organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{Phen­yl[4-(6-phenyl-2,2′-bipyridin-4-yl)phen­yl]amino}­benzaldehyde

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: huangjianyan@ahu.edu.cn

(Received 16 May 2014; accepted 8 June 2014; online 2 July 2014)

The title mol­ecule, C35H25N3O, is a tri­phenyl­amine derivative with the 4-position substituted by an aldehyde group, and the 4′-position substituted by a 6-phenyl-2,2′-bi­pyridine group. The whole mol­ecule is non-planar and the dihedral angle between the core benzene and pyridine rings is 36.96 (5)°. The dihedral angle between the phenyl and benzaldehyde groups bonded to the amine N atom is 70.86 (5)°.

Related literature

For the application of the title compound and related mol­ecules in OLED devices, see: Neve et al. (2002[Neve, F., Crispini, A., Di Pietro, C. & Campagna, S. (2002). Organometallics, 21, 3511-3518.]); Lu et al. (2004[Lu, W., Chan, M. C. W., Zhu, N. Y., Che, C. M., Li, C. N. & Hui, Z. (2004). J. Am. Chem. Soc. 126, 7639-7651.]); Ye et al. (2010[Ye, S. H., Liu, Y. Q., Lu, K., Wu, W. P., Du, C. Y., Liu, Y., Liu, H. T., Wu, T. & Yu, G. (2010). Adv. Funct. Mater. 20, 3125-3135.]). For a related mol­ecule and its application in synthesis, see: Shen et al. (2012[Shen, W.-B., Zhang, Z.-W., Wang, L.-W. & Wu, J.-Y. (2012). Acta Cryst. E68, o1358.]).

[Scheme 1]

Experimental

Crystal data
  • C35H25N3O

  • Mr = 503.58

  • Monoclinic, P 21 /c

  • a = 14.4204 (9) Å

  • b = 10.0329 (6) Å

  • c = 18.4597 (11) Å

  • β = 101.423 (1)°

  • V = 2617.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 13094 measured reflections

  • 4580 independent reflections

  • 3379 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 0.99

  • 4580 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (Fig. 1) includes a triphenylamine group and a CNN (HCNN = 6-aryl-2,2'-bipyridine) moiety. The triphenylamine group has an extended conjugated system, and is usually used in organic light-emitting diodes (OLED), due to its high holes mobility (Ye et al., 2010). The CNN moiety is a better donor than terpyridine and has a better π-acceptor ability than the CNC moiety (HCNCH = 2, 6-diphenylpyridine) (Lu et al., 2004). The title compound can be used as an intermediate for 6-aryl-2,2'-bipyridine metal complexes (Shen et al., 2012) and may find applications in light-emitting devices and dye-sensitized devices (Neve et al., 2002).

The bond lengths around the amine N atom, N1—C5, N1—C8 and N1—C14, differ from each other, which are 1.4079 (19), 1.4285 (18) and 1.4256 (18) Å, respectively. The bond distance of C23—C31 is almost equal to the bond distance of C24—C25, but the dihedral angles of the phenyl group and pyridine moiety is slightly different from that of pyridine moiety and the terminal pyridine ring, which are 10.45 and 14.49°, respectively. The central core of rings is also twisted, with the torsion angle C17—C19—C20—C21 being 142.01°.

Related literature top

For the application of the title compound and related molecules in OLED devices, see: Neve et al. (2002); Lu et al. (2004); Ye et al. (2010). For a related molecule and its application in synthesis, see: Shen et al. (2012).

Experimental top

4-(Diphenylamino)benzaldehyde (1.00 g), acetophenone (0.88 g), and NaOH (0.22 g) were dissolved in 10 ml of ethanol and the mixture was refluxed for about 12 h. The precipitate was filtered, purified by recrystallization from ethanol, yielding 1.21 g of yellow solid, (E)-3-[4-(diphenylamino)phenyl]-1-phenylprop-2-en-1-one (D1). Yield: 88%. D1 (1.00 g), 1-(pyridin-2-yl)ethanone (0.32 g), and NaOH (0.13 g) were crushed together with a pestle and mortar at room temperature for 1 h. The mixture was purified by recrystallization from ethanol, affording 1.2 g of solid, 3-[4-(diphenylamino)phenyl]-1-phenyl-5-(pyridin-2-yl)pentane-1,5-dione (D2). Yield: 91%. D2 (1.00 g) and ammonium acetate (4.66 g) were dissolved in 20 ml of ethanol and refluxed for 24 h. The precipitate was filtered, purified by recrystallization from a mixture of dichloromethane and ethanol, to give 0.85 g of a yellow solid, N,N-diphenyl-4-(6-phenyl-2,2'-bipyridin-4-yl)aniline (D3). Yield: 89%. The title compound was obtained through the Vilsmeier-Haack reaction of D3 (0.85 g). The precipitate was purified by flash chromatography on silica gel using petroleum/ethyl acetate (8:1) as eluent, affording 0.62 g of a yellow solid. Yield: 69%. 1H NMR (400 MHz, CDCl3) 7.13 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 3H), 7.29 (t, 2H), 7.37 (m, 3H), 7.46 (t, 1H), 7.53 (t, 2H), 7.73 (t, 2H), 7.79 (d, J = 8.0 Hz, 2H), 7.87 (t, 1H), 7.97 (s, 1H), 8.21 (d, J = 7.6 Hz, 2H), 8.63 (s, 1H), 8.70 (t, 2H), 9.85 ppm (s, 1H). 13C NMR (100 MHz) 117.18, 118.04, 120.38, 121.54, 123.90, 125.47, 125.83, 126.49, 127.09, 128.54, 128.79, 129.16, 129.18, 129.92, 131.38, 134.79, 136.94, 139.44, 146.00, 147.12, 149.08, 149.33, 152.96, 156.28, 156.34, 157.23, 190.54 ppm.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(carrier C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.
4-{Phenyl[4-(6-phenyl-2,2'-bipyridin-4-yl)phenyl]amino}benzaldehyde top
Crystal data top
C35H25N3OF(000) = 1056
Mr = 503.58Dx = 1.278 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3436 reflections
a = 14.4204 (9) Åθ = 2.3–27.3°
b = 10.0329 (6) ŵ = 0.08 mm1
c = 18.4597 (11) ÅT = 296 K
β = 101.423 (1)°Needle, yellow
V = 2617.8 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3379 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ϕ and ω scansh = 1617
13094 measured reflectionsk = 1111
4580 independent reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.5245P]
where P = (Fo2 + 2Fc2)/3
4580 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.15 e Å3
0 constraints
Crystal data top
C35H25N3OV = 2617.8 (3) Å3
Mr = 503.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4204 (9) ŵ = 0.08 mm1
b = 10.0329 (6) ÅT = 296 K
c = 18.4597 (11) Å0.30 × 0.20 × 0.20 mm
β = 101.423 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3379 reflections with I > 2σ(I)
13094 measured reflectionsRint = 0.024
4580 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.99Δρmax = 0.12 e Å3
4580 reflectionsΔρmin = 0.15 e Å3
352 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37069 (18)0.99664 (19)0.85338 (11)0.0791 (6)
H10.42741.04010.85230.095*
C20.37390 (13)0.88662 (15)0.90600 (9)0.0578 (4)
C30.45768 (13)0.85771 (16)0.95466 (10)0.0594 (4)
H30.51190.90610.95190.071*
C40.46236 (11)0.75857 (15)1.00714 (9)0.0535 (4)
H40.51890.74281.04020.064*
C50.38289 (11)0.68211 (14)1.01074 (8)0.0464 (4)
C60.29420 (12)0.81128 (16)0.91074 (9)0.0574 (4)
H60.23720.82950.87880.069*
C70.29833 (11)0.71064 (16)0.96165 (9)0.0525 (4)
H70.24440.66100.96350.063*
C80.45874 (11)0.58033 (15)1.12868 (8)0.0480 (4)
C90.46558 (13)0.68847 (18)1.17592 (10)0.0677 (5)
H90.42320.75901.16540.081*
C100.53571 (16)0.6910 (2)1.23866 (11)0.0862 (6)
H100.54120.76461.26990.103*
C110.59739 (15)0.5868 (2)1.25570 (11)0.0813 (6)
H110.64400.58921.29840.098*
C120.59008 (12)0.4788 (2)1.20945 (10)0.0659 (5)
H120.63180.40771.22080.079*
C130.52092 (11)0.47552 (16)1.14605 (9)0.0532 (4)
H130.51620.40201.11480.064*
C140.33521 (10)0.45819 (14)1.04475 (8)0.0444 (4)
C150.32065 (10)0.40549 (14)0.97396 (8)0.0455 (4)
H150.34480.44940.93730.055*
C160.30076 (11)0.38972 (15)1.09888 (8)0.0498 (4)
H160.31110.42281.14690.060*
C170.25108 (11)0.27239 (15)1.08197 (8)0.0496 (4)
H170.22850.22751.11900.059*
C180.27064 (10)0.28839 (14)0.95742 (8)0.0448 (4)
H180.26120.25480.90960.054*
C190.23406 (10)0.21983 (14)1.01084 (8)0.0428 (3)
C200.17668 (10)0.09761 (14)0.99163 (8)0.0440 (4)
C210.11550 (10)0.08717 (15)0.92369 (8)0.0463 (4)
H210.11270.15540.88920.056*
C220.17932 (11)0.00827 (15)1.04009 (9)0.0482 (4)
H220.21900.00541.08640.058*
C230.12231 (10)0.11869 (15)1.01913 (9)0.0471 (4)
C240.05842 (10)0.02439 (15)0.90672 (8)0.0458 (4)
C250.01267 (10)0.03392 (16)0.83667 (9)0.0491 (4)
C260.03301 (12)0.07457 (17)0.79072 (9)0.0605 (5)
H260.00040.15350.80240.073*
C270.10196 (14)0.0679 (2)0.72791 (10)0.0768 (6)
H270.11480.14210.69740.092*
C280.15196 (14)0.0471 (2)0.70983 (11)0.0812 (6)
H280.19930.05070.66760.097*
C290.13200 (14)0.1569 (2)0.75411 (11)0.0803 (6)
H290.16510.23580.74160.096*
C300.06295 (12)0.15054 (19)0.81716 (10)0.0655 (5)
H300.04980.22550.84710.079*
C310.12354 (12)0.23332 (15)1.07047 (9)0.0525 (4)
C320.05216 (13)0.32814 (17)1.05889 (11)0.0671 (5)
H320.00410.32431.01710.081*
C330.05354 (17)0.42849 (19)1.11039 (14)0.0840 (6)
H330.00610.49271.10400.101*
C340.12583 (18)0.4321 (2)1.17110 (13)0.0866 (7)
H340.12780.49801.20680.104*
C350.19494 (16)0.3370 (2)1.17810 (11)0.0779 (6)
H350.24430.34131.21900.093*
N10.38793 (9)0.57802 (12)1.06252 (7)0.0509 (3)
N20.06237 (9)0.12729 (12)0.95393 (7)0.0495 (3)
N30.19577 (11)0.23785 (14)1.12957 (8)0.0671 (4)
O10.30133 (13)1.03588 (14)0.81138 (8)0.1031 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.1167 (18)0.0504 (12)0.0663 (13)0.0151 (11)0.0088 (12)0.0004 (9)
C20.0786 (12)0.0372 (9)0.0575 (10)0.0051 (8)0.0130 (9)0.0056 (8)
C30.0693 (11)0.0409 (9)0.0693 (11)0.0146 (8)0.0165 (9)0.0076 (8)
C40.0525 (9)0.0423 (9)0.0634 (10)0.0052 (7)0.0057 (8)0.0071 (8)
C50.0516 (9)0.0341 (8)0.0534 (9)0.0024 (7)0.0100 (7)0.0070 (7)
C60.0640 (11)0.0464 (10)0.0584 (10)0.0044 (8)0.0040 (8)0.0031 (8)
C70.0514 (9)0.0439 (9)0.0613 (10)0.0018 (7)0.0090 (8)0.0019 (8)
C80.0517 (9)0.0446 (9)0.0463 (9)0.0109 (7)0.0064 (7)0.0059 (7)
C90.0750 (12)0.0563 (11)0.0679 (12)0.0007 (9)0.0044 (10)0.0186 (9)
C100.0982 (16)0.0834 (15)0.0690 (13)0.0116 (13)0.0029 (12)0.0342 (11)
C110.0761 (14)0.0958 (16)0.0616 (12)0.0156 (12)0.0117 (10)0.0108 (12)
C120.0583 (11)0.0707 (12)0.0644 (11)0.0019 (9)0.0018 (9)0.0059 (10)
C130.0587 (10)0.0493 (9)0.0509 (9)0.0054 (8)0.0094 (8)0.0040 (7)
C140.0439 (8)0.0382 (8)0.0483 (9)0.0039 (6)0.0027 (7)0.0028 (7)
C150.0477 (9)0.0428 (9)0.0448 (9)0.0048 (7)0.0067 (7)0.0019 (7)
C160.0557 (10)0.0498 (9)0.0427 (9)0.0058 (8)0.0065 (7)0.0052 (7)
C170.0529 (9)0.0497 (9)0.0456 (9)0.0076 (7)0.0087 (7)0.0014 (7)
C180.0485 (9)0.0431 (9)0.0399 (8)0.0037 (7)0.0016 (7)0.0024 (7)
C190.0402 (8)0.0389 (8)0.0461 (8)0.0013 (6)0.0011 (6)0.0017 (7)
C200.0406 (8)0.0402 (8)0.0503 (9)0.0017 (6)0.0070 (7)0.0021 (7)
C210.0452 (9)0.0412 (8)0.0507 (9)0.0041 (7)0.0052 (7)0.0012 (7)
C220.0485 (9)0.0434 (9)0.0504 (9)0.0012 (7)0.0043 (7)0.0009 (7)
C230.0468 (9)0.0398 (9)0.0563 (10)0.0013 (7)0.0141 (8)0.0008 (7)
C240.0395 (8)0.0447 (9)0.0530 (9)0.0002 (7)0.0088 (7)0.0062 (7)
C250.0396 (8)0.0544 (10)0.0531 (9)0.0021 (7)0.0087 (7)0.0129 (8)
C260.0576 (10)0.0561 (11)0.0597 (11)0.0005 (8)0.0078 (8)0.0100 (9)
C270.0779 (13)0.0788 (14)0.0638 (12)0.0131 (11)0.0100 (10)0.0118 (10)
C280.0628 (12)0.1089 (18)0.0632 (13)0.0024 (12)0.0087 (10)0.0298 (13)
C290.0735 (13)0.0929 (16)0.0706 (13)0.0309 (12)0.0050 (11)0.0278 (12)
C300.0649 (11)0.0687 (12)0.0622 (11)0.0189 (9)0.0105 (9)0.0156 (9)
C310.0577 (10)0.0404 (9)0.0624 (10)0.0032 (7)0.0196 (9)0.0016 (8)
C320.0744 (12)0.0468 (10)0.0840 (13)0.0080 (9)0.0253 (10)0.0021 (9)
C330.0977 (16)0.0487 (12)0.1151 (18)0.0098 (11)0.0440 (15)0.0100 (12)
C340.1124 (18)0.0597 (13)0.0973 (17)0.0124 (13)0.0443 (15)0.0286 (12)
C350.0916 (15)0.0655 (13)0.0790 (14)0.0144 (11)0.0229 (11)0.0226 (11)
N10.0563 (8)0.0399 (7)0.0519 (8)0.0098 (6)0.0004 (6)0.0030 (6)
N20.0468 (7)0.0425 (7)0.0593 (8)0.0037 (6)0.0106 (6)0.0037 (6)
N30.0734 (10)0.0582 (9)0.0706 (10)0.0078 (7)0.0166 (8)0.0156 (8)
O10.1452 (15)0.0692 (10)0.0818 (10)0.0054 (9)0.0088 (10)0.0165 (8)
Geometric parameters (Å, º) top
C1—O11.204 (2)C18—C191.389 (2)
C1—C21.465 (2)C18—H180.9300
C1—H10.9300C19—C201.4826 (19)
C2—C31.386 (2)C20—C221.384 (2)
C2—C61.393 (2)C20—C211.3870 (19)
C3—C41.381 (2)C21—C241.388 (2)
C3—H30.9300C21—H210.9300
C4—C51.391 (2)C22—C231.388 (2)
C4—H40.9300C22—H220.9300
C5—C71.397 (2)C23—N21.3384 (19)
C5—N11.4079 (19)C23—C311.488 (2)
C6—C71.373 (2)C24—N21.3449 (19)
C6—H60.9300C24—C251.486 (2)
C7—H70.9300C25—C261.375 (2)
C8—C131.378 (2)C25—C301.386 (2)
C8—C91.383 (2)C26—C271.371 (2)
C8—N11.4285 (18)C26—H260.9300
C9—C101.379 (3)C27—C281.367 (3)
C9—H90.9300C27—H270.9300
C10—C111.368 (3)C28—C291.368 (3)
C10—H100.9300C28—H280.9300
C11—C121.370 (3)C29—C301.375 (2)
C11—H110.9300C29—H290.9300
C12—C131.379 (2)C30—H300.9300
C12—H120.9300C31—N31.352 (2)
C13—H130.9300C31—C321.387 (2)
C14—C151.387 (2)C32—C331.382 (3)
C14—C161.383 (2)C32—H320.9300
C14—N11.4256 (18)C33—C341.371 (3)
C15—C181.381 (2)C33—H330.9300
C15—H150.9300C34—C351.368 (3)
C16—C171.381 (2)C34—H340.9300
C16—H160.9300C35—N31.340 (2)
C17—C191.391 (2)C35—H350.9300
C17—H170.9300
O1—C1—C2125.9 (2)C18—C19—C20120.80 (13)
O1—C1—H1117.0C17—C19—C20121.68 (13)
C2—C1—H1117.0C22—C20—C21117.23 (14)
C3—C2—C6118.04 (16)C22—C20—C19122.51 (13)
C3—C2—C1119.76 (17)C21—C20—C19120.25 (13)
C6—C2—C1122.17 (18)C20—C21—C24120.50 (14)
C2—C3—C4121.38 (16)C20—C21—H21119.7
C2—C3—H3119.3C24—C21—H21119.7
C4—C3—H3119.3C20—C22—C23119.56 (14)
C3—C4—C5120.28 (15)C20—C22—H22120.2
C3—C4—H4119.9C23—C22—H22120.2
C5—C4—H4119.9N2—C23—C22122.92 (14)
C4—C5—C7118.52 (15)N2—C23—C31116.55 (14)
C4—C5—N1120.60 (14)C22—C23—C31120.50 (14)
C7—C5—N1120.88 (14)N2—C24—C21121.71 (14)
C7—C6—C2121.19 (16)N2—C24—C25116.61 (13)
C7—C6—H6119.4C21—C24—C25121.64 (14)
C2—C6—H6119.4C26—C25—C30118.11 (16)
C6—C7—C5120.57 (15)C26—C25—C24120.79 (14)
C6—C7—H7119.7C30—C25—C24121.05 (16)
C5—C7—H7119.7C25—C26—C27120.87 (17)
C13—C8—C9119.34 (15)C25—C26—H26119.6
C13—C8—N1120.57 (14)C27—C26—H26119.6
C9—C8—N1120.09 (15)C26—C27—C28120.4 (2)
C10—C9—C8119.52 (18)C26—C27—H27119.8
C10—C9—H9120.2C28—C27—H27119.8
C8—C9—H9120.2C29—C28—C27119.71 (18)
C11—C10—C9120.97 (18)C29—C28—H28120.1
C11—C10—H10119.5C27—C28—H28120.1
C9—C10—H10119.5C28—C29—C30119.99 (19)
C10—C11—C12119.63 (18)C28—C29—H29120.0
C10—C11—H11120.2C30—C29—H29120.0
C12—C11—H11120.2C29—C30—C25120.86 (19)
C11—C12—C13120.07 (18)C29—C30—H30119.6
C11—C12—H12120.0C25—C30—H30119.6
C13—C12—H12120.0N3—C31—C32122.08 (16)
C8—C13—C12120.46 (16)N3—C31—C23116.75 (14)
C8—C13—H13119.8C32—C31—C23121.14 (16)
C12—C13—H13119.8C33—C32—C31118.99 (19)
C15—C14—C16118.84 (13)C33—C32—H32120.5
C15—C14—N1120.85 (13)C31—C32—H32120.5
C16—C14—N1120.26 (13)C34—C33—C32119.1 (2)
C14—C15—C18120.52 (14)C34—C33—H33120.4
C14—C15—H15119.7C32—C33—H33120.4
C18—C15—H15119.7C35—C34—C33118.71 (19)
C17—C16—C14120.29 (14)C35—C34—H34120.6
C17—C16—H16119.9C33—C34—H34120.6
C14—C16—H16119.9N3—C35—C34123.9 (2)
C16—C17—C19121.53 (14)N3—C35—H35118.1
C16—C17—H17119.2C34—C35—H35118.1
C19—C17—H17119.2C5—N1—C14121.05 (12)
C15—C18—C19121.30 (14)C5—N1—C8120.03 (12)
C15—C18—H18119.4C14—N1—C8117.96 (12)
C19—C18—H18119.4C23—N2—C24118.04 (13)
C18—C19—C17117.49 (13)C35—N3—C31117.20 (17)

Experimental details

Crystal data
Chemical formulaC35H25N3O
Mr503.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.4204 (9), 10.0329 (6), 18.4597 (11)
β (°) 101.423 (1)
V3)2617.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13094, 4580, 3379
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 0.99
No. of reflections4580
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge the NSFC (21101001) and the 211 Project of Anhui University for supporting this study.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, W., Chan, M. C. W., Zhu, N. Y., Che, C. M., Li, C. N. & Hui, Z. (2004). J. Am. Chem. Soc. 126, 7639–7651.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNeve, F., Crispini, A., Di Pietro, C. & Campagna, S. (2002). Organometallics, 21, 3511–3518.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, W.-B., Zhang, Z.-W., Wang, L.-W. & Wu, J.-Y. (2012). Acta Cryst. E68, o1358.  CSD CrossRef IUCr Journals Google Scholar
First citationYe, S. H., Liu, Y. Q., Lu, K., Wu, W. P., Du, C. Y., Liu, Y., Liu, H. T., Wu, T. & Yu, G. (2010). Adv. Funct. Mater. 20, 3125–3135.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds