoamine group.

Related literature top

For the pharmacological activity of amide derivatives, see: Galanakis et al. (2004); Kumar & Knaus (1993); Ban et al. (1998); Ukrainets et al. (2006), Lesyk & Zimenkovsky (2004); Gududuru et al. (2004). For related structures, see: Nayak et al. (2013a,b). For standard bond lengths, see: Allen et al. (1987).

Experimental top

3-Methylidenedihydrofuran-2,5-dione (0.112 g, 1 mmol) was dissolved in a 30 ml acetone and stirred at ambient temperature. 4-Aminoacetophenone (0.135 g, 1 mmol) in 20 mL acetone was added over 30 mins (Fig. 3). After sirring for 1.5 h the slurry was filtered. The solid was washed with acetone and dried to give the title compound, C13H13NO4. Single crystals were grown from methanol and toluene (1:1) mixture by the slow evaporation method (yield. 0.248 g, 87.32%, m.p.: 461–463 K).

Refinement top

The OH atom was located by a difference map and refined isotropocally. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.98 - 1.00Å (CH2), 0.98Å (CH3) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me was refined as a rotating group.

Structure description top

Amide bonds play a major role in the elaboration and composition of biological systems, which are the main chemical bonds that link amino acid building blocks together to give proteins. Amide bonds are not limited to biological systems and are indeed present in a huge array of molecules, including major marketed drugs. Amide derivatives possessing anti-inflammatory (Galanakis et al., 2004; Kumar et al., 1993; Ban et al., 1998), antimicrobial (Ukrainets et al., 2006), anti-tubercular (Lesyk et al., 2004) and antiproliferative (Gududuru et al., 2004) activities are reported in the literature. Crystal structures of some amide derivatives related to the title compound include, viz., 4-(4-iodoanilino)-2-methylene-4-oxobutanoic acid and 4-(3-fluoro-4-methylanilino)-2-methylidene-4-oxobutanoic acid (Nayak et al., 2013a,b). Hence in view of its potential pharmacological importance, the title compound 4-[(4-acetylphenyl)amino]-2-methylidene-4-oxobutanoic acid, C13H13NO4, was synthesized from 3-methylidenedihydrofuran-2,5-dione with good yields and its crystal structure is reported here.

In the title compound, The C=C bond is present as its anti-Saytzeff tautomer. The N–C(=O) bond length of 1.354 (2)A (A) is indicative of amide-type resonance (Fig. 1). All other bond lengths are in normal ranges (Allen et al., 1987). In the crystal, classical O—H···O hydrogen bonds formed by the carboxylic groups and N—H···O weak intermolecular interactions formed by the amide groups and supported additionally by weak C—H···O intermolecular interactions between the 2-methylidene, phenyl and acetyl groups with the carboxylic, oxoamine and acetyl oxygen atoms (Table 1), together link the molecules into dimeric chains along [0 1 0] (Fig. 2). The O—H···O hydrogen bonds form R22(8) graph-set motifs. The dihedral angle between the mean planes of the phenyl ring (C6–C10) and oxoamine group (C1/C2/O1/N1) is 36.4 (3)°, while the mean plane of the 2-methylidene group (C2–C5) is further inclined by 84.2 (1)° from that of the oxoamine group.

For the pharmacological activity of amide derivatives, see: Galanakis et al. (2004); Kumar & Knaus (1993); Ban et al. (1998); Ukrainets et al. (2006), Lesyk & Zimenkovsky (2004); Gududuru et al. (2004). For related structures, see: Nayak et al. (2013a,b). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of C13H13NO4, showing the labeling scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for C13H13NO4, viewed along the a axis. Dashed lines indicate O—H···O hydrogen bonds in an R22[8] motif format and weak N—H···O, C—H···O intermolecular interactions together linking the molecules into dimeric chains along [0 1 0]. H atoms not involved in hydrogen bonding have been removed for clarity.
[Figure 3] Fig. 3. Synthesis of C13H13NO4.
4-[(4-Acetylphenyl)amino]-2-methylidene-4-oxobutanoic acid top
Crystal data top
C13H13NO4Z = 2
Mr = 247.24F(000) = 260
Triclinic, P1Dx = 1.426 Mg m3
a = 5.0164 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 5.2908 (4) ÅCell parameters from 1583 reflections
c = 21.8464 (18) Åθ = 6.1–71.3°
α = 92.833 (6)°µ = 0.89 mm1
β = 90.315 (7)°T = 173 K
γ = 96.222 (7)°Prism, colourless
V = 575.67 (8) Å30.42 × 0.22 × 0.12 mm
Data collection top
Agilent Eos Gemini
diffractometer
2168 independent reflections
Radiation source: Enhance (Cu) X-ray Source1934 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.025
ω scansθmax = 71.3°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 56
Tmin = 0.756, Tmax = 1.000k = 46
3374 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.1341P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2168 reflectionsΔρmax = 0.31 e Å3
176 parametersΔρmin = 0.29 e Å3
0 restraints
Crystal data top
C13H13NO4γ = 96.222 (7)°
Mr = 247.24V = 575.67 (8) Å3
Triclinic, P1Z = 2
a = 5.0164 (5) ÅCu Kα radiation
b = 5.2908 (4) ŵ = 0.89 mm1
c = 21.8464 (18) ÅT = 173 K
α = 92.833 (6)°0.42 × 0.22 × 0.12 mm
β = 90.315 (7)°
Data collection top
Agilent Eos Gemini
diffractometer
2168 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
1934 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 1.000Rint = 0.025
3374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
2168 reflectionsΔρmin = 0.29 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3166 (2)0.3573 (2)0.70834 (5)0.0287 (3)
O20.2328 (3)0.2934 (2)0.51283 (6)0.0333 (3)
O30.3843 (3)0.6459 (2)0.56835 (6)0.0322 (3)
H30.529 (9)0.681 (8)0.540 (2)0.117 (15)*
O41.3191 (3)1.1439 (2)0.91390 (6)0.0347 (3)
N10.3525 (3)0.7850 (2)0.72813 (6)0.0238 (3)
H10.29270.92620.71690.029*
C10.2405 (3)0.5648 (3)0.70006 (7)0.0212 (3)
C20.0055 (3)0.5917 (3)0.65734 (7)0.0236 (3)
H2A0.16430.56310.68010.028*
H2B0.02050.76690.64280.028*
C30.0012 (3)0.4045 (3)0.60311 (7)0.0230 (3)
C40.2171 (3)0.4458 (3)0.55784 (7)0.0235 (3)
C50.1886 (4)0.2087 (3)0.59389 (8)0.0302 (4)
H5A0.335 (4)0.171 (4)0.6228 (10)0.030 (5)*
H5B0.180 (5)0.095 (5)0.5563 (12)0.051 (7)*
C60.5569 (3)0.8108 (3)0.77393 (7)0.0216 (3)
C70.7359 (3)1.0308 (3)0.77582 (8)0.0257 (4)
H70.72331.15410.74610.031*
C80.9319 (3)1.0702 (3)0.82088 (8)0.0254 (4)
H81.05341.22110.82180.030*
C90.9549 (3)0.8921 (3)0.86518 (7)0.0223 (3)
C100.7744 (3)0.6724 (3)0.86265 (7)0.0255 (4)
H100.78730.54880.89230.031*
C110.5764 (3)0.6305 (3)0.81778 (8)0.0255 (4)
H110.45450.47990.81680.031*
C121.1696 (3)0.9468 (3)0.91332 (7)0.0253 (4)
C131.1922 (4)0.7541 (3)0.96093 (8)0.0343 (4)
H13A1.23160.59270.94090.051*
H13B1.02270.72750.98300.051*
H13C1.33710.81640.98990.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0355 (7)0.0221 (6)0.0288 (6)0.0058 (5)0.0079 (5)0.0017 (4)
O20.0372 (7)0.0338 (7)0.0269 (6)0.0017 (5)0.0063 (5)0.0077 (5)
O30.0316 (7)0.0325 (7)0.0301 (7)0.0053 (5)0.0045 (5)0.0039 (5)
O40.0393 (7)0.0265 (6)0.0362 (7)0.0048 (5)0.0101 (5)0.0006 (5)
N10.0264 (7)0.0206 (6)0.0253 (7)0.0068 (5)0.0025 (5)0.0003 (5)
C10.0228 (8)0.0233 (8)0.0178 (7)0.0037 (6)0.0017 (6)0.0009 (6)
C20.0227 (8)0.0266 (8)0.0223 (8)0.0067 (6)0.0002 (6)0.0004 (6)
C30.0238 (8)0.0249 (8)0.0212 (8)0.0057 (6)0.0024 (6)0.0023 (6)
C40.0258 (8)0.0243 (7)0.0206 (7)0.0031 (6)0.0027 (6)0.0009 (6)
C50.0304 (9)0.0330 (9)0.0262 (8)0.0001 (7)0.0015 (7)0.0001 (7)
C60.0230 (8)0.0213 (7)0.0206 (7)0.0047 (6)0.0018 (6)0.0025 (6)
C70.0302 (9)0.0217 (8)0.0257 (8)0.0038 (6)0.0007 (6)0.0038 (6)
C80.0264 (8)0.0210 (7)0.0281 (8)0.0001 (6)0.0007 (6)0.0016 (6)
C90.0240 (8)0.0219 (7)0.0212 (8)0.0044 (6)0.0016 (6)0.0026 (6)
C100.0328 (9)0.0216 (7)0.0218 (8)0.0016 (6)0.0001 (6)0.0019 (6)
C110.0286 (8)0.0218 (7)0.0251 (8)0.0014 (6)0.0000 (6)0.0003 (6)
C120.0288 (8)0.0224 (8)0.0245 (8)0.0038 (6)0.0006 (6)0.0030 (6)
C130.0427 (10)0.0312 (9)0.0281 (9)0.0000 (7)0.0097 (7)0.0027 (7)
Geometric parameters (Å, º) top
O1—C11.222 (2)C6—C71.389 (2)
O2—C41.249 (2)C6—C111.395 (2)
O3—H30.97 (5)C7—H70.9500
O3—C41.288 (2)C7—C81.380 (2)
O4—C121.216 (2)C8—H80.9500
N1—H10.8800C8—C91.397 (2)
N1—C11.354 (2)C9—C101.392 (2)
N1—C61.420 (2)C9—C121.497 (2)
C1—C21.523 (2)C10—H100.9500
C2—H2A0.9900C10—C111.385 (2)
C2—H2B0.9900C11—H110.9500
C2—C31.504 (2)C12—C131.504 (2)
C3—C41.485 (2)C13—H13A0.9800
C3—C51.328 (2)C13—H13B0.9800
C5—H5A0.98 (2)C13—H13C0.9800
C5—H5B1.00 (3)
C4—O3—H3118 (2)C6—C7—H7120.0
C1—N1—H1116.8C8—C7—C6120.04 (15)
C1—N1—C6126.47 (13)C8—C7—H7120.0
C6—N1—H1116.8C7—C8—H8119.4
O1—C1—N1123.53 (14)C7—C8—C9121.16 (15)
O1—C1—C2121.41 (14)C9—C8—H8119.4
N1—C1—C2115.05 (13)C8—C9—C12118.71 (15)
C1—C2—H2A109.4C10—C9—C8118.15 (15)
C1—C2—H2B109.4C10—C9—C12123.14 (14)
H2A—C2—H2B108.0C9—C10—H10119.3
C3—C2—C1111.32 (12)C11—C10—C9121.32 (15)
C3—C2—H2A109.4C11—C10—H10119.3
C3—C2—H2B109.4C6—C11—H11120.2
C4—C3—C2116.83 (14)C10—C11—C6119.64 (15)
C5—C3—C2123.91 (15)C10—C11—H11120.2
C5—C3—C4119.26 (15)O4—C12—C9120.33 (15)
O2—C4—O3123.36 (16)O4—C12—C13121.36 (16)
O2—C4—C3120.94 (15)C9—C12—C13118.30 (14)
O3—C4—C3115.70 (14)C12—C13—H13A109.5
C3—C5—H5A122.5 (13)C12—C13—H13B109.5
C3—C5—H5B118.9 (15)C12—C13—H13C109.5
H5A—C5—H5B118.5 (19)H13A—C13—H13B109.5
C7—C6—N1117.63 (14)H13A—C13—H13C109.5
C7—C6—C11119.68 (15)H13B—C13—H13C109.5
C11—C6—N1122.63 (14)
O1—C1—C2—C335.3 (2)C6—N1—C1—C2174.03 (14)
N1—C1—C2—C3145.67 (14)C6—C7—C8—C90.0 (3)
N1—C6—C7—C8177.47 (14)C7—C6—C11—C100.1 (2)
N1—C6—C11—C10177.45 (14)C7—C8—C9—C100.1 (2)
C1—N1—C6—C7148.44 (16)C7—C8—C9—C12179.32 (14)
C1—N1—C6—C1134.2 (2)C8—C9—C10—C110.2 (2)
C1—C2—C3—C468.77 (17)C8—C9—C12—O40.6 (2)
C1—C2—C3—C5111.34 (18)C8—C9—C12—C13179.84 (15)
C2—C3—C4—O2177.03 (14)C9—C10—C11—C60.2 (3)
C2—C3—C4—O33.0 (2)C10—C9—C12—O4178.79 (16)
C5—C3—C4—O23.1 (2)C10—C9—C12—C130.4 (2)
C5—C3—C4—O3176.90 (15)C11—C6—C7—C80.0 (2)
C6—N1—C1—O15.0 (3)C12—C9—C10—C11179.19 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.97 (5)1.66 (5)2.6262 (17)174 (4)
N1—H1···O1ii0.882.293.1039 (17)154
C5—H5B···O2iii1.00 (3)2.48 (3)3.434 (2)160 (2)
C7—H7···O1ii0.952.563.254 (2)130
C13—H13A···O4iv0.982.503.465 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y, z+1; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.97 (5)1.66 (5)2.6262 (17)174 (4)
N1—H1···O1ii0.882.293.1039 (17)154.2
C5—H5B···O2iii1.00 (3)2.48 (3)3.434 (2)160 (2)
C7—H7···O1ii0.952.563.254 (2)130.3
C13—H13A···O4iv0.982.503.465 (2)166.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y, z+1; (iv) x, y1, z.
 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and DST–PURSE financial assistance. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBan, M., Taguchi, H., Katushima, T., Takahashi, M., Shinoda, K., Watanabe, A. & Tominaga, T. (1998). Bioorg. Med. Chem. 6, 1069–1076.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalanakis, D., Kourounakis, A. P., Tsiakitzis, K. C., Doulgkeris, C., Rekka, E. A., Gavalas, A., Kravaritou, C., Christos, C. & Kourounakis, P. N. (2004). Bioorg. Med. Chem. Lett. 14, 3639–3643.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, P. & Knaus, E. E. (1993). Eur. J. Med. Chem. 28, 881–885.  Google Scholar
First citationLesyk, R. & Zimenkovsky, B. (2004). Curr. Org. Chem. 8, 1547–1578.  Web of Science CrossRef CAS Google Scholar
First citationNayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013a). Acta Cryst. E69, o83.  CSD CrossRef IUCr Journals Google Scholar
First citationNayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013a). Acta Cryst. E69, o83.  CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkrainets, I. V., Sidorenko, L. V., Petrushovo, L. A. & Gorokhova, O. V. (2006). Chem. Heterocycl. Comput. 42, 64–69.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds