organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o866-o867

(4bS,8aS)-1-Iso­propyl-4b,8,8-tri­methyl-4b,5,6,7,8,8a,9,10-octa­hydro­phenan­thren-2-yl benzoate

aLaboratoire de Synthése Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences Semlalia, BP 2390 Marrakech 40000, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: a.auhmani@uca.ma

Edited by S. Bernès, UANL, México (Received 24 June 2014; accepted 7 July 2014; online 11 July 2014)

The title compound, C27H34O2, was hemisynthesized through direct benzoyl­ation of the naturally occurring meroterpene totarol. The central fused six-membered ring has a half-chair conformation, whereas the terminal six-membered ring displays a chair conformation. The dihedral angle between the fused benzene ring and the benzoyl benzene ring is 73.05 (14)°. The S,S chirality of the mol­ecule is consistent with the synthetic pathway, and confirmed by the refinement of the Flack parameter.

Keywords: crystal structure.

Related literature

For the synthesis and biological activity of totarol [systematic name: (4bS,8aS)-4b,8,8-trimethyl-1-propan-2-yl-5,6,7,8a,9,10-hexa­hydro­phenanthren-2-ol], see: Short & Stromberg (1937[Short, W. F. & Stromberg, H. (1937). J. Chem. Soc. pp. 516-520.]); Barrero et al. (2003[Barrero, A. F., Quílez del Moral, J. F., Lucas, R., Payá, M., Akssira, M., Akaad, S. & Mellouki, F. (2003). J. Nat. Prod. 66, 844-50.]); Haraguchi et al. (1996[Haraguchi, H., Oike, S., Muroi, H. & Kubo, I. (1996). Planta Med. 62, 122-125.]); Bernabeu et al. (2002[Bernabeu, A., Shapiro, S. & Villalaín, J. (2002). Chem. Phys. Lipids, 119, 33-39.]); Marcos et al. (2003[Marcos, I. S., Cubillo, M. A., Moro, R. F., Díez, D., Basabe, P., Sanz, F. & Urones, J. G. (2003). Tetrahedron Lett., 44, 8831-8835.]); Tacon et al. (2012[Tacon, C., Guantai, E. M., Smith, P. J. & Chibale, K. (2012). Bioorg. Med. Chem. 20, 893-902.]). For conformational analysis and absolute configuration determination, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]); Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For related structures, see: Zeroual et al. (2008[Zeroual, A., Mazoir, N., Daran, J.-C., Akssira, M. & Benharref, A. (2008). Acta Cryst. E64, o604-o605.]); Oubabi et al. (2014[Oubabi, R., Auhmani, A., Ait Itto, M. Y., Auhmani, A. & Daran, J.-C. (2014). Acta Cryst. E70, o317.]); Pettit et al. (2004[Pettit, G. R., Tan, R., Northen, J. S., Herald, D. L., Chapuis, J.-C. & Pettit, R. K. (2004). J. Nat. Prod. 67, 1476-1482.]).

[Scheme 1]

Experimental

Crystal data
  • C27H34O2

  • Mr = 390.54

  • Monoclinic, P 21

  • a = 7.7369 (3) Å

  • b = 7.2079 (4) Å

  • c = 20.2499 (9) Å

  • β = 99.816 (4)°

  • V = 1112.74 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 180 K

  • 0.50 × 0.25 × 0.07 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]) Tmin = 0.689, Tmax = 1.0

  • 9197 measured reflections

  • 3116 independent reflections

  • 2926 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 60.8°

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 1.04

  • 3116 reflections

  • 267 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack x determined using 1138 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.11 (17)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Results and discussion top

Totarol is a naturally produced terpenoid isolated from several plants such as Podocarpus totara (Short & Stromberg, 1937) and Tetra­clinis articulata (Barrero et al., 2003). It has been attracting great inter­est because of its biological properties ranging from anti­microbial (Haraguchi et al., 1996), anti-oxidant (Bernabeu et al., 2002), anti-inflammatory, analgesic, anti-tumoral (Marcos et al., 2003) to anti-plasmodial (Tacon et al., 2012).

In our ongoing studies on the synthesis of totarol derivatives of potential inter­est, we carried out the reaction of totarol with benzoyl chloride in pyridine, which provides the expected benzoyl­ated product, (4bS,8aS)-1-iso­propyl-4b,8,8-tri­methyl-4b,5,6,7,8,8a,9,10-o­cta­hydro­phenanthren-2-yl benzoate, as colorless crystals in 92% yield. Its structure was characterized by mass and NMR spectroscopy, and was fully confirmed by an X-ray single crystal structure analysis.

This compound is built up from three fused six-membered rings, an unsaturated benzene ring (I) and two saturated rings (II) and (III) (Fig. 1). The central saturated ring (II) has a half chair conformation with puckering parameters Q = 0.527 (3) Å, θ= 48.6 (3)° and ϕ= 128.9 (4)° (Cremer & Pople, 1975), whereas the second saturated six-membered ring, (III), displays a chair conformation with puckering parameters Q = 0.546 (3) Å, θ= 175.8 (3)° and ϕ= 301 (4)°. Similar conformation for the three fused rings has been reported previously with hydroxyl substituent or methyl acetate in place of the benzoate of the title compound (Zeroual et al., 2008; Oubabi et al., 2014), and with either an hydroxyl or a meth­oxy substituent on the central ring (Pettit et al., 2004).

The 4bS,8aS absolute configuration is deduced from the synthetic pathway. Although the Flack (Flack, 1983; Flack & Bernardinelli, 2000; Parsons et al., 2013) and Hooft parameters (Spek, 2009) display large standard deviations, their values, -0.11 (17) and 0.09 (15), confirmed the expected absolute configuration.

Experimental top

Synthesis and crystallization top

A solution of totarol (110 mg, 0.384 mmol) in benzoyl chloride (3 mL) and pyridine (20 mL) was refluxed for 24 hours. After cooling, the mixture was acidified with HCl (1N solution), and then extracted with ether (3×20 mL). The organic layer was washed with water, dried on anhydrous Na2SO4 and then evaporated under reduced pressure. The obtained residue was chromatographed on a silica gel column using hexane and ethyl acetate (97/3) as eluent, to give the title compound in 92 % yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution of the title compound.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For the synthesis and the biological activity of totarol [systematic name: (4bS,8aS)-4b,8,8-trimethyl-1-propan-2-yl-5,6,7,8a,9,10-hexahydrophenanthren-2-ol], see: Short & Stromberg (1937); Barrero et al. (2003); Haraguchi et al. (1996); Bernabeu et al. (2002); Marcos et al. (2003); Tacon et al. (2012). For conformational analysis and absolute configuration determination, see: Cremer & Pople (1975); Flack (1983); Flack & Bernardinelli (2000); Parsons et al. (2013); Spek (2009). For related structures, see: Zeroual et al. (2008); Oubabi et al. (2014); Pettit et al. (2004).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 1.0 Å (methine) and 0.95 Å (aromatic), and with Uiso(H) = 1.2Ueq(CH, CH2, aromatic) or Uiso(H) = 1.5Ueq(CH3). Owing to physical limitations on the diffractometer, the maximum value of θ used was 60.8° for a complete data set, resulting in the value of sin(θmax)/λ less than 0.6 and, consequently, a low fraction of unique reflections (0.834) measured at the best achieved resolution (θ=67.7°).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with ellipsoids for non-H atoms drawn at the 50% probability level. H atoms are represented as small circle of arbitrary radii.
(4bS,8aS)-1-Isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthren-2-yl benzoate top
Crystal data top
C27H34O2F(000) = 424
Mr = 390.54Dx = 1.166 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 7.7369 (3) ÅCell parameters from 4294 reflections
b = 7.2079 (4) Åθ = 4.4–60.4°
c = 20.2499 (9) ŵ = 0.55 mm1
β = 99.816 (4)°T = 180 K
V = 1112.74 (9) Å3Flattened, colourless
Z = 20.50 × 0.25 × 0.07 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
3116 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2926 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 16.1978 pixels mm-1θmax = 60.8°, θmin = 4.4°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 87
Tmin = 0.689, Tmax = 1.0l = 2222
9197 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.1662P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3116 reflectionsΔρmax = 0.13 e Å3
267 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack x determined using 1138 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 constraintsAbsolute structure parameter: 0.11 (17)
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H34O2V = 1112.74 (9) Å3
Mr = 390.54Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.7369 (3) ŵ = 0.55 mm1
b = 7.2079 (4) ÅT = 180 K
c = 20.2499 (9) Å0.50 × 0.25 × 0.07 mm
β = 99.816 (4)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
3116 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2926 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 1.0Rint = 0.033
9197 measured reflectionsθmax = 60.8°
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.13 e Å3
S = 1.04Δρmin = 0.21 e Å3
3116 reflectionsAbsolute structure: Flack x determined using 1138 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
267 parametersAbsolute structure parameter: 0.11 (17)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0825 (2)0.2023 (3)0.33409 (8)0.0388 (5)
O21.2632 (2)0.2265 (4)0.25828 (10)0.0661 (7)
C10.8685 (3)0.4403 (4)0.29484 (14)0.0413 (7)
C20.9421 (3)0.2698 (4)0.28549 (13)0.0359 (6)
C30.8814 (3)0.1570 (4)0.23162 (13)0.0385 (7)
H30.93380.03950.22700.046*
C40.7432 (3)0.2179 (4)0.18449 (13)0.0374 (6)
H40.70190.14160.14680.045*
C4A0.6625 (3)0.3879 (4)0.19052 (12)0.0319 (6)
C4B0.5137 (3)0.4506 (4)0.13429 (12)0.0330 (6)
C50.4014 (3)0.2837 (4)0.10522 (14)0.0405 (7)
H5A0.47300.20220.08120.049*
H5B0.36750.21130.14260.049*
C60.2361 (4)0.3401 (5)0.05730 (15)0.0462 (8)
H6A0.26910.40280.01780.055*
H6B0.16760.22790.04150.055*
C70.1239 (3)0.4697 (4)0.09132 (14)0.0425 (7)
H7A0.08350.40240.12850.051*
H7B0.01880.50500.05870.051*
C80.2197 (3)0.6458 (4)0.11908 (13)0.0390 (7)
C8A0.3948 (3)0.5887 (4)0.16448 (12)0.0334 (6)
H8A0.35850.52090.20300.040*
C90.5059 (4)0.7494 (4)0.19617 (15)0.0431 (7)
H9A0.56730.80710.16230.052*
H9B0.42900.84450.21130.052*
C100.6400 (4)0.6854 (4)0.25540 (15)0.0470 (7)
H10A0.58170.67680.29520.056*
H10B0.73280.78100.26490.056*
C10A0.7261 (3)0.5000 (4)0.24594 (13)0.0379 (6)
C110.9377 (5)0.5598 (5)0.35593 (17)0.0653 (11)
H110.86810.67740.35050.078*
C121.1296 (6)0.6161 (8)0.36183 (19)0.0941 (16)
H12A1.20450.50790.37450.141*
H12B1.15680.71270.39610.141*
H12C1.15080.66410.31860.141*
C130.9041 (5)0.4715 (8)0.42098 (18)0.0814 (14)
H13A0.77880.44400.41740.122*
H13B0.94040.55740.45830.122*
H13C0.97160.35620.42900.122*
C140.6051 (3)0.5319 (5)0.07852 (14)0.0494 (8)
H14A0.66720.64600.09470.074*
H14B0.51700.55980.03900.074*
H14C0.68920.44140.06660.074*
C150.2425 (4)0.7775 (5)0.06206 (17)0.0540 (8)
H15A0.29170.70920.02770.081*
H15B0.32220.87830.07960.081*
H15C0.12830.82930.04230.081*
C160.1036 (4)0.7443 (6)0.16232 (18)0.0629 (10)
H16A0.01210.76800.13550.094*
H16B0.15800.86220.17850.094*
H16C0.09070.66550.20060.094*
C171.2417 (3)0.1844 (4)0.31324 (14)0.0413 (7)
C181.3781 (3)0.1078 (4)0.36592 (13)0.0366 (6)
C191.3442 (4)0.0440 (5)0.42702 (13)0.0424 (7)
H191.22890.05260.43710.051*
C201.4771 (4)0.0320 (5)0.47326 (15)0.0546 (8)
H201.45350.07620.51500.066*
C211.6455 (4)0.0433 (5)0.45829 (16)0.0532 (8)
H211.73720.09580.48990.064*
C221.6800 (4)0.0207 (5)0.39825 (16)0.0513 (8)
H221.79570.01330.38860.062*
C231.5477 (3)0.0959 (5)0.35175 (14)0.0457 (7)
H231.57210.13950.31000.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0294 (9)0.0476 (12)0.0387 (9)0.0043 (9)0.0037 (7)0.0049 (9)
O20.0380 (11)0.110 (2)0.0515 (13)0.0043 (13)0.0107 (9)0.0304 (14)
C10.0373 (14)0.0389 (17)0.0442 (15)0.0012 (13)0.0026 (12)0.0076 (13)
C20.0268 (12)0.0423 (18)0.0375 (14)0.0014 (13)0.0026 (10)0.0028 (13)
C30.0338 (13)0.0370 (17)0.0453 (15)0.0043 (13)0.0085 (11)0.0029 (13)
C40.0334 (13)0.0381 (17)0.0406 (14)0.0010 (13)0.0064 (11)0.0082 (13)
C4A0.0281 (13)0.0335 (16)0.0342 (14)0.0025 (11)0.0059 (10)0.0010 (11)
C4B0.0303 (13)0.0361 (16)0.0324 (12)0.0024 (12)0.0047 (10)0.0001 (12)
C50.0369 (14)0.0390 (17)0.0428 (15)0.0014 (13)0.0008 (12)0.0081 (13)
C60.0404 (16)0.0428 (19)0.0500 (17)0.0026 (14)0.0078 (13)0.0094 (14)
C70.0303 (13)0.0460 (18)0.0491 (15)0.0025 (13)0.0011 (11)0.0001 (14)
C80.0324 (13)0.0398 (18)0.0432 (14)0.0010 (13)0.0022 (11)0.0012 (13)
C8A0.0324 (13)0.0338 (16)0.0336 (13)0.0001 (12)0.0049 (10)0.0004 (12)
C90.0420 (15)0.0328 (17)0.0509 (16)0.0027 (13)0.0023 (12)0.0047 (13)
C100.0468 (16)0.0366 (18)0.0512 (16)0.0047 (14)0.0100 (13)0.0096 (14)
C10A0.0345 (13)0.0347 (16)0.0429 (15)0.0011 (12)0.0018 (11)0.0053 (12)
C110.069 (2)0.053 (2)0.061 (2)0.0181 (18)0.0263 (16)0.0213 (18)
C120.122 (4)0.091 (3)0.057 (2)0.063 (3)0.021 (2)0.000 (2)
C130.056 (2)0.129 (4)0.060 (2)0.009 (2)0.0117 (16)0.046 (3)
C140.0359 (14)0.070 (2)0.0441 (15)0.0045 (16)0.0121 (12)0.0086 (16)
C150.0504 (17)0.046 (2)0.0610 (19)0.0002 (15)0.0043 (14)0.0134 (16)
C160.0399 (16)0.076 (3)0.071 (2)0.0171 (18)0.0046 (15)0.018 (2)
C170.0321 (13)0.0477 (19)0.0441 (16)0.0019 (13)0.0061 (11)0.0081 (14)
C180.0345 (13)0.0351 (16)0.0391 (14)0.0002 (12)0.0033 (11)0.0020 (12)
C190.0370 (14)0.0466 (18)0.0426 (15)0.0003 (14)0.0040 (12)0.0001 (14)
C200.0525 (18)0.065 (2)0.0442 (15)0.0038 (17)0.0011 (14)0.0082 (16)
C210.0441 (16)0.052 (2)0.0562 (18)0.0095 (16)0.0109 (14)0.0003 (16)
C220.0340 (15)0.058 (2)0.0602 (19)0.0077 (15)0.0039 (13)0.0046 (17)
C230.0344 (14)0.055 (2)0.0471 (15)0.0033 (14)0.0057 (12)0.0011 (15)
Geometric parameters (Å, º) top
O1—C171.374 (3)C10—C10A1.520 (4)
O1—C21.422 (3)C10—H10A0.9900
O2—C171.192 (3)C10—H10B0.9900
C1—C21.381 (4)C11—C121.524 (6)
C1—C10A1.417 (4)C11—C131.524 (6)
C1—C111.528 (4)C11—H111.0000
C2—C31.377 (4)C12—H12A0.9800
C3—C41.378 (4)C12—H12B0.9800
C3—H30.9500C12—H12C0.9800
C4—C4A1.390 (4)C13—H13A0.9800
C4—H40.9500C13—H13B0.9800
C4A—C10A1.402 (4)C13—H13C0.9800
C4A—C4B1.542 (3)C14—H14A0.9800
C4B—C51.540 (4)C14—H14B0.9800
C4B—C141.547 (4)C14—H14C0.9800
C4B—C8A1.550 (4)C15—H15A0.9800
C5—C61.523 (4)C15—H15B0.9800
C5—H5A0.9900C15—H15C0.9800
C5—H5B0.9900C16—H16A0.9800
C6—C71.518 (4)C16—H16B0.9800
C6—H6A0.9900C16—H16C0.9800
C6—H6B0.9900C17—C181.474 (4)
C7—C81.528 (4)C18—C191.387 (4)
C7—H7A0.9900C18—C231.392 (4)
C7—H7B0.9900C19—C201.380 (4)
C8—C151.528 (4)C19—H190.9500
C8—C161.531 (4)C20—C211.390 (5)
C8—C8A1.557 (4)C20—H200.9500
C8A—C91.518 (4)C21—C221.369 (5)
C8A—H8A1.0000C21—H210.9500
C9—C101.518 (4)C22—C231.378 (4)
C9—H9A0.9900C22—H220.9500
C9—H9B0.9900C23—H230.9500
C17—O1—C2116.01 (19)C10A—C10—H10B108.5
C2—C1—C10A117.7 (2)H10A—C10—H10B107.5
C2—C1—C11121.2 (3)C4A—C10A—C1120.6 (3)
C10A—C1—C11121.2 (3)C4A—C10A—C10120.4 (2)
C3—C2—C1122.8 (2)C1—C10A—C10119.0 (2)
C3—C2—O1117.6 (2)C12—C11—C13110.5 (3)
C1—C2—O1119.6 (2)C12—C11—C1114.6 (3)
C2—C3—C4118.7 (3)C13—C11—C1112.1 (3)
C2—C3—H3120.7C12—C11—H11106.3
C4—C3—H3120.7C13—C11—H11106.3
C3—C4—C4A121.8 (2)C1—C11—H11106.3
C3—C4—H4119.1C11—C12—H12A109.5
C4A—C4—H4119.1C11—C12—H12B109.5
C4—C4A—C10A118.5 (2)H12A—C12—H12B109.5
C4—C4A—C4B118.9 (2)C11—C12—H12C109.5
C10A—C4A—C4B122.6 (2)H12A—C12—H12C109.5
C5—C4B—C4A110.8 (2)H12B—C12—H12C109.5
C5—C4B—C14108.4 (2)C11—C13—H13A109.5
C4A—C4B—C14105.85 (19)C11—C13—H13B109.5
C5—C4B—C8A108.6 (2)H13A—C13—H13B109.5
C4A—C4B—C8A108.4 (2)C11—C13—H13C109.5
C14—C4B—C8A114.9 (2)H13A—C13—H13C109.5
C6—C5—C4B113.1 (2)H13B—C13—H13C109.5
C6—C5—H5A109.0C4B—C14—H14A109.5
C4B—C5—H5A109.0C4B—C14—H14B109.5
C6—C5—H5B109.0H14A—C14—H14B109.5
C4B—C5—H5B109.0C4B—C14—H14C109.5
H5A—C5—H5B107.8H14A—C14—H14C109.5
C7—C6—C5111.0 (2)H14B—C14—H14C109.5
C7—C6—H6A109.4C8—C15—H15A109.5
C5—C6—H6A109.4C8—C15—H15B109.5
C7—C6—H6B109.4H15A—C15—H15B109.5
C5—C6—H6B109.4C8—C15—H15C109.5
H6A—C6—H6B108.0H15A—C15—H15C109.5
C6—C7—C8113.5 (2)H15B—C15—H15C109.5
C6—C7—H7A108.9C8—C16—H16A109.5
C8—C7—H7A108.9C8—C16—H16B109.5
C6—C7—H7B108.9H16A—C16—H16B109.5
C8—C7—H7B108.9C8—C16—H16C109.5
H7A—C7—H7B107.7H16A—C16—H16C109.5
C15—C8—C7110.4 (2)H16B—C16—H16C109.5
C15—C8—C16107.4 (3)O2—C17—O1122.5 (2)
C7—C8—C16107.5 (2)O2—C17—C18125.0 (2)
C15—C8—C8A114.1 (2)O1—C17—C18112.4 (2)
C7—C8—C8A108.4 (2)C19—C18—C23119.5 (3)
C16—C8—C8A108.7 (2)C19—C18—C17123.3 (2)
C9—C8A—C4B109.0 (2)C23—C18—C17117.2 (2)
C9—C8A—C8114.9 (2)C20—C19—C18120.3 (3)
C4B—C8A—C8116.9 (2)C20—C19—H19119.9
C9—C8A—H8A104.9C18—C19—H19119.9
C4B—C8A—H8A104.9C19—C20—C21119.5 (3)
C8—C8A—H8A104.9C19—C20—H20120.2
C10—C9—C8A111.3 (3)C21—C20—H20120.2
C10—C9—H9A109.4C22—C21—C20120.4 (3)
C8A—C9—H9A109.4C22—C21—H21119.8
C10—C9—H9B109.4C20—C21—H21119.8
C8A—C9—H9B109.4C21—C22—C23120.3 (3)
H9A—C9—H9B108.0C21—C22—H22119.8
C9—C10—C10A115.0 (2)C23—C22—H22119.8
C9—C10—H10A108.5C22—C23—C18120.0 (3)
C10A—C10—H10A108.5C22—C23—H23120.0
C9—C10—H10B108.5C18—C23—H23120.0

Experimental details

Crystal data
Chemical formulaC27H34O2
Mr390.54
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)7.7369 (3), 7.2079 (4), 20.2499 (9)
β (°) 99.816 (4)
V3)1112.74 (9)
Z2
Radiation typeCu Kα
µ (mm1)0.55
Crystal size (mm)0.50 × 0.25 × 0.07
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.689, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
9197, 3116, 2926
Rint0.033
θmax (°)60.8
(sin θ/λ)max1)0.566
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.04
No. of reflections3116
No. of parameters267
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.21
Absolute structureFlack x determined using 1138 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.11 (17)

Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarrero, A. F., Quílez del Moral, J. F., Lucas, R., Payá, M., Akssira, M., Akaad, S. & Mellouki, F. (2003). J. Nat. Prod. 66, 844–50.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernabeu, A., Shapiro, S. & Villalaín, J. (2002). Chem. Phys. Lipids, 119, 33–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaraguchi, H., Oike, S., Muroi, H. & Kubo, I. (1996). Planta Med. 62, 122–125.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarcos, I. S., Cubillo, M. A., Moro, R. F., Díez, D., Basabe, P., Sanz, F. & Urones, J. G. (2003). Tetrahedron Lett., 44, 8831–8835.  Web of Science CSD CrossRef CAS Google Scholar
First citationOubabi, R., Auhmani, A., Ait Itto, M. Y., Auhmani, A. & Daran, J.-C. (2014). Acta Cryst. E70, o317.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPettit, G. R., Tan, R., Northen, J. S., Herald, D. L., Chapuis, J.-C. & Pettit, R. K. (2004). J. Nat. Prod. 67, 1476–1482.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShort, W. F. & Stromberg, H. (1937). J. Chem. Soc. pp. 516–520.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTacon, C., Guantai, E. M., Smith, P. J. & Chibale, K. (2012). Bioorg. Med. Chem. 20, 893–902.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZeroual, A., Mazoir, N., Daran, J.-C., Akssira, M. & Benharref, A. (2008). Acta Cryst. E64, o604–o605.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o866-o867
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds