organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-3-ethyl­phenol

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

(Received 3 June 2014; accepted 13 June 2014; online 21 June 2014)

The title compound, C8H9ClO, packs with two independent mol­ecules in the asymmetric unit, without significant differences in corresponding bond lengths and angles, with the ethyl group in each oriented nearly perpendicular to the aromatic ring having ring-to-side chain torsion angles of 81.14 (18) and −81.06 (19)°. In the crystal, mol­ecules form an O—H⋯O hydrogen-bonded chain extending along the b-axis direction, through the phenol groups in which the H atoms are disordered. These chains pack together in the solid state, giving a sheet lying parallel to (001), via an offset face-to-face π-stacking inter­action characterized by a centroid–centroid distance of 3.580 (1) Å, together with a short inter­molecular Cl⋯Cl contact [3.412 (1) Å].

Keywords: crystal structure.

Related literature

For information regarding the synthesis of 4-chloro-3-ethyl­phenol, see the following patents: Awano et al. (1987[Awano, Y., Nakanishi, A. & Nonaka, Y. (1987). JP Patent 62 198 631.]) or Schroetter et al. (1977[Schroetter, E., Weuffen, W. & Wigert, H. (1977). DD Patent 124 296.]). For applications in biological systems, see: Gerbershagen et al. (2005[Gerbershagen, M. U., Fiege, M., Weisshorn, R., Kolodzie, K., Esch, J. S. & Wappler, F. (2005). Anesth. Analg. 101, 710-714.]); Low et al. (1997[Low, A. M., Sormaz, L., Kwan, C.-Y. & Daniel, E. E. (1997). Br. J. Pharmacol. 122, 504-510.]). For similar chlorinated phenols, see: Cox (1995[Cox, P. J. (1995). Acta Cryst. C51, 1361-1364.], 2003[Cox, P. J. (2003). Acta Cryst. C59, o533-o536.]); Oswald et al. (2005[Oswald, I. D. H., Allan, D. R., Motherwell, W. D. S. & Parsons, S. (2005). Acta Cryst. B61, 69-79.]). For more information on π-stacking, see: Lueckheide et al. (2013[Lueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79-84.]) and on halogen–halogen inter­actions, see: Pedireddi et al. (1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9ClO

  • Mr = 156.60

  • Triclinic, [P \overline 1]

  • a = 7.5580 (7) Å

  • b = 8.6854 (8) Å

  • c = 12.2520 (11) Å

  • α = 78.363 (1)°

  • β = 78.762 (1)°

  • γ = 80.355 (1)°

  • V = 765.72 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 125 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.949

  • 17904 measured reflections

  • 4656 independent reflections

  • 4176 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.13

  • 4656 reflections

  • 183 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.81 1.97 2.708 (3) 152
O1—H1A⋯O2i 0.81 1.86 2.6642 (17) 171
O2—H2⋯O1i 0.81 1.86 2.6642 (17) 168
O2—H2A⋯O2ii 0.82 1.91 2.704 (2) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

4-Chloro-3-ethylphenol, the title compound, can be synthesized by chlorination of 3-ethylphenol by SO2Cl2 in the presence of FeCl3 in CCl4 (Awano et al., 1987) or by adding the hydroxyl group to 1-ethyl-2-nitrobenzene followed by an acidic workup and a Sandmeyer reaction with CuCl (Schroetter et al., 1977). The title compound has been found to be useful in multiple biological applications, including testing the contracture in malignant hypothermia skeletal tissue (Low et al., 1997) and in biological activity on Ca2+ deposits in muscle cells (Gerbershagen et al., 2005).

The two independent molecules of the title compound in the asymmetric unit (Fig. 1) exhibit C—Cl bond lengths of 1.7430 (15) and 1.7469 (15) Å, and C—O bond lengths of 1.3751 (18) and 1.3778 (17) Å, respectively. These are in very close agreement with analogous bond lengths in the stuctures of 4-chlorophenol (Oswald et al., 2005), 4-chloro-3-methylphenol (Cox, 2003), and 4-chloro-3,5-dimethylphenol (Cox, 1995). The ethyl group is rotated nearly perpendicular to the plane of the ring for each independent molecule, displaying very similar torsion angles of 81.14 (18)° (C4—C3—C7—C8) and -81.06 (19)° (C12—C11—C15—C16). The structure forms a one-dimensional O—H···O hydrogen-bonded chain through the phenol groups, in which the phenol protons are 50% rotationally disordered (Fig. 2). These chains run parallel to the crystallographic b-axis. Each independent molecule forms hydrogen bonds with a neighboring equivalent independent molecule, with an oxygen–oxygen distance (O1···O1i) of 2.708 (3) Å and an oxygen–oxygen distance (O2···O2ii) of 2.704 (2) Å [for symmetry codes (i) and (ii), see Table 1]. These pairwise dimers are hydrogen-bonded to one another resulting in a third unique hydrogen bond, (O1···O2i), with length 2.6642 (17) Å. A similar hydrogen-bonding motif is found in the ordered one-dimensional hydrogen bonding chain in the structure of 4-chloro-3-methylphenol (Cox, 2003), where the O···O distances are similar at 2.711 (2) and 2.714 (2) Å. Unlike 4-chloro-3-methylphenol, where the planes of the aromatic units on each side of the hydrogen-bonded chain are parallel, in the the title compound they form a herringbone (edge-to-face or T) motif.

Neighboring hydrogen-bonded chains pack together in the solid state to form a two-dimensional sheet parallel to the 0 0 1 plane via an offset face-to-face π-stacking interaction of one of the two independent molecules, whereas the other molecule does not engage in π-stacking (Fig. 3). The π-stacking is characterized by a centroid-to-centroid distance of 3.580 (1) Å, a plane-to-centroid distance of 3.410 (1) Å, and a ring offset or ring-slipage distance of 1.092 (3) Å (Lueckheide et al., 2013). Neighboring sheets are further linked by a short intermolecular chlorine–chlorine contact (Cl1···Cl2iii) of 3.412 (1) Å, which is less than the sum of the van der Waals radii of 3.50 Å for chlorine–chlorine interactions (Pedireddi et al., 1994). For symmetry code (iii): -x, -y + 1, -z.

Related literature top

For information regarding the synthesis of 4-chloro-3-ethylphenol, see the following patents: Awano et al. (1987) or Schroetter et al. (1977). For applications in biological systems, see: Gerbershagen et al. (2005); Low et al. (1997). For similar chlorinated phenols, see: Cox (1995, 2003); Oswald et al. (2005). For more information on π-stacking, see: Lueckheide et al. (2013) and on halogen–halogen interactions, see: Pedireddi et al. (1994).

Experimental top

4-Chloro-3-ethylphenol was purchased from Aldrich Chemical Company, USA, and recrystallized from hexanes.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model with C–H = 0.95, 0.98 and 0.99 Å and Uiso(H) = 1.2, 1.5 and 1.2 × Ueq(C) of the aryl, methyl and methylene C-atoms, respectively. The positions of the disordered phenolic hydrogen atoms were found in the difference map and refined semi-freely at 50% occupancy using a distance restraint d(O–H) = 0.84 Å, and Uiso(H) = 1.2× Ueq(O).

Structure description top

4-Chloro-3-ethylphenol, the title compound, can be synthesized by chlorination of 3-ethylphenol by SO2Cl2 in the presence of FeCl3 in CCl4 (Awano et al., 1987) or by adding the hydroxyl group to 1-ethyl-2-nitrobenzene followed by an acidic workup and a Sandmeyer reaction with CuCl (Schroetter et al., 1977). The title compound has been found to be useful in multiple biological applications, including testing the contracture in malignant hypothermia skeletal tissue (Low et al., 1997) and in biological activity on Ca2+ deposits in muscle cells (Gerbershagen et al., 2005).

The two independent molecules of the title compound in the asymmetric unit (Fig. 1) exhibit C—Cl bond lengths of 1.7430 (15) and 1.7469 (15) Å, and C—O bond lengths of 1.3751 (18) and 1.3778 (17) Å, respectively. These are in very close agreement with analogous bond lengths in the stuctures of 4-chlorophenol (Oswald et al., 2005), 4-chloro-3-methylphenol (Cox, 2003), and 4-chloro-3,5-dimethylphenol (Cox, 1995). The ethyl group is rotated nearly perpendicular to the plane of the ring for each independent molecule, displaying very similar torsion angles of 81.14 (18)° (C4—C3—C7—C8) and -81.06 (19)° (C12—C11—C15—C16). The structure forms a one-dimensional O—H···O hydrogen-bonded chain through the phenol groups, in which the phenol protons are 50% rotationally disordered (Fig. 2). These chains run parallel to the crystallographic b-axis. Each independent molecule forms hydrogen bonds with a neighboring equivalent independent molecule, with an oxygen–oxygen distance (O1···O1i) of 2.708 (3) Å and an oxygen–oxygen distance (O2···O2ii) of 2.704 (2) Å [for symmetry codes (i) and (ii), see Table 1]. These pairwise dimers are hydrogen-bonded to one another resulting in a third unique hydrogen bond, (O1···O2i), with length 2.6642 (17) Å. A similar hydrogen-bonding motif is found in the ordered one-dimensional hydrogen bonding chain in the structure of 4-chloro-3-methylphenol (Cox, 2003), where the O···O distances are similar at 2.711 (2) and 2.714 (2) Å. Unlike 4-chloro-3-methylphenol, where the planes of the aromatic units on each side of the hydrogen-bonded chain are parallel, in the the title compound they form a herringbone (edge-to-face or T) motif.

Neighboring hydrogen-bonded chains pack together in the solid state to form a two-dimensional sheet parallel to the 0 0 1 plane via an offset face-to-face π-stacking interaction of one of the two independent molecules, whereas the other molecule does not engage in π-stacking (Fig. 3). The π-stacking is characterized by a centroid-to-centroid distance of 3.580 (1) Å, a plane-to-centroid distance of 3.410 (1) Å, and a ring offset or ring-slipage distance of 1.092 (3) Å (Lueckheide et al., 2013). Neighboring sheets are further linked by a short intermolecular chlorine–chlorine contact (Cl1···Cl2iii) of 3.412 (1) Å, which is less than the sum of the van der Waals radii of 3.50 Å for chlorine–chlorine interactions (Pedireddi et al., 1994). For symmetry code (iii): -x, -y + 1, -z.

For information regarding the synthesis of 4-chloro-3-ethylphenol, see the following patents: Awano et al. (1987) or Schroetter et al. (1977). For applications in biological systems, see: Gerbershagen et al. (2005); Low et al. (1997). For similar chlorinated phenols, see: Cox (1995, 2003); Oswald et al. (2005). For more information on π-stacking, see: Lueckheide et al. (2013) and on halogen–halogen interactions, see: Pedireddi et al. (1994).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules of the title compound with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. The disordered phenolic hydrogen atoms are represented with dashed open bonds.
[Figure 2] Fig. 2. A view of the one-dimensional hydrogen-bonded chain extending along b, with displacement ellipsoids shown at the 50% probability level. For symmetry codes (i) and (ii), see Table 1.
[Figure 3] Fig. 3. A view of the offset face-to-face π-stacking in the structure of title compound, with a solid line indicating one interaction and a dashed line indicating one of the Cl1···Cl2 interactions. For symmetry codes: (iii) -x, -y + 1, -z; (iv): -x, -y + 1, -z + 1. Displacement ellipsoids are shown at the 50% probability level.
4-chloro-3-ethylphenol top
Crystal data top
C8H9ClOZ = 4
Mr = 156.60F(000) = 328
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5580 (7) ÅCell parameters from 9958 reflections
b = 8.6854 (8) Åθ = 2.7–30.5°
c = 12.2520 (11) ŵ = 0.42 mm1
α = 78.363 (1)°T = 125 K
β = 78.762 (1)°Block, colourless
γ = 80.355 (1)°0.20 × 0.15 × 0.10 mm
V = 765.72 (12) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4656 independent reflections
Radiation source: fine-focus sealed tube4176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 30.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.910, Tmax = 0.949k = 1212
17904 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.751P]
where P = (Fo2 + 2Fc2)/3
4656 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.48 e Å3
4 restraintsΔρmin = 0.26 e Å3
Crystal data top
C8H9ClOγ = 80.355 (1)°
Mr = 156.60V = 765.72 (12) Å3
Triclinic, P1Z = 4
a = 7.5580 (7) ÅMo Kα radiation
b = 8.6854 (8) ŵ = 0.42 mm1
c = 12.2520 (11) ÅT = 125 K
α = 78.363 (1)°0.20 × 0.15 × 0.10 mm
β = 78.762 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4656 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4176 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.949Rint = 0.019
17904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.13Δρmax = 0.48 e Å3
4656 reflectionsΔρmin = 0.26 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.28100 (5)0.74811 (5)0.30473 (4)0.02708 (10)
O10.36924 (19)0.62233 (15)0.52135 (12)0.0328 (3)
H10.42580.53400.52800.039*0.50
H1A0.40240.70190.53200.039*0.50
C10.2194 (2)0.65320 (17)0.46838 (13)0.0186 (3)
C20.20646 (19)0.56371 (16)0.38898 (12)0.0173 (3)
H2B0.30350.48360.37020.021*
C30.05376 (19)0.58914 (16)0.33626 (11)0.0157 (2)
C40.08454 (19)0.70975 (17)0.36563 (12)0.0171 (3)
C50.0719 (2)0.80067 (17)0.44421 (13)0.0192 (3)
H5A0.16760.88220.46220.023*
C60.0802 (2)0.77258 (17)0.49633 (12)0.0197 (3)
H6A0.08940.83400.55050.024*
C70.0464 (2)0.49276 (18)0.24819 (13)0.0207 (3)
H7A0.07930.46860.25570.025*
H7B0.12720.39100.26110.025*
C80.1054 (3)0.5813 (2)0.12819 (13)0.0276 (3)
H8A0.10210.51440.07330.041*
H8B0.22940.60620.12070.041*
H8C0.02230.67990.11400.041*
Cl20.36637 (6)0.24774 (5)0.04071 (3)0.02827 (10)
O20.53688 (18)0.12745 (14)0.41968 (10)0.0271 (3)
H20.55110.20540.44270.033*0.50
H2A0.52190.04200.45980.033*0.50
C90.4935 (2)0.15527 (17)0.31266 (12)0.0171 (3)
C100.37918 (19)0.06378 (16)0.28560 (12)0.0172 (3)
H10A0.32930.01700.34190.021*
C110.33641 (19)0.08887 (17)0.17674 (12)0.0172 (3)
C120.4129 (2)0.20931 (18)0.09713 (12)0.0188 (3)
C130.5254 (2)0.30228 (18)0.12387 (13)0.0204 (3)
H13A0.57440.38390.06790.024*
C140.5662 (2)0.27599 (18)0.23228 (13)0.0195 (3)
H14A0.64260.33940.25130.023*
C150.2080 (2)0.00900 (19)0.15052 (14)0.0233 (3)
H15A0.20890.11050.20460.028*
H15B0.25140.03390.07360.028*
C160.0132 (2)0.0767 (2)0.15729 (16)0.0292 (3)
H16A0.06490.00980.13850.044*
H16B0.01160.17700.10360.044*
H16C0.03200.09810.23410.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01775 (17)0.0333 (2)0.0317 (2)0.00267 (14)0.00926 (14)0.00914 (16)
O10.0381 (7)0.0216 (5)0.0469 (8)0.0047 (5)0.0307 (6)0.0013 (5)
C10.0229 (7)0.0145 (6)0.0204 (6)0.0042 (5)0.0092 (5)0.0007 (5)
C20.0173 (6)0.0147 (6)0.0199 (6)0.0004 (5)0.0041 (5)0.0032 (5)
C30.0172 (6)0.0154 (6)0.0147 (6)0.0028 (5)0.0022 (5)0.0027 (5)
C40.0152 (6)0.0188 (6)0.0172 (6)0.0018 (5)0.0030 (5)0.0029 (5)
C50.0201 (6)0.0165 (6)0.0199 (6)0.0011 (5)0.0007 (5)0.0042 (5)
C60.0262 (7)0.0162 (6)0.0180 (6)0.0039 (5)0.0045 (5)0.0044 (5)
C70.0224 (7)0.0223 (7)0.0195 (6)0.0016 (5)0.0051 (5)0.0084 (5)
C80.0329 (8)0.0333 (8)0.0170 (7)0.0006 (7)0.0055 (6)0.0085 (6)
Cl20.0300 (2)0.0399 (2)0.01504 (16)0.00312 (16)0.00605 (13)0.00440 (14)
O20.0433 (7)0.0205 (5)0.0222 (5)0.0027 (5)0.0190 (5)0.0029 (4)
C90.0188 (6)0.0160 (6)0.0173 (6)0.0007 (5)0.0071 (5)0.0035 (5)
C100.0184 (6)0.0152 (6)0.0180 (6)0.0014 (5)0.0048 (5)0.0022 (5)
C110.0161 (6)0.0174 (6)0.0194 (6)0.0012 (5)0.0054 (5)0.0063 (5)
C120.0182 (6)0.0240 (7)0.0140 (6)0.0010 (5)0.0042 (5)0.0045 (5)
C130.0185 (6)0.0232 (7)0.0183 (6)0.0040 (5)0.0016 (5)0.0011 (5)
C140.0178 (6)0.0200 (6)0.0220 (7)0.0036 (5)0.0052 (5)0.0039 (5)
C150.0236 (7)0.0223 (7)0.0280 (8)0.0042 (6)0.0098 (6)0.0075 (6)
C160.0220 (7)0.0332 (9)0.0340 (9)0.0055 (6)0.0099 (6)0.0031 (7)
Geometric parameters (Å, º) top
Cl1—C41.7430 (15)Cl2—C121.7469 (15)
O1—C11.3751 (18)O2—C91.3778 (17)
O1—H10.8098O2—H20.8144
O1—H1A0.8145O2—H2A0.8150
C1—C21.388 (2)C9—C101.391 (2)
C1—C61.391 (2)C9—C141.392 (2)
C2—C31.395 (2)C10—C111.399 (2)
C2—H2B0.9500C10—H10A0.9500
C3—C41.3993 (19)C11—C121.397 (2)
C3—C71.5072 (19)C11—C151.508 (2)
C4—C51.388 (2)C12—C131.388 (2)
C5—C61.385 (2)C13—C141.388 (2)
C5—H5A0.9500C13—H13A0.9500
C6—H6A0.9500C14—H14A0.9500
C7—C81.535 (2)C15—C161.529 (2)
C7—H7A0.9900C15—H15A0.9900
C7—H7B0.9900C15—H15B0.9900
C8—H8A0.9800C16—H16A0.9800
C8—H8B0.9800C16—H16B0.9800
C8—H8C0.9800C16—H16C0.9800
C1—O1—H1119.3C9—O2—H2115.6
C1—O1—H1A113.5C9—O2—H2A118.3
H1—O1—H1A126.1H2—O2—H2A124.2
O1—C1—C2119.94 (14)O2—C9—C10120.42 (13)
O1—C1—C6119.55 (14)O2—C9—C14118.89 (13)
C2—C1—C6120.51 (13)C10—C9—C14120.69 (13)
C1—C2—C3121.26 (13)C9—C10—C11121.06 (13)
C1—C2—H2B119.4C9—C10—H10A119.5
C3—C2—H2B119.4C11—C10—H10A119.5
C2—C3—C4117.27 (13)C12—C11—C10117.20 (13)
C2—C3—C7119.86 (13)C12—C11—C15122.80 (13)
C4—C3—C7122.82 (13)C10—C11—C15119.97 (13)
C5—C4—C3121.79 (13)C13—C12—C11122.05 (13)
C5—C4—Cl1117.97 (11)C13—C12—Cl2117.98 (12)
C3—C4—Cl1120.23 (11)C11—C12—Cl2119.97 (11)
C6—C5—C4120.02 (13)C14—C13—C12120.01 (14)
C6—C5—H5A120.0C14—C13—H13A120.0
C4—C5—H5A120.0C12—C13—H13A120.0
C5—C6—C1119.14 (13)C13—C14—C9118.97 (14)
C5—C6—H6A120.4C13—C14—H14A120.5
C1—C6—H6A120.4C9—C14—H14A120.5
C3—C7—C8111.60 (13)C11—C15—C16112.21 (13)
C3—C7—H7A109.3C11—C15—H15A109.2
C8—C7—H7A109.3C16—C15—H15A109.2
C3—C7—H7B109.3C11—C15—H15B109.2
C8—C7—H7B109.3C16—C15—H15B109.2
H7A—C7—H7B108.0H15A—C15—H15B107.9
C7—C8—H8A109.5C15—C16—H16A109.5
C7—C8—H8B109.5C15—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
C7—C8—H8C109.5C15—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
O1—C1—C2—C3178.12 (13)O2—C9—C10—C11178.90 (13)
C6—C1—C2—C30.8 (2)C14—C9—C10—C111.0 (2)
C1—C2—C3—C40.8 (2)C9—C10—C11—C120.1 (2)
C1—C2—C3—C7178.38 (13)C9—C10—C11—C15178.34 (13)
C2—C3—C4—C50.2 (2)C10—C11—C12—C130.6 (2)
C7—C3—C4—C5177.72 (14)C15—C11—C12—C13177.52 (14)
C2—C3—C4—Cl1179.38 (11)C10—C11—C12—Cl2179.89 (11)
C7—C3—C4—Cl13.11 (19)C15—C11—C12—Cl22.0 (2)
C3—C4—C5—C60.3 (2)C11—C12—C13—C140.5 (2)
Cl1—C4—C5—C6178.84 (11)Cl2—C12—C13—C14179.95 (12)
C4—C5—C6—C10.3 (2)C12—C13—C14—C90.3 (2)
O1—C1—C6—C5178.70 (14)O2—C9—C14—C13178.84 (13)
C2—C1—C6—C50.2 (2)C10—C9—C14—C131.1 (2)
C2—C3—C7—C896.30 (16)C12—C11—C15—C1681.06 (19)
C4—C3—C7—C881.14 (18)C10—C11—C15—C1697.03 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.811.972.708 (3)152
O1—H1A···O2i0.811.862.6642 (17)171
O2—H2···O1i0.811.862.6642 (17)168
O2—H2A···O2ii0.821.912.704 (2)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.811.972.708 (3)151.7
O1—H1A···O2i0.811.862.6642 (17)170.8
O2—H2···O1i0.811.862.6642 (17)168.4
O2—H2A···O2ii0.821.912.704 (2)166.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationAwano, Y., Nakanishi, A. & Nonaka, Y. (1987). JP Patent 62 198 631.  Google Scholar
First citationBruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J. (1995). Acta Cryst. C51, 1361–1364.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCox, P. J. (2003). Acta Cryst. C59, o533–o536.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGerbershagen, M. U., Fiege, M., Weisshorn, R., Kolodzie, K., Esch, J. S. & Wappler, F. (2005). Anesth. Analg. 101, 710–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLow, A. M., Sormaz, L., Kwan, C.-Y. & Daniel, E. E. (1997). Br. J. Pharmacol. 122, 504–510.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOswald, I. D. H., Allan, D. R., Motherwell, W. D. S. & Parsons, S. (2005). Acta Cryst. B61, 69–79.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science Google Scholar
First citationSchroetter, E., Weuffen, W. & Wigert, H. (1977). DD Patent 124 296.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds