organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,6,6-Tetra­bromo-3,4,4,5-tetra­meth­­oxy­cyclo­hexa­none

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and bDepartment of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
*Correspondence e-mail: shahid81chem@gmail.com

(Received 13 June 2014; accepted 22 June 2014; online 25 June 2014)

In the title compound, C10H14Br4O5, synthesized from the meth­oxy Schiff base N-(pyridin-2-ylmeth­yl)meth­oxy­aniline and mol­ecular bromine, the cyclo­hexa­none ring has a chair conformation with one of the four meth­oxy groups equatorially orientated with respect to the carbonyl group and the others axially orientated. The C—Br bond lengthsvary from 1.942 (4) to1.964 (4) Å. In the crystal, weak C—H⋯Ocarbon­yl hydrogen-bonding inter­actions generate chains extending along the b-axis direction. Also present in the structure are two short inter­molecular Br⋯Ometh­oxy inter­actions [3.020 (3) and 3.073 (4) Å].

Keywords: crystal structure.

Related literature

For the synthesis and applications of 2,2,6,6-tetra­bromo-3,4,4, 5-tetra­meth­oxy­cyclo­hexa­none and related structures, see: Khan et al. (2004[Khan, F. A., Das, J. & Rout, B. (2004). Tetrahedron Lett. 45, 9285-9288.]). For applications of brominated compounds, see: Alaee (2003[Alaee, M. (2003). Environ. Int. 29, 683-689.]); Czerski & Szymanska (2005[Czerski, J. & Szymanska, J. A. (2005). Int. J. Occup. Med. Environ. Health, 18, 275-279.]); Cupples et al. (2005[Cupples, A. M., Sanford, R. A. & Sims, G. K. (2005). Appl. Environ. Microbiol. 71, 3741-3746.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14Br4O5

  • Mr = 533.81

  • Monoclinic, P 21 /n

  • a = 10.396 (5) Å

  • b = 12.441 (5) Å

  • c = 12.316 (5) Å

  • β = 105.502 (5)°

  • V = 1535.0 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.50 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.228, Tmax = 0.366

  • 20265 measured reflections

  • 2867 independent reflections

  • 2466 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.05

  • 2867 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.98 2.41 3.361 (5) 163
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: DIAMOND.

Supporting information


Comment top

Brominated organic compounds have a broad spectrum of applications. The polybrominated biphenyls, polybrominated diphenylethers and hexabromobenzene are widely used as flame retardants. Other brominated molecules such as 1,4-dibromobenzene (1,4-DBB) and bromoxynil serve as fumigants, as intermediates in the synthesis of dyes, as agrochemicals, pharmaceuticals, or herbicides (Alaee et al., 2003; Czerski et al., 2005; Cupples et al., 2005). Very few examples of the synthesis and applications of compounds similar to the title compound, C10H14Br4O5, 2,2,6,6-tetrabromo-3,4,4,5-tetramethoxycyclohexanone (TBTM) have been reported in the literature (Khan et al., 2004). Our synthesis of this compound, by the reaction of the Schiff base N-(pyridin-2-ylmethyl)methoxyaniline (PMMA) with molecular bromine in methanol has not previously been reported and its structure is reported herein.

In the racemic title compound (Fig. 1), the cyclohexanone ring has a chair conformation with one of the four methoxy groups equatorially oriented with respect to the carbonyl group and the others axially orientated. The C—Br bond lengths are variable [C—Br = 1.946 (4), 1.964 (4),1.942 (4) and 1.959 (4) Å]. In the crystal, weak intermolecular C—H···Ocarbonyl hydrogen-bonding interactions (Table 1) generate one-dimensional chains extending along b (Fig. 2). Also present in the structure are a number of short intramoleculat Br···O contacts [Br···O, 2.961 (3)–3.169 (4) Å] as well as two short intermolecular Br···Omethoxy interactions [Br4···O2ii, 3.020 (3) Å and Br1···O3iii, 3.073 (4) Å] [for symmetry codes: (ii) x + 1/2, -y + 1/2, z + 1/2; (iii) -x, -y + 1, -z]. The overall packing in the unit cell is shown in Fig. 3.

Related literature top

For the synthesis and applications of 2,2,6,6-tetrabromo-3,4,4, 5-tetramethoxycyclohexanone and related structures, see: Khan et al. (2004). For applications of brominated compounds, see: Alaee (2003); Czerski & Szymanska (2005); Cupples et al. (2005).

Experimental top

Molecular bromine (0.15 g, 1.00 mmol) was added carefully to a methanolic solution (10 mL) of N-(pyridin-2-ylmethyl)methoxyaniline (0.20 g, 1.00 mmol). The color of the reaction mixture turned immediately from yellow to red and a yellow precipitate formed after one hour of stirring. The precipitate was filtered off, washed first with acetone then with diethylether and then redissolved in deuterated methanol and kept in an NMR tube for crystallization. Crystals of the title compound suitable for X-ray analysis was obtained within 15 days by slow evaporation of the solvent.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.98 ° (methylene) or 0.96 Å (methyl) and Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Brominated organic compounds have a broad spectrum of applications. The polybrominated biphenyls, polybrominated diphenylethers and hexabromobenzene are widely used as flame retardants. Other brominated molecules such as 1,4-dibromobenzene (1,4-DBB) and bromoxynil serve as fumigants, as intermediates in the synthesis of dyes, as agrochemicals, pharmaceuticals, or herbicides (Alaee et al., 2003; Czerski et al., 2005; Cupples et al., 2005). Very few examples of the synthesis and applications of compounds similar to the title compound, C10H14Br4O5, 2,2,6,6-tetrabromo-3,4,4,5-tetramethoxycyclohexanone (TBTM) have been reported in the literature (Khan et al., 2004). Our synthesis of this compound, by the reaction of the Schiff base N-(pyridin-2-ylmethyl)methoxyaniline (PMMA) with molecular bromine in methanol has not previously been reported and its structure is reported herein.

In the racemic title compound (Fig. 1), the cyclohexanone ring has a chair conformation with one of the four methoxy groups equatorially oriented with respect to the carbonyl group and the others axially orientated. The C—Br bond lengths are variable [C—Br = 1.946 (4), 1.964 (4),1.942 (4) and 1.959 (4) Å]. In the crystal, weak intermolecular C—H···Ocarbonyl hydrogen-bonding interactions (Table 1) generate one-dimensional chains extending along b (Fig. 2). Also present in the structure are a number of short intramoleculat Br···O contacts [Br···O, 2.961 (3)–3.169 (4) Å] as well as two short intermolecular Br···Omethoxy interactions [Br4···O2ii, 3.020 (3) Å and Br1···O3iii, 3.073 (4) Å] [for symmetry codes: (ii) x + 1/2, -y + 1/2, z + 1/2; (iii) -x, -y + 1, -z]. The overall packing in the unit cell is shown in Fig. 3.

For the synthesis and applications of 2,2,6,6-tetrabromo-3,4,4, 5-tetramethoxycyclohexanone and related structures, see: Khan et al. (2004). For applications of brominated compounds, see: Alaee (2003); Czerski & Szymanska (2005); Cupples et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional hydrogen-bonded chain structure in the title compound extending along b, with hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. The molecular packing viewed along the c-axial direction.
2,2,6,6-Tetrabromo-3,4,4,5-tetramethoxycyclohexanone top
Crystal data top
C10H14Br4O5F(000) = 1016
Mr = 533.81Dx = 2.310 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 999 reflections
a = 10.396 (5) Åθ = 2.6–28.6°
b = 12.441 (5) ŵ = 10.50 mm1
c = 12.316 (5) ÅT = 100 K
β = 105.502 (5)°Block, yellow
V = 1535.0 (11) Å30.20 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2867 independent reflections
Radiation source: fine-focus sealed tube2466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.228, Tmax = 0.366k = 1515
20265 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0476P)2 + 1.8635P]
where P = (Fo2 + 2Fc2)/3
2867 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.01 e Å3
Crystal data top
C10H14Br4O5V = 1535.0 (11) Å3
Mr = 533.81Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.396 (5) ŵ = 10.50 mm1
b = 12.441 (5) ÅT = 100 K
c = 12.316 (5) Å0.20 × 0.15 × 0.12 mm
β = 105.502 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2867 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2466 reflections with I > 2σ(I)
Tmin = 0.228, Tmax = 0.366Rint = 0.054
20265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.85 e Å3
2867 reflectionsΔρmin = 1.01 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6442 (4)0.0403 (3)0.2171 (3)0.0253 (8)
C20.7031 (4)0.1525 (3)0.2524 (3)0.0244 (8)
C30.6061 (4)0.2460 (3)0.2078 (3)0.0236 (8)
H30.64440.31360.24290.028*
C40.4661 (4)0.2290 (3)0.2259 (3)0.0253 (8)
C50.4051 (4)0.1254 (3)0.1655 (3)0.0231 (8)
H50.39720.13520.08500.028*
C60.4933 (4)0.0256 (3)0.2045 (3)0.0245 (8)
C70.6279 (5)0.3481 (3)0.0472 (4)0.0381 (11)
H7A0.61120.34310.03310.057*
H7B0.72150.35940.08050.057*
H7C0.57840.40730.06570.057*
C80.3675 (5)0.2322 (5)0.3844 (4)0.0517 (14)
H8A0.39420.23430.46520.078*
H8B0.31620.16830.35970.078*
H8C0.31410.29430.35610.078*
C90.4060 (5)0.4176 (4)0.2142 (5)0.0489 (13)
H9A0.34070.46630.17060.073*
H9B0.49330.43870.20970.073*
H9C0.40290.41930.29140.073*
C100.1701 (5)0.1231 (5)0.0796 (5)0.0619 (17)
H10A0.08690.10520.09510.093*
H10B0.18140.08000.01820.093*
H10C0.16990.19780.05990.093*
O10.7121 (3)0.0326 (2)0.2003 (3)0.0409 (8)
O20.5874 (3)0.2513 (2)0.0895 (2)0.0273 (6)
O30.3779 (3)0.3107 (2)0.1706 (3)0.0322 (7)
O40.4841 (3)0.2319 (3)0.3426 (2)0.0336 (7)
O50.2763 (3)0.1030 (2)0.1766 (3)0.0346 (7)
Br10.76975 (4)0.15408 (4)0.41548 (4)0.03859 (15)
Br20.86086 (4)0.16954 (4)0.19556 (5)0.04340 (15)
Br30.48249 (5)0.02879 (4)0.35148 (4)0.03964 (15)
Br40.42888 (5)0.08868 (3)0.09570 (4)0.03854 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (2)0.028 (2)0.0225 (19)0.0045 (17)0.0103 (16)0.0020 (16)
C20.0189 (19)0.031 (2)0.026 (2)0.0010 (15)0.0107 (16)0.0048 (16)
C30.0242 (19)0.0233 (19)0.0241 (19)0.0026 (15)0.0077 (16)0.0036 (15)
C40.0220 (19)0.032 (2)0.0231 (19)0.0070 (16)0.0088 (16)0.0032 (17)
C50.0210 (19)0.029 (2)0.0227 (19)0.0029 (16)0.0120 (16)0.0013 (16)
C60.028 (2)0.026 (2)0.0216 (18)0.0004 (16)0.0100 (16)0.0013 (15)
C70.042 (3)0.034 (2)0.040 (3)0.0062 (19)0.014 (2)0.004 (2)
C80.044 (3)0.079 (4)0.041 (3)0.012 (3)0.028 (2)0.008 (3)
C90.051 (3)0.031 (3)0.065 (3)0.013 (2)0.016 (3)0.014 (2)
C100.020 (2)0.092 (4)0.067 (4)0.012 (3)0.001 (2)0.032 (3)
O10.0357 (17)0.0313 (17)0.058 (2)0.0098 (13)0.0158 (15)0.0045 (15)
O20.0300 (15)0.0288 (15)0.0262 (14)0.0063 (12)0.0129 (12)0.0037 (11)
O30.0279 (15)0.0296 (15)0.0391 (16)0.0100 (12)0.0092 (13)0.0027 (13)
O40.0319 (16)0.0483 (18)0.0256 (15)0.0072 (13)0.0161 (13)0.0052 (13)
O50.0206 (14)0.0475 (19)0.0388 (17)0.0042 (12)0.0134 (13)0.0066 (14)
Br10.0321 (2)0.0495 (3)0.0289 (2)0.00714 (19)0.00106 (18)0.00593 (19)
Br20.0262 (2)0.0488 (3)0.0627 (3)0.00206 (18)0.0249 (2)0.0017 (2)
Br30.0440 (3)0.0459 (3)0.0336 (2)0.0030 (2)0.0184 (2)0.0132 (2)
Br40.0484 (3)0.0277 (2)0.0401 (3)0.01180 (18)0.0127 (2)0.00577 (18)
Geometric parameters (Å, º) top
C1—O11.201 (5)C7—O21.420 (5)
C1—C21.540 (6)C7—H7A0.9600
C1—C61.545 (5)C7—H7B0.9600
C2—C31.540 (5)C7—H7C0.9600
C2—Br11.942 (4)C8—O41.439 (5)
C2—Br21.959 (4)C8—H8A0.9600
C3—O21.419 (5)C8—H8B0.9600
C3—C41.545 (5)C8—H8C0.9600
C3—H30.9800C9—O31.434 (5)
C4—O41.399 (5)C9—H9A0.9600
C4—O31.416 (5)C9—H9B0.9600
C4—C51.537 (6)C9—H9C0.9600
C5—O51.410 (5)C10—O51.415 (6)
C5—C61.542 (5)C10—H10A0.9600
C5—H50.9800C10—H10B0.9600
C6—Br41.946 (4)C10—H10C0.9600
C6—Br31.964 (4)
O1—C1—C2121.7 (4)C1—C6—Br3104.8 (2)
O1—C1—C6121.4 (4)Br4—C6—Br3106.80 (19)
C2—C1—C6116.9 (3)O2—C7—H7A109.5
C1—C2—C3114.2 (3)O2—C7—H7B109.5
C1—C2—Br1107.8 (3)H7A—C7—H7B109.5
C3—C2—Br1112.3 (3)O2—C7—H7C109.5
C1—C2—Br2107.7 (3)H7A—C7—H7C109.5
C3—C2—Br2108.8 (3)H7B—C7—H7C109.5
Br1—C2—Br2105.50 (18)O4—C8—H8A109.5
O2—C3—C2107.3 (3)O4—C8—H8B109.5
O2—C3—C4106.2 (3)H8A—C8—H8B109.5
C2—C3—C4113.4 (3)O4—C8—H8C109.5
O2—C3—H3109.9H8A—C8—H8C109.5
C2—C3—H3109.9H8B—C8—H8C109.5
C4—C3—H3109.9O3—C9—H9A109.5
O4—C4—O3111.5 (3)O3—C9—H9B109.5
O4—C4—C5116.4 (3)H9A—C9—H9B109.5
O3—C4—C5103.8 (3)O3—C9—H9C109.5
O4—C4—C3105.8 (3)H9A—C9—H9C109.5
O3—C4—C3110.2 (3)H9B—C9—H9C109.5
C5—C4—C3109.1 (3)O5—C10—H10A109.5
O5—C5—C4113.5 (3)O5—C10—H10B109.5
O5—C5—C6108.2 (3)H10A—C10—H10B109.5
C4—C5—C6112.9 (3)O5—C10—H10C109.5
O5—C5—H5107.3H10A—C10—H10C109.5
C4—C5—H5107.3H10B—C10—H10C109.5
C6—C5—H5107.3C3—O2—C7116.3 (3)
C5—C6—C1116.0 (3)C4—O3—C9116.4 (3)
C5—C6—Br4107.9 (2)C4—O4—C8118.2 (3)
C1—C6—Br4108.0 (3)C5—O5—C10115.5 (3)
C5—C6—Br3112.9 (3)
O1—C1—C2—C3147.2 (4)C3—C4—C5—C656.7 (4)
C6—C1—C2—C333.0 (5)O5—C5—C6—C1170.4 (3)
O1—C1—C2—Br187.3 (4)C4—C5—C6—C144.0 (4)
C6—C1—C2—Br192.6 (3)O5—C5—C6—Br468.3 (3)
O1—C1—C2—Br226.2 (5)C4—C5—C6—Br4165.3 (3)
C6—C1—C2—Br2154.0 (3)O5—C5—C6—Br349.5 (4)
C1—C2—C3—O269.5 (4)C4—C5—C6—Br377.0 (3)
Br1—C2—C3—O2167.3 (2)O1—C1—C6—C5148.5 (4)
Br2—C2—C3—O250.9 (3)C2—C1—C6—C531.7 (5)
C1—C2—C3—C447.5 (4)O1—C1—C6—Br427.3 (4)
Br1—C2—C3—C475.7 (3)C2—C1—C6—Br4152.9 (3)
Br2—C2—C3—C4167.9 (2)O1—C1—C6—Br386.3 (4)
O2—C3—C4—O4175.7 (3)C2—C1—C6—Br393.5 (3)
C2—C3—C4—O466.7 (4)C2—C3—O2—C7118.5 (4)
O2—C3—C4—O355.0 (4)C4—C3—O2—C7119.9 (4)
C2—C3—C4—O3172.6 (3)O4—C4—O3—C950.5 (5)
O2—C3—C4—C558.4 (4)C5—C4—O3—C9176.6 (4)
C2—C3—C4—C559.2 (4)C3—C4—O3—C966.7 (5)
O4—C4—C5—O560.8 (4)O3—C4—O4—C852.1 (5)
O3—C4—C5—O562.2 (4)C5—C4—O4—C866.7 (5)
C3—C4—C5—O5179.7 (3)C3—C4—O4—C8172.0 (4)
O4—C4—C5—C662.8 (4)C4—C5—O5—C10105.2 (5)
O3—C4—C5—C6174.3 (3)C6—C5—O5—C10128.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.982.413.361 (5)163
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.982.413.361 (5)163
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Aligarh Muslim University, India for support.

References

First citationAlaee, M. (2003). Environ. Int. 29, 683–689.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCupples, A. M., Sanford, R. A. & Sims, G. K. (2005). Appl. Environ. Microbiol. 71, 3741–3746.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCzerski, J. & Szymanska, J. A. (2005). Int. J. Occup. Med. Environ. Health, 18, 275–279.  PubMed Google Scholar
First citationKhan, F. A., Das, J. & Rout, B. (2004). Tetrahedron Lett. 45, 9285–9288.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds