organic compounds
8-Chloro-4-oxo-4H-chromene-3-carbaldehyde
aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp
In the title compound, C10H5ClO3, a chlorinated 3-formylchromone derivative, all atoms are essentially coplanar (r.m.s. deviation = 0.032 Å for the non-H atoms), with the largest deviation from the least-squares plane [0.0598 (14) Å] being for a pyran-ring C atom. In the crystal, molecules are linked through stacking interactions along the b axis [shortest centroid–centroid distance between the pyran and benzene rings = 3.566 (2) Å].
Related literature
For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For the synthesis of the precursor of the title compound, see: Fumagalli et al. (2012). For van der Waals radii; see: Bondi (1964). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).
Experimental
Crystal data
|
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.
Supporting information
https://doi.org/10.1107/S1600536814012483/zl2591sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536814012483/zl2591Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536814012483/zl2591Isup3.cml
2-Hydroxy-3-chloroacetophenone was prepared according to a literature method (Fumagalli et al., 2012). To a solution of 2-hydroxy-3-chloroacetophenone (11.1 mmol) in N,N-dimethylformamide (30 ml) was added dropwise POCl3 (27.7 mmol) for 5 min at 0 °C. After the mixture was stirred for 16 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water, and dried in vacuo (yield: 72%). 1H NMR (400 MHz, DMSO-d6): δ = 7.58 (t, 1H, J = 7.8 Hz), 8.07 (d, 1H, J = 7.8 Hz), 8.10 (d, 1H, J = 7.8 Hz), 9.03 (s, 1H), 10.12 (s, 1H). DART-MS calcd for [C10H5Cl1O3 + H+]: 209.001, found 209.014. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a chloroform solution of the title compound at room temperature.
The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.
Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013). We have recently reported the crystal structures of chlorinated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013, Fig.2 (top)) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014, Fig.2 (middle)). It was found that a halogen bond is formed for 6,8-dichloro-4-oxochromene-3-carbaldehyde between the formyl oxygen atom and the chlorine atom at the 8-position, but none is formed for 6-chloro-4-oxo-4H-chromene-3-carbaldehyde between the formyl oxygen atom and the chlorine atom at the 6-position. As part of our interest in this type of chemical bonding, we herein report the
of a monochlorinated 3-formylchromone derivative 8-chloro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal of the title compound with the chlorine atom at 8-position and without a halogen atom at 6-position.The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0316 Å, and the largest deviation is 0.0598 (14) Å for C1. These mean that these atoms are essentially coplanar. In the crystal, the molecules are stacked with their inversion-symmetry equivalent along the b-axis direction [centroid–centroid distance between the pyran and benzene rings of the 4H-chromene units = 3.566 (2) Å, symmetry operator i: -x + 1, -y + 1, -z + 2], as shown in Fig.1.
The distance between the chlorine atom and the formyl oxygen atom of the translation-symmetry equivalent [Cl1···O3ii = 3.301 (2) Å, ii: x, y, z + 2] is nearly equal to the sum of their van der Waals radii [3.27 Å] (Bondi, 1964), as shown at the bottom of Fig.2. Thus, it is concluded that there is no halogen bond in the title compound. On the other hand, the angles of C–Cl···O (157.15 (6)°) and Cl···O=C (129.24 (10)°) are close to those of 6,8-dichloro-4-oxochromene-3-carbaldehyde, (C–Cl···O (160.4 (3)°) and Cl···O=C (138.7 (4)°), Fig.2(top)). Thus, the significance of the vicinal electron-withdrawing substituent in forming of a halogen bond (Wilcken et al., 2013) is crystallographically validated from the fact that halogen bonding is observed in the dichlorinated 3-formylchromone, but is not observed in the monochlorinated ones. These results should be invaluable for rational drug design.
For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For the synthesis of the precursor of the title compound, see: Fumagalli et al. (2012). For van der Waals radii; see: Bondi (1964). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell
WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).C10H5ClO3 | Z = 2 |
Mr = 208.60 | F(000) = 212.00 |
Triclinic, P1 | Dx = 1.650 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 6.9436 (15) Å | Cell parameters from 25 reflections |
b = 7.1539 (17) Å | θ = 15.1–17.5° |
c = 9.165 (2) Å | µ = 0.43 mm−1 |
α = 102.049 (19)° | T = 100 K |
β = 103.403 (17)° | Plate, yellow |
γ = 100.650 (19)° | 0.38 × 0.25 × 0.10 mm |
V = 419.89 (18) Å3 |
Rigaku AFC-7R diffractometer | Rint = 0.011 |
ω–2θ scans | θmax = 27.5° |
Absorption correction: ψ scan (North et al., 1968) | h = −5→9 |
Tmin = 0.902, Tmax = 0.958 | k = −9→9 |
2376 measured reflections | l = −11→11 |
1932 independent reflections | 3 standard reflections every 150 reflections |
1750 reflections with F2 > 2σ(F2) | intensity decay: −0.039% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0344P)2 + 0.1939P] where P = (Fo2 + 2Fc2)/3 |
1932 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C10H5ClO3 | γ = 100.650 (19)° |
Mr = 208.60 | V = 419.89 (18) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9436 (15) Å | Mo Kα radiation |
b = 7.1539 (17) Å | µ = 0.43 mm−1 |
c = 9.165 (2) Å | T = 100 K |
α = 102.049 (19)° | 0.38 × 0.25 × 0.10 mm |
β = 103.403 (17)° |
Rigaku AFC-7R diffractometer | 1750 reflections with F2 > 2σ(F2) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.011 |
Tmin = 0.902, Tmax = 0.958 | 3 standard reflections every 150 reflections |
2376 measured reflections | intensity decay: −0.039% |
1932 independent reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.34 e Å−3 |
1932 reflections | Δρmin = −0.26 e Å−3 |
127 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.28721 (5) | 0.37563 (5) | 1.29528 (4) | 0.02580 (11) | |
O1 | 0.21886 (13) | 0.15266 (13) | 0.97744 (10) | 0.0187 (2) | |
O2 | 0.63950 (15) | 0.10011 (16) | 0.73295 (11) | 0.0279 (3) | |
O3 | 0.04173 (16) | −0.20711 (16) | 0.52591 (12) | 0.0297 (3) | |
C1 | 0.16551 (19) | 0.04262 (19) | 0.82917 (14) | 0.0189 (3) | |
C2 | 0.29522 (19) | 0.01959 (19) | 0.74169 (14) | 0.0184 (3) | |
C3 | 0.51287 (19) | 0.11867 (19) | 0.80487 (14) | 0.0184 (3) | |
C4 | 0.76947 (18) | 0.35541 (19) | 1.04110 (15) | 0.0180 (3) | |
C5 | 0.81834 (19) | 0.47543 (19) | 1.19027 (15) | 0.0189 (3) | |
C6 | 0.66911 (19) | 0.48195 (18) | 1.26931 (14) | 0.0183 (3) | |
C7 | 0.47153 (19) | 0.37036 (19) | 1.19772 (14) | 0.0176 (3) | |
C8 | 0.56861 (18) | 0.24423 (18) | 0.96597 (14) | 0.0161 (3) | |
C9 | 0.41997 (18) | 0.25375 (17) | 1.04458 (14) | 0.0157 (3) | |
C10 | 0.2152 (2) | −0.1091 (2) | 0.58050 (15) | 0.0236 (3) | |
H1 | 0.0257 | −0.0238 | 0.7828 | 0.0227* | |
H2 | 0.8725 | 0.3481 | 0.9891 | 0.0216* | |
H3 | 0.3054 | −0.1145 | 0.5169 | 0.0284* | |
H4 | 0.9536 | 0.5537 | 1.2392 | 0.0226* | |
H5 | 0.7035 | 0.5632 | 1.3724 | 0.0220* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01652 (16) | 0.0338 (2) | 0.02036 (17) | −0.00018 (12) | 0.00735 (12) | −0.00404 (13) |
O1 | 0.0116 (4) | 0.0215 (5) | 0.0159 (5) | −0.0032 (4) | 0.0015 (4) | −0.0009 (4) |
O2 | 0.0227 (5) | 0.0370 (6) | 0.0190 (5) | −0.0015 (5) | 0.0093 (4) | 0.0010 (4) |
O3 | 0.0252 (6) | 0.0309 (6) | 0.0200 (5) | −0.0059 (5) | 0.0003 (4) | −0.0027 (4) |
C1 | 0.0158 (6) | 0.0182 (6) | 0.0159 (6) | −0.0030 (5) | −0.0003 (5) | 0.0014 (5) |
C2 | 0.0187 (6) | 0.0174 (6) | 0.0138 (6) | −0.0019 (5) | 0.0009 (5) | 0.0026 (5) |
C3 | 0.0182 (6) | 0.0197 (6) | 0.0144 (6) | −0.0004 (5) | 0.0032 (5) | 0.0041 (5) |
C4 | 0.0134 (6) | 0.0200 (6) | 0.0183 (6) | −0.0005 (5) | 0.0038 (5) | 0.0047 (5) |
C5 | 0.0132 (6) | 0.0200 (6) | 0.0185 (6) | −0.0012 (5) | 0.0004 (5) | 0.0039 (5) |
C6 | 0.0173 (6) | 0.0177 (6) | 0.0147 (6) | 0.0006 (5) | 0.0005 (5) | 0.0006 (5) |
C7 | 0.0147 (6) | 0.0196 (6) | 0.0165 (6) | 0.0019 (5) | 0.0044 (5) | 0.0026 (5) |
C8 | 0.0147 (6) | 0.0169 (6) | 0.0140 (6) | −0.0002 (5) | 0.0025 (5) | 0.0039 (5) |
C9 | 0.0116 (6) | 0.0154 (6) | 0.0157 (6) | −0.0011 (5) | 0.0004 (5) | 0.0026 (5) |
C10 | 0.0248 (7) | 0.0257 (7) | 0.0138 (6) | −0.0017 (6) | 0.0024 (5) | 0.0014 (5) |
Cl1—C7 | 1.7243 (16) | C4—C8 | 1.4029 (16) |
O1—C1 | 1.3475 (15) | C5—C6 | 1.397 (2) |
O1—C9 | 1.3763 (14) | C6—C7 | 1.3817 (17) |
O2—C3 | 1.2250 (19) | C7—C9 | 1.4006 (17) |
O3—C10 | 1.2061 (16) | C8—C9 | 1.393 (2) |
C1—C2 | 1.347 (2) | C1—H1 | 0.950 |
C2—C3 | 1.4658 (17) | C4—H2 | 0.950 |
C2—C10 | 1.4836 (17) | C5—H4 | 0.950 |
C3—C8 | 1.4797 (17) | C6—H5 | 0.950 |
C4—C5 | 1.3815 (18) | C10—H3 | 0.950 |
Cl1···O1 | 2.8973 (12) | C3···H1 | 3.2929 |
O1···C3 | 2.8719 (19) | C3···H2 | 2.6746 |
O2···C1 | 3.574 (2) | C3···H3 | 2.7084 |
O2···C4 | 2.8604 (17) | C4···H5 | 3.2636 |
O2···C10 | 2.9089 (18) | C6···H2 | 3.2648 |
O3···C1 | 2.8120 (17) | C7···H4 | 3.2634 |
C1···C7 | 3.5981 (19) | C8···H4 | 3.2730 |
C1···C8 | 2.7591 (18) | C9···H1 | 3.1860 |
C2···C9 | 2.7695 (18) | C9···H2 | 3.2689 |
C4···C7 | 2.783 (2) | C9···H5 | 3.2672 |
C5···C9 | 2.7806 (18) | C10···H1 | 2.5482 |
C6···C8 | 2.7921 (18) | H1···H3 | 3.4825 |
Cl1···O2i | 3.4989 (15) | H2···H4 | 2.3282 |
Cl1···O3ii | 3.3012 (15) | H4···H5 | 2.3459 |
Cl1···C5iii | 3.4247 (16) | Cl1···H1ii | 2.8415 |
O1···O1ii | 3.5617 (16) | Cl1···H2iii | 3.4669 |
O1···O2i | 3.5683 (17) | Cl1···H4iii | 2.8395 |
O1···C3i | 3.5282 (19) | Cl1···H5x | 2.9688 |
O1···C4iv | 3.5456 (19) | O1···H1ii | 3.2499 |
O1···C5iv | 3.359 (2) | O1···H2iii | 3.0086 |
O1···C8i | 3.5096 (19) | O1···H4iv | 3.3704 |
O2···Cl1i | 3.4989 (15) | O2···H1viii | 2.9439 |
O2···O1i | 3.5683 (17) | O2···H3v | 2.4269 |
O2···C7i | 3.534 (2) | O2···H4xi | 3.3161 |
O2···C9i | 3.591 (2) | O3···H1vi | 3.5460 |
O2···C10v | 3.267 (2) | O3···H4vii | 2.6830 |
O3···Cl1ii | 3.3012 (15) | O3···H5vii | 2.5041 |
O3···O3vi | 3.2307 (19) | O3···H5i | 3.5184 |
O3···C5vii | 3.2551 (18) | C1···H2iii | 3.5714 |
O3···C6vii | 3.1687 (17) | C1···H2i | 3.5400 |
O3···C6i | 3.560 (2) | C1···H4iv | 3.2889 |
O3···C10vi | 3.295 (2) | C2···H5iv | 3.3614 |
C1···C4i | 3.371 (3) | C3···H3v | 3.4629 |
C1···C5iv | 3.472 (3) | C3···H5iv | 3.4282 |
C1···C8i | 3.542 (3) | C4···H1i | 3.4694 |
C2···C6iv | 3.553 (3) | C4···H2xi | 3.0614 |
C2···C7i | 3.552 (3) | C5···H2xi | 3.2259 |
C2···C9i | 3.578 (2) | C6···H3i | 3.5976 |
C3···O1i | 3.5282 (19) | C10···H4vii | 3.3912 |
C3···C6iv | 3.460 (3) | C10···H5i | 3.4945 |
C3···C7i | 3.515 (3) | H1···Cl1ii | 2.8415 |
C3···C9i | 3.304 (3) | H1···O1ii | 3.2499 |
C4···O1iv | 3.5456 (19) | H1···O2iii | 2.9439 |
C4···C1i | 3.371 (3) | H1···O3vi | 3.5460 |
C4···C7iv | 3.570 (3) | H1···C4i | 3.4694 |
C4···C9iv | 3.459 (3) | H1···H2iii | 3.4159 |
C5···Cl1viii | 3.4247 (16) | H1···H2i | 3.4928 |
C5···O1iv | 3.359 (2) | H1···H3vi | 3.5853 |
C5···O3ix | 3.2551 (18) | H1···H4iv | 3.3899 |
C5···C1iv | 3.472 (3) | H2···Cl1viii | 3.4669 |
C5···C9iv | 3.521 (2) | H2···O1viii | 3.0086 |
C6···O3ix | 3.1687 (17) | H2···C1viii | 3.5714 |
C6···O3i | 3.560 (2) | H2···C1i | 3.5400 |
C6···C2iv | 3.553 (3) | H2···C4xi | 3.0614 |
C6···C3iv | 3.460 (3) | H2···C5xi | 3.2259 |
C6···C8iv | 3.538 (2) | H2···H1viii | 3.4159 |
C6···C10i | 3.387 (3) | H2···H1i | 3.4928 |
C7···O2i | 3.534 (2) | H2···H2xi | 2.4762 |
C7···C2i | 3.552 (3) | H2···H4xi | 2.7931 |
C7···C3i | 3.515 (3) | H3···O2v | 2.4269 |
C7···C4iv | 3.570 (3) | H3···C3v | 3.4629 |
C7···C8iv | 3.427 (3) | H3···C6i | 3.5976 |
C8···O1i | 3.5096 (19) | H3···H1vi | 3.5853 |
C8···C1i | 3.542 (3) | H3···H3v | 3.0081 |
C8···C6iv | 3.538 (2) | H3···H4vii | 3.2450 |
C8···C7iv | 3.427 (3) | H3···H5i | 3.5572 |
C8···C9i | 3.560 (2) | H4···Cl1viii | 2.8395 |
C8···C9iv | 3.600 (2) | H4···O1iv | 3.3704 |
C9···O2i | 3.591 (2) | H4···O2xi | 3.3161 |
C9···C2i | 3.578 (2) | H4···O3ix | 2.6830 |
C9···C3i | 3.304 (3) | H4···C1iv | 3.2889 |
C9···C4iv | 3.459 (3) | H4···C10ix | 3.3912 |
C9···C5iv | 3.521 (2) | H4···H1iv | 3.3899 |
C9···C8i | 3.560 (2) | H4···H2xi | 2.7931 |
C9···C8iv | 3.600 (2) | H4···H3ix | 3.2450 |
C10···O2v | 3.267 (2) | H5···Cl1x | 2.9688 |
C10···O3vi | 3.295 (2) | H5···O3ix | 2.5041 |
C10···C6i | 3.387 (3) | H5···O3i | 3.5184 |
Cl1···H5 | 2.8072 | H5···C2iv | 3.3614 |
O2···H2 | 2.5915 | H5···C3iv | 3.4282 |
O2···H3 | 2.6355 | H5···C10i | 3.4945 |
O3···H1 | 2.4818 | H5···H3i | 3.5572 |
C1···H3 | 3.2782 | ||
C1—O1—C9 | 118.02 (11) | C4—C8—C9 | 119.19 (11) |
O1—C1—C2 | 125.01 (11) | O1—C9—C7 | 117.14 (12) |
C1—C2—C3 | 120.64 (11) | O1—C9—C8 | 122.57 (10) |
C1—C2—C10 | 119.09 (11) | C7—C9—C8 | 120.29 (11) |
C3—C2—C10 | 120.26 (13) | O3—C10—C2 | 123.51 (15) |
O2—C3—C2 | 123.90 (11) | O1—C1—H1 | 117.494 |
O2—C3—C8 | 122.20 (11) | C2—C1—H1 | 117.497 |
C2—C3—C8 | 113.90 (12) | C5—C4—H2 | 119.817 |
C5—C4—C8 | 120.37 (13) | C8—C4—H2 | 119.815 |
C4—C5—C6 | 120.11 (11) | C4—C5—H4 | 119.941 |
C5—C6—C7 | 120.09 (11) | C6—C5—H4 | 119.944 |
Cl1—C7—C6 | 120.35 (10) | C5—C6—H5 | 119.956 |
Cl1—C7—C9 | 119.75 (10) | C7—C6—H5 | 119.956 |
C6—C7—C9 | 119.90 (13) | O3—C10—H3 | 118.246 |
C3—C8—C4 | 121.00 (13) | C2—C10—H3 | 118.242 |
C3—C8—C9 | 119.81 (10) | ||
C1—O1—C9—C7 | 178.77 (11) | C8—C4—C5—C6 | 2.1 (3) |
C1—O1—C9—C8 | −0.80 (18) | C8—C4—C5—H4 | −177.9 |
C9—O1—C1—C2 | 1.7 (2) | H2—C4—C5—C6 | −177.9 |
C9—O1—C1—H1 | −178.3 | H2—C4—C5—H4 | 2.1 |
O1—C1—C2—C3 | −0.5 (3) | H2—C4—C8—C3 | −1.5 |
O1—C1—C2—C10 | 179.02 (12) | H2—C4—C8—C9 | 178.9 |
H1—C1—C2—C3 | 179.5 | C4—C5—C6—C7 | −0.9 (2) |
H1—C1—C2—C10 | −1.0 | C4—C5—C6—H5 | 179.1 |
C1—C2—C3—O2 | 178.13 (14) | H4—C5—C6—C7 | 179.1 |
C1—C2—C3—C8 | −1.5 (2) | H4—C5—C6—H5 | −0.9 |
C1—C2—C10—O3 | −5.7 (3) | C5—C6—C7—Cl1 | 179.30 (12) |
C1—C2—C10—H3 | 174.3 | C5—C6—C7—C9 | −1.3 (2) |
C3—C2—C10—O3 | 173.77 (13) | H5—C6—C7—Cl1 | −0.7 |
C3—C2—C10—H3 | −6.2 | H5—C6—C7—C9 | 178.7 |
C10—C2—C3—O2 | −1.3 (3) | Cl1—C7—C9—O1 | 2.11 (18) |
C10—C2—C3—C8 | 179.06 (12) | Cl1—C7—C9—C8 | −178.31 (9) |
O2—C3—C8—C4 | 3.0 (3) | C6—C7—C9—O1 | −177.27 (12) |
O2—C3—C8—C9 | −177.39 (13) | C6—C7—C9—C8 | 2.3 (2) |
C2—C3—C8—C4 | −177.42 (12) | C3—C8—C9—O1 | −1.2 (2) |
C2—C3—C8—C9 | 2.21 (19) | C3—C8—C9—C7 | 179.27 (11) |
C5—C4—C8—C3 | 178.54 (12) | C4—C8—C9—O1 | 178.46 (12) |
C5—C4—C8—C9 | −1.1 (2) | C4—C8—C9—C7 | −1.1 (2) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x, −y, −z+2; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+2; (v) −x+1, −y, −z+1; (vi) −x, −y, −z+1; (vii) x−1, y−1, z−1; (viii) x+1, y, z; (ix) x+1, y+1, z+1; (x) −x+1, −y+1, −z+3; (xi) −x+2, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C10H5ClO3 |
Mr | 208.60 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.9436 (15), 7.1539 (17), 9.165 (2) |
α, β, γ (°) | 102.049 (19), 103.403 (17), 100.650 (19) |
V (Å3) | 419.89 (18) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.43 |
Crystal size (mm) | 0.38 × 0.25 × 0.10 |
Data collection | |
Diffractometer | Rigaku AFC-7R |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.902, 0.958 |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 2376, 1932, 1750 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.075, 1.09 |
No. of reflections | 1932 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.26 |
Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).
Acknowledgements
The University of Shizuoka is acknowledged for instrumental support.
References
Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. Web of Science CrossRef PubMed CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fumagalli, L., Pallavicini, M., Budriesi, R., Gobbi, M., Straniero, V., Zagami, M., Chiodini, G., Bolchi, C., Chiarini, A., Micucci, M. & Valoti, E. (2012). Eur. J. Med. Chem. 58, 184–191. Web of Science CrossRef CAS PubMed Google Scholar
Ishikawa, Y. (2014). Acta Cryst. E70, o514. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416. CSD CrossRef IUCr Journals Google Scholar
Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. Web of Science CrossRef CAS PubMed Google Scholar
Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013). We have recently reported the crystal structures of chlorinated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013, Fig.2 (top)) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014, Fig.2 (middle)). It was found that a halogen bond is formed for 6,8-dichloro-4-oxochromene-3-carbaldehyde between the formyl oxygen atom and the chlorine atom at the 8-position, but none is formed for 6-chloro-4-oxo-4H-chromene-3-carbaldehyde between the formyl oxygen atom and the chlorine atom at the 6-position. As part of our interest in this type of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formylchromone derivative 8-chloro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal of the title compound with the chlorine atom at 8-position and without a halogen atom at 6-position.
The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0316 Å, and the largest deviation is 0.0598 (14) Å for C1. These mean that these atoms are essentially coplanar. In the crystal, the molecules are stacked with their inversion-symmetry equivalent along the b-axis direction [centroid–centroid distance between the pyran and benzene rings of the 4H-chromene units = 3.566 (2) Å, symmetry operator i: -x + 1, -y + 1, -z + 2], as shown in Fig.1.
The distance between the chlorine atom and the formyl oxygen atom of the translation-symmetry equivalent [Cl1···O3ii = 3.301 (2) Å, ii: x, y, z + 2] is nearly equal to the sum of their van der Waals radii [3.27 Å] (Bondi, 1964), as shown at the bottom of Fig.2. Thus, it is concluded that there is no halogen bond in the title compound. On the other hand, the angles of C–Cl···O (157.15 (6)°) and Cl···O=C (129.24 (10)°) are close to those of 6,8-dichloro-4-oxochromene-3-carbaldehyde, (C–Cl···O (160.4 (3)°) and Cl···O=C (138.7 (4)°), Fig.2(top)). Thus, the significance of the vicinal electron-withdrawing substituent in forming of a halogen bond (Wilcken et al., 2013) is crystallographically validated from the fact that halogen bonding is observed in the dichlorinated 3-formylchromone, but is not observed in the monochlorinated ones. These results should be invaluable for rational drug design.