organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Chloro-4-oxo-4H-chromene-3-carbaldehyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 28 May 2014; accepted 28 May 2014; online 4 June 2014)

In the title compound, C10H5ClO3, a chlorinated 3-formyl­chromone derivative, all atoms are essentially coplanar (r.m.s. deviation = 0.032 Å for the non-H atoms), with the largest deviation from the least-squares plane [0.0598 (14) Å] being for a pyran-ring C atom. In the crystal, mol­ecules are linked through stacking inter­actions along the b axis [shortest centroid–centroid distance between the pyran and benzene rings = 3.566 (2) Å].

Related literature

For related structures, see: Ishikawa & Motohashi (2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]); Ishikawa (2014[Ishikawa, Y. (2014). Acta Cryst. E70, o514.]). For the synthesis of the precursor of the title compound, see: Fumagalli et al. (2012[Fumagalli, L., Pallavicini, M., Budriesi, R., Gobbi, M., Straniero, V., Zagami, M., Chiodini, G., Bolchi, C., Chiarini, A., Micucci, M. & Valoti, E. (2012). Eur. J. Med. Chem. 58, 184-191.]). For van der Waals radii; see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5ClO3

  • Mr = 208.60

  • Triclinic, [P \overline 1]

  • a = 6.9436 (15) Å

  • b = 7.1539 (17) Å

  • c = 9.165 (2) Å

  • α = 102.049 (19)°

  • β = 103.403 (17)°

  • γ = 100.650 (19)°

  • V = 419.89 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100 K

  • 0.38 × 0.25 × 0.10 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.902, Tmax = 0.958

  • 2376 measured reflections

  • 1932 independent reflections

  • 1750 reflections with F2 > 2σ(F2)

  • Rint = 0.011

  • 3 standard reflections every 150 reflections intensity decay: −0.039%

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.09

  • 1932 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013). We have recently reported the crystal structures of chlorinated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013, Fig.2 (top)) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014, Fig.2 (middle)). It was found that a halogen bond is formed for 6,8-dichloro-4-oxochromene-3-carbaldehyde between the formyl oxygen atom and the chlorine atom at the 8-position, but none is formed for 6-chloro-4-oxo-4H-chromene-3-carbaldehyde between the formyl oxygen atom and the chlorine atom at the 6-position. As part of our interest in this type of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formylchromone derivative 8-chloro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal of the title compound with the chlorine atom at 8-position and without a halogen atom at 6-position.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0316 Å, and the largest deviation is 0.0598 (14) Å for C1. These mean that these atoms are essentially coplanar. In the crystal, the molecules are stacked with their inversion-symmetry equivalent along the b-axis direction [centroid–centroid distance between the pyran and benzene rings of the 4H-chromene units = 3.566 (2) Å, symmetry operator i: -x + 1, -y + 1, -z + 2], as shown in Fig.1.

The distance between the chlorine atom and the formyl oxygen atom of the translation-symmetry equivalent [Cl1···O3ii = 3.301 (2) Å, ii: x, y, z + 2] is nearly equal to the sum of their van der Waals radii [3.27 Å] (Bondi, 1964), as shown at the bottom of Fig.2. Thus, it is concluded that there is no halogen bond in the title compound. On the other hand, the angles of C–Cl···O (157.15 (6)°) and Cl···O=C (129.24 (10)°) are close to those of 6,8-dichloro-4-oxochromene-3-carbaldehyde, (C–Cl···O (160.4 (3)°) and Cl···O=C (138.7 (4)°), Fig.2(top)). Thus, the significance of the vicinal electron-withdrawing substituent in forming of a halogen bond (Wilcken et al., 2013) is crystallographically validated from the fact that halogen bonding is observed in the dichlorinated 3-formylchromone, but is not observed in the monochlorinated ones. These results should be invaluable for rational drug design.

Related literature top

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For the synthesis of the precursor of the title compound, see: Fumagalli et al. (2012). For van der Waals radii; see: Bondi (1964). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).

Experimental top

2-Hydroxy-3-chloroacetophenone was prepared according to a literature method (Fumagalli et al., 2012). To a solution of 2-hydroxy-3-chloroacetophenone (11.1 mmol) in N,N-dimethylformamide (30 ml) was added dropwise POCl3 (27.7 mmol) for 5 min at 0 °C. After the mixture was stirred for 16 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water, and dried in vacuo (yield: 72%). 1H NMR (400 MHz, DMSO-d6): δ = 7.58 (t, 1H, J = 7.8 Hz), 8.07 (d, 1H, J = 7.8 Hz), 8.10 (d, 1H, J = 7.8 Hz), 9.03 (s, 1H), 10.12 (s, 1H). DART-MS calcd for [C10H5Cl1O3 + H+]: 209.001, found 209.014. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a chloroform solution of the title compound at room temperature.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Structure description top

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013). We have recently reported the crystal structures of chlorinated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013, Fig.2 (top)) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014, Fig.2 (middle)). It was found that a halogen bond is formed for 6,8-dichloro-4-oxochromene-3-carbaldehyde between the formyl oxygen atom and the chlorine atom at the 8-position, but none is formed for 6-chloro-4-oxo-4H-chromene-3-carbaldehyde between the formyl oxygen atom and the chlorine atom at the 6-position. As part of our interest in this type of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formylchromone derivative 8-chloro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal of the title compound with the chlorine atom at 8-position and without a halogen atom at 6-position.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0316 Å, and the largest deviation is 0.0598 (14) Å for C1. These mean that these atoms are essentially coplanar. In the crystal, the molecules are stacked with their inversion-symmetry equivalent along the b-axis direction [centroid–centroid distance between the pyran and benzene rings of the 4H-chromene units = 3.566 (2) Å, symmetry operator i: -x + 1, -y + 1, -z + 2], as shown in Fig.1.

The distance between the chlorine atom and the formyl oxygen atom of the translation-symmetry equivalent [Cl1···O3ii = 3.301 (2) Å, ii: x, y, z + 2] is nearly equal to the sum of their van der Waals radii [3.27 Å] (Bondi, 1964), as shown at the bottom of Fig.2. Thus, it is concluded that there is no halogen bond in the title compound. On the other hand, the angles of C–Cl···O (157.15 (6)°) and Cl···O=C (129.24 (10)°) are close to those of 6,8-dichloro-4-oxochromene-3-carbaldehyde, (C–Cl···O (160.4 (3)°) and Cl···O=C (138.7 (4)°), Fig.2(top)). Thus, the significance of the vicinal electron-withdrawing substituent in forming of a halogen bond (Wilcken et al., 2013) is crystallographically validated from the fact that halogen bonding is observed in the dichlorinated 3-formylchromone, but is not observed in the monochlorinated ones. These results should be invaluable for rational drug design.

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For the synthesis of the precursor of the title compound, see: Fumagalli et al. (2012). For van der Waals radii; see: Bondi (1964). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. A packing view of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (top), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (middle), and the title compound (bottom).
8-Chloro-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H5ClO3Z = 2
Mr = 208.60F(000) = 212.00
Triclinic, P1Dx = 1.650 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.9436 (15) ÅCell parameters from 25 reflections
b = 7.1539 (17) Åθ = 15.1–17.5°
c = 9.165 (2) ŵ = 0.43 mm1
α = 102.049 (19)°T = 100 K
β = 103.403 (17)°Plate, yellow
γ = 100.650 (19)°0.38 × 0.25 × 0.10 mm
V = 419.89 (18) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.011
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 59
Tmin = 0.902, Tmax = 0.958k = 99
2376 measured reflectionsl = 1111
1932 independent reflections3 standard reflections every 150 reflections
1750 reflections with F2 > 2σ(F2) intensity decay: 0.039%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.1939P]
where P = (Fo2 + 2Fc2)/3
1932 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H5ClO3γ = 100.650 (19)°
Mr = 208.60V = 419.89 (18) Å3
Triclinic, P1Z = 2
a = 6.9436 (15) ÅMo Kα radiation
b = 7.1539 (17) ŵ = 0.43 mm1
c = 9.165 (2) ÅT = 100 K
α = 102.049 (19)°0.38 × 0.25 × 0.10 mm
β = 103.403 (17)°
Data collection top
Rigaku AFC-7R
diffractometer
1750 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.011
Tmin = 0.902, Tmax = 0.9583 standard reflections every 150 reflections
2376 measured reflections intensity decay: 0.039%
1932 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
1932 reflectionsΔρmin = 0.26 e Å3
127 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28721 (5)0.37563 (5)1.29528 (4)0.02580 (11)
O10.21886 (13)0.15266 (13)0.97744 (10)0.0187 (2)
O20.63950 (15)0.10011 (16)0.73295 (11)0.0279 (3)
O30.04173 (16)0.20711 (16)0.52591 (12)0.0297 (3)
C10.16551 (19)0.04262 (19)0.82917 (14)0.0189 (3)
C20.29522 (19)0.01959 (19)0.74169 (14)0.0184 (3)
C30.51287 (19)0.11867 (19)0.80487 (14)0.0184 (3)
C40.76947 (18)0.35541 (19)1.04110 (15)0.0180 (3)
C50.81834 (19)0.47543 (19)1.19027 (15)0.0189 (3)
C60.66911 (19)0.48195 (18)1.26931 (14)0.0183 (3)
C70.47153 (19)0.37036 (19)1.19772 (14)0.0176 (3)
C80.56861 (18)0.24423 (18)0.96597 (14)0.0161 (3)
C90.41997 (18)0.25375 (17)1.04458 (14)0.0157 (3)
C100.2152 (2)0.1091 (2)0.58050 (15)0.0236 (3)
H10.02570.02380.78280.0227*
H20.87250.34810.98910.0216*
H30.30540.11450.51690.0284*
H40.95360.55371.23920.0226*
H50.70350.56321.37240.0220*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01652 (16)0.0338 (2)0.02036 (17)0.00018 (12)0.00735 (12)0.00404 (13)
O10.0116 (4)0.0215 (5)0.0159 (5)0.0032 (4)0.0015 (4)0.0009 (4)
O20.0227 (5)0.0370 (6)0.0190 (5)0.0015 (5)0.0093 (4)0.0010 (4)
O30.0252 (6)0.0309 (6)0.0200 (5)0.0059 (5)0.0003 (4)0.0027 (4)
C10.0158 (6)0.0182 (6)0.0159 (6)0.0030 (5)0.0003 (5)0.0014 (5)
C20.0187 (6)0.0174 (6)0.0138 (6)0.0019 (5)0.0009 (5)0.0026 (5)
C30.0182 (6)0.0197 (6)0.0144 (6)0.0004 (5)0.0032 (5)0.0041 (5)
C40.0134 (6)0.0200 (6)0.0183 (6)0.0005 (5)0.0038 (5)0.0047 (5)
C50.0132 (6)0.0200 (6)0.0185 (6)0.0012 (5)0.0004 (5)0.0039 (5)
C60.0173 (6)0.0177 (6)0.0147 (6)0.0006 (5)0.0005 (5)0.0006 (5)
C70.0147 (6)0.0196 (6)0.0165 (6)0.0019 (5)0.0044 (5)0.0026 (5)
C80.0147 (6)0.0169 (6)0.0140 (6)0.0002 (5)0.0025 (5)0.0039 (5)
C90.0116 (6)0.0154 (6)0.0157 (6)0.0011 (5)0.0004 (5)0.0026 (5)
C100.0248 (7)0.0257 (7)0.0138 (6)0.0017 (6)0.0024 (5)0.0014 (5)
Geometric parameters (Å, º) top
Cl1—C71.7243 (16)C4—C81.4029 (16)
O1—C11.3475 (15)C5—C61.397 (2)
O1—C91.3763 (14)C6—C71.3817 (17)
O2—C31.2250 (19)C7—C91.4006 (17)
O3—C101.2061 (16)C8—C91.393 (2)
C1—C21.347 (2)C1—H10.950
C2—C31.4658 (17)C4—H20.950
C2—C101.4836 (17)C5—H40.950
C3—C81.4797 (17)C6—H50.950
C4—C51.3815 (18)C10—H30.950
Cl1···O12.8973 (12)C3···H13.2929
O1···C32.8719 (19)C3···H22.6746
O2···C13.574 (2)C3···H32.7084
O2···C42.8604 (17)C4···H53.2636
O2···C102.9089 (18)C6···H23.2648
O3···C12.8120 (17)C7···H43.2634
C1···C73.5981 (19)C8···H43.2730
C1···C82.7591 (18)C9···H13.1860
C2···C92.7695 (18)C9···H23.2689
C4···C72.783 (2)C9···H53.2672
C5···C92.7806 (18)C10···H12.5482
C6···C82.7921 (18)H1···H33.4825
Cl1···O2i3.4989 (15)H2···H42.3282
Cl1···O3ii3.3012 (15)H4···H52.3459
Cl1···C5iii3.4247 (16)Cl1···H1ii2.8415
O1···O1ii3.5617 (16)Cl1···H2iii3.4669
O1···O2i3.5683 (17)Cl1···H4iii2.8395
O1···C3i3.5282 (19)Cl1···H5x2.9688
O1···C4iv3.5456 (19)O1···H1ii3.2499
O1···C5iv3.359 (2)O1···H2iii3.0086
O1···C8i3.5096 (19)O1···H4iv3.3704
O2···Cl1i3.4989 (15)O2···H1viii2.9439
O2···O1i3.5683 (17)O2···H3v2.4269
O2···C7i3.534 (2)O2···H4xi3.3161
O2···C9i3.591 (2)O3···H1vi3.5460
O2···C10v3.267 (2)O3···H4vii2.6830
O3···Cl1ii3.3012 (15)O3···H5vii2.5041
O3···O3vi3.2307 (19)O3···H5i3.5184
O3···C5vii3.2551 (18)C1···H2iii3.5714
O3···C6vii3.1687 (17)C1···H2i3.5400
O3···C6i3.560 (2)C1···H4iv3.2889
O3···C10vi3.295 (2)C2···H5iv3.3614
C1···C4i3.371 (3)C3···H3v3.4629
C1···C5iv3.472 (3)C3···H5iv3.4282
C1···C8i3.542 (3)C4···H1i3.4694
C2···C6iv3.553 (3)C4···H2xi3.0614
C2···C7i3.552 (3)C5···H2xi3.2259
C2···C9i3.578 (2)C6···H3i3.5976
C3···O1i3.5282 (19)C10···H4vii3.3912
C3···C6iv3.460 (3)C10···H5i3.4945
C3···C7i3.515 (3)H1···Cl1ii2.8415
C3···C9i3.304 (3)H1···O1ii3.2499
C4···O1iv3.5456 (19)H1···O2iii2.9439
C4···C1i3.371 (3)H1···O3vi3.5460
C4···C7iv3.570 (3)H1···C4i3.4694
C4···C9iv3.459 (3)H1···H2iii3.4159
C5···Cl1viii3.4247 (16)H1···H2i3.4928
C5···O1iv3.359 (2)H1···H3vi3.5853
C5···O3ix3.2551 (18)H1···H4iv3.3899
C5···C1iv3.472 (3)H2···Cl1viii3.4669
C5···C9iv3.521 (2)H2···O1viii3.0086
C6···O3ix3.1687 (17)H2···C1viii3.5714
C6···O3i3.560 (2)H2···C1i3.5400
C6···C2iv3.553 (3)H2···C4xi3.0614
C6···C3iv3.460 (3)H2···C5xi3.2259
C6···C8iv3.538 (2)H2···H1viii3.4159
C6···C10i3.387 (3)H2···H1i3.4928
C7···O2i3.534 (2)H2···H2xi2.4762
C7···C2i3.552 (3)H2···H4xi2.7931
C7···C3i3.515 (3)H3···O2v2.4269
C7···C4iv3.570 (3)H3···C3v3.4629
C7···C8iv3.427 (3)H3···C6i3.5976
C8···O1i3.5096 (19)H3···H1vi3.5853
C8···C1i3.542 (3)H3···H3v3.0081
C8···C6iv3.538 (2)H3···H4vii3.2450
C8···C7iv3.427 (3)H3···H5i3.5572
C8···C9i3.560 (2)H4···Cl1viii2.8395
C8···C9iv3.600 (2)H4···O1iv3.3704
C9···O2i3.591 (2)H4···O2xi3.3161
C9···C2i3.578 (2)H4···O3ix2.6830
C9···C3i3.304 (3)H4···C1iv3.2889
C9···C4iv3.459 (3)H4···C10ix3.3912
C9···C5iv3.521 (2)H4···H1iv3.3899
C9···C8i3.560 (2)H4···H2xi2.7931
C9···C8iv3.600 (2)H4···H3ix3.2450
C10···O2v3.267 (2)H5···Cl1x2.9688
C10···O3vi3.295 (2)H5···O3ix2.5041
C10···C6i3.387 (3)H5···O3i3.5184
Cl1···H52.8072H5···C2iv3.3614
O2···H22.5915H5···C3iv3.4282
O2···H32.6355H5···C10i3.4945
O3···H12.4818H5···H3i3.5572
C1···H33.2782
C1—O1—C9118.02 (11)C4—C8—C9119.19 (11)
O1—C1—C2125.01 (11)O1—C9—C7117.14 (12)
C1—C2—C3120.64 (11)O1—C9—C8122.57 (10)
C1—C2—C10119.09 (11)C7—C9—C8120.29 (11)
C3—C2—C10120.26 (13)O3—C10—C2123.51 (15)
O2—C3—C2123.90 (11)O1—C1—H1117.494
O2—C3—C8122.20 (11)C2—C1—H1117.497
C2—C3—C8113.90 (12)C5—C4—H2119.817
C5—C4—C8120.37 (13)C8—C4—H2119.815
C4—C5—C6120.11 (11)C4—C5—H4119.941
C5—C6—C7120.09 (11)C6—C5—H4119.944
Cl1—C7—C6120.35 (10)C5—C6—H5119.956
Cl1—C7—C9119.75 (10)C7—C6—H5119.956
C6—C7—C9119.90 (13)O3—C10—H3118.246
C3—C8—C4121.00 (13)C2—C10—H3118.242
C3—C8—C9119.81 (10)
C1—O1—C9—C7178.77 (11)C8—C4—C5—C62.1 (3)
C1—O1—C9—C80.80 (18)C8—C4—C5—H4177.9
C9—O1—C1—C21.7 (2)H2—C4—C5—C6177.9
C9—O1—C1—H1178.3H2—C4—C5—H42.1
O1—C1—C2—C30.5 (3)H2—C4—C8—C31.5
O1—C1—C2—C10179.02 (12)H2—C4—C8—C9178.9
H1—C1—C2—C3179.5C4—C5—C6—C70.9 (2)
H1—C1—C2—C101.0C4—C5—C6—H5179.1
C1—C2—C3—O2178.13 (14)H4—C5—C6—C7179.1
C1—C2—C3—C81.5 (2)H4—C5—C6—H50.9
C1—C2—C10—O35.7 (3)C5—C6—C7—Cl1179.30 (12)
C1—C2—C10—H3174.3C5—C6—C7—C91.3 (2)
C3—C2—C10—O3173.77 (13)H5—C6—C7—Cl10.7
C3—C2—C10—H36.2H5—C6—C7—C9178.7
C10—C2—C3—O21.3 (3)Cl1—C7—C9—O12.11 (18)
C10—C2—C3—C8179.06 (12)Cl1—C7—C9—C8178.31 (9)
O2—C3—C8—C43.0 (3)C6—C7—C9—O1177.27 (12)
O2—C3—C8—C9177.39 (13)C6—C7—C9—C82.3 (2)
C2—C3—C8—C4177.42 (12)C3—C8—C9—O11.2 (2)
C2—C3—C8—C92.21 (19)C3—C8—C9—C7179.27 (11)
C5—C4—C8—C3178.54 (12)C4—C8—C9—O1178.46 (12)
C5—C4—C8—C91.1 (2)C4—C8—C9—C71.1 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2; (iii) x1, y, z; (iv) x+1, y+1, z+2; (v) x+1, y, z+1; (vi) x, y, z+1; (vii) x1, y1, z1; (viii) x+1, y, z; (ix) x+1, y+1, z+1; (x) x+1, y+1, z+3; (xi) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H5ClO3
Mr208.60
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9436 (15), 7.1539 (17), 9.165 (2)
α, β, γ (°)102.049 (19), 103.403 (17), 100.650 (19)
V3)419.89 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.38 × 0.25 × 0.10
Data collection
DiffractometerRigaku AFC-7R
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.902, 0.958
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
2376, 1932, 1750
Rint0.011
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.09
No. of reflections1932
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.26

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

The University of Shizuoka is acknowledged for instrumental support.

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFumagalli, L., Pallavicini, M., Budriesi, R., Gobbi, M., Straniero, V., Zagami, M., Chiodini, G., Bolchi, C., Chiarini, A., Micucci, M. & Valoti, E. (2012). Eur. J. Med. Chem. 58, 184–191.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIshikawa, Y. (2014). Acta Cryst. E70, o514.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds