organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o863-o864

4-(2-Nitro­benz­yl)-3-phenyl-3,4-di­hydro-2H-1,4-benzoxazin-2-ol

aLaboratoire de Synthèse des Molécules d'Intérêts Biologiques, Département de Chimie, Faculté des Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi 04000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by O. Büyükgüngör, Ondokuz Mayıs University, Turkey (Received 1 June 2014; accepted 4 July 2014; online 11 July 2014)

The title compound, C21H18N2O4, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In both mol­ecules the oxazine ring has an envelope conformation with the hydroxyl-substituted C atom as the flap. The nitro­benzyl ring and the phenyl ring are almost normal to the mean plane of the benzooxazine ring system with dihdral angles of 85.72 (15) and 82.69 (15)°, respectively, in mol­ecule A, and 85.79 (15) and 87.72 (15)°, respectively, in mol­ecule B. The main difference in the conformation of the two mol­ecules concerns the dihedral angle between the nitro­benzyl ring and the phenyl ring, viz. 79.67 (18) in mol­ecule A and 71.13 (18)° in mol­ecule B. In the crystal, the A and B mol­ecules are linked by an O—H⋯O hydrogen bond. These units are then linked via C—H⋯O hydrogen bonds, forming sheets lying parallel to (010). Further C—H⋯O hydrogen bonds link the sheets to form a three-dimensional network. There are also O—H⋯π and C—H⋯π inter­actions present, reinforcing the three-dimensional structure.

Keywords: crystal structure.

Related literature

For the preparation and applications of similar structures, see: Ozden et al. (1992[Ozden, S., Ozden, T., Attila, I., Kucukislamoglu, M. & Okatan, A. (1992). J. Chromatogr. 609, 402-409.]); Hartenstein & Sicker (1994[Hartenstein, H. & Sicker, D. (1994). Phytochemistry, 35, 827-828.]); Ilas et al. (2005[Ilas, J., Anderluh, P. Š., Dolenc, M. S. & Kikelj, D. (2005). Tetrahedron, 61, 7325-7348.]); Touzeau et al. (2003[Touzeau, F., Arrault, A., Guillaumet, G., Scalbert, E., Pfeiffer, B., Rettori, M.-C., Renard, P. & Mérour, J.-Y. (2003). J. Med. Chem. 46, 1962-1979.]); Torisu et al. (2004[Torisu, K., Kobayashi, K., Iwahashi, M., Nakai, Y., Onoda, T., Nagase, T., Sugimoto, I., Okada, Y., Matsumoto, R., Nanbu, F., Ohuchida, S., Nakai, H. & Toda, M. (2004). Bioorg. Med. Chem. 12, 5361-5378.]); Largeron et al. (1999[Largeron, M., Lockhart, B., Pfeiffer, B. & Fleury, M. B. (1999). J. Med. Chem. 42, 5043-5052.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2O4

  • Mr = 362.37

  • Orthorhombic, P n a 21

  • a = 12.7332 (14) Å

  • b = 14.2777 (14) Å

  • c = 19.003 (2) Å

  • V = 3454.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.13 × 0.05 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.860, Tmax = 1.000

  • 19156 measured reflections

  • 3161 independent reflections

  • 4907 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.04

  • 3161 reflections

  • 489 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the controids of the C10A–C15A and C10B–C15B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2A⋯O1B 0.82 2.06 2.843 (4) 161
C6B—H6B⋯O21Ai 0.93 2.40 3.175 (5) 141
C8B—H8B⋯O1Aii 0.98 2.34 3.234 (4) 151
C14A—H14A⋯O2Aiii 0.93 2.57 3.177 (5) 123
C19A—H19A⋯O21Biv 0.93 2.45 3.134 (4) 131
C19B—H19B⋯O22Av 0.93 2.47 3.057 (5) 121
O2B—H2BCg1ii 0.82 2.69 3.484 (3) 164
C18A—H18ACg2iv 0.93 2.83 3.564 (4) 137
C18B—H18BCg1v 0.93 2.94 3.601 (4) 130
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Numerous natural and synthetic substances that have the core "1,4-benzoxazine" have been used in different fields of medicine. The 1,4-benzoxazine structure is an integral part of several naturally occurring substances. For example, various glycosides of the 2-hydroxy-2H-1,4-benzoxazine skeletons have been found to occur in gramineous plants such as maize, wheat, rye, and rice, and have been suggested to act as plant resistance factors against microbial diseases and insects (Ozden et al., 1992; Hartenstein & Sicker, 1994). Moreover, 3,4-Dihydro-2H-1,4-benzoxazines have received a great deal of attention due to their wide range of biological and therapeutical properties (Ilas et al., 2005). For example they have been investigated as antihypertensive agents (Touzeau et al., 2003), neuroprotective antioxidants (Largeron et al., 1999) and prostaglandin D 2 receptor antagonists (Torisu et al., 2004). Herein, we report our results about the synthesis and the crystallographic study of 4-(2-nitrobenzyl)-3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-ol, (I). The molecular geometry and the atom-numbering scheme of asymetric unit are shown in Fig. 1. The asymetric unit contents two molecule of (I). The crystal packing can be described as alternating connected layers parallel to the (001) plane along the c axis (Fig. 2) It is stabilized by intra et intermolecular O—H···O and C—H···O hydrogen bond and O—H···π interactions (Table 1; Fig. 2). These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.

Related literature top

For the preparation and applications of similar structures, see: Ozden et al. (1992); Hartenstein & Sicker (1994); Ilas et al. (2005); Touzeau et al. (2003); Torisu et al. (2004); Largeron et al. (1999).

Experimental top

A mixture of 4-methyl-2-(2-nitrobenzylamino)phenol (1 mmol), boronic acid (1 mmol) and glyoxal (1 mmol) in methanol (5 ml) was stirred at room temperature for 24 h. The solvent was removed in vacuo to give crude producs, which was purified by flash chromatography (silica gel, dichloromethane). Spectroscopic data for the major isomer are given below. IR (KBr): ν: 3429, 2920, 1608, 1512, 1250, 1036 cm-1. 1H NMR (250 MHz, CDCl3, J Hz) δ: 8.09 (d, 1H, J=7.5 Hz, CH arom); 7.91 (d, 1H, J=7.5 Hz, CH arom.); 7.56 (t, 1H, J=7.5 Hz, CH arom.); 7.42 (t, 1H, J=7.5 Hz, CH arom); 7.33–7.30 (m, 3H, CH arom.); 7.21–7.18 (m, 2H, CH arom.); 6.92–6.83 (m, 2H, H arom.); 6.74–6.67 (m, 1H, CH arom.); 6.45 (d, 1H, J= 7.5 Hz, CH arom.); 5.60 (s, 1H, H2); 5.06 (d, 1H, J= 18.5 Hz, Hb); 4.62 (d, 1H, J=18.5 Hz, Ha); 4.51 (s, 1H, H3); 3.26 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl3) δ: 148.1; 141.1; 139.7; 138.3; 134.1; 134.0; 133.7; 129.0; 130.0; 128.3; 128.0; 126.9; 125.3; 122.9; 117.9; 117.5; 110.6; 92.7; 64.3; 50.2. HRMS: (M+H)+, found 363.1347, C21H19N2O4 requires 363.1345.

Refinement top

All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and O) with C—H = 0.97 Å (methylene); C—H = 0.93 Å (aromatic) or C—H = 0.98 Å (methine); O—H = 0.82 Å and with Uiso(H) = 1.2 Ueq(Caryl; Cmethine or Cmethylene)and Uiso(H) = 1.5 Ueq(Ohydroxy). In the absence of significant anomalous scattering effects Friedel pairs have been merged. The number of Friedel pairs is 2686.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The title molecule (Farrugia, 2012) with the atomic labelling scheme. The displacement parameters are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) Part of the crystal structure viewed down the b axis showing alternating layers and O—H···O hydrogene bond (in red)and O—H···π interactions.
4-(2-Nitrobenzyl)-3-phenyl-3,4-dihydro-2H-1,4-benzoxazin-2-ol top
Crystal data top
C21H18N2O4F(000) = 1520
Mr = 362.37Dx = 1.393 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4509 reflections
a = 12.7332 (14) Åθ = 2.4–24.4°
b = 14.2777 (14) ŵ = 0.10 mm1
c = 19.003 (2) ÅT = 150 K
V = 3454.8 (6) Å3Stick, colourless
Z = 80.13 × 0.05 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1514
Tmin = 0.860, Tmax = 1.000k = 1716
19156 measured reflectionsl = 2022
3161 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0733P)2 + 1.1329P]
where P = (Fo2 + 2Fc2)/3
3161 reflections(Δ/σ)max < 0.001
489 parametersΔρmax = 0.71 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C21H18N2O4V = 3454.8 (6) Å3
Mr = 362.37Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 12.7332 (14) ŵ = 0.10 mm1
b = 14.2777 (14) ÅT = 150 K
c = 19.003 (2) Å0.13 × 0.05 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3161 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4907 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 1.000Rint = 0.052
19156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.71 e Å3
3161 reflectionsΔρmin = 0.26 e Å3
489 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.35335 (19)0.31206 (17)0.27744 (14)0.0169 (6)
O1B0.08759 (19)0.32183 (18)0.40303 (14)0.0188 (6)
O2B0.0900 (2)0.35721 (17)0.41491 (15)0.0223 (6)
H2B0.09090.39190.38050.034*
O2A0.1747 (2)0.3367 (2)0.26572 (16)0.0290 (7)
H2A0.14290.34460.30280.043*
O22B0.0711 (3)0.2367 (2)0.80910 (16)0.0368 (8)
O21B0.0793 (3)0.13604 (19)0.72486 (16)0.0353 (8)
O22A0.1994 (3)0.1316 (2)0.04698 (17)0.0341 (7)
C20A0.4687 (3)0.4126 (2)0.2155 (2)0.0157 (8)
H20A0.49410.43370.25850.019*
N1A0.2735 (2)0.2432 (2)0.15006 (17)0.0156 (7)
N1B0.0003 (2)0.2559 (2)0.52882 (17)0.0157 (6)
N2B0.0921 (3)0.2144 (2)0.74825 (18)0.0230 (8)
C16A0.3515 (3)0.3115 (2)0.1502 (2)0.0142 (7)
C8A0.2519 (3)0.2689 (3)0.2753 (2)0.0168 (8)
H8A0.23930.23680.32010.02*
C10A0.3123 (3)0.1121 (2)0.23395 (18)0.0151 (8)
C4A0.0388 (3)0.4109 (3)0.0605 (2)0.0281 (10)
H4A0.01010.45770.08860.034*
C5B0.2489 (3)0.4199 (3)0.6959 (2)0.0275 (9)
H5B0.2940.46290.71680.033*
N2A0.1720 (3)0.2069 (2)0.06923 (18)0.0265 (8)
C13A0.4302 (3)0.0451 (3)0.2722 (2)0.0223 (9)
H13A0.46930.09740.28490.027*
C14A0.4782 (3)0.0306 (3)0.2398 (2)0.0222 (9)
H14A0.550.02920.23090.027*
C18A0.4715 (3)0.4166 (2)0.0898 (2)0.0173 (8)
H18A0.49840.44050.0480.021*
C19B0.2465 (3)0.4503 (3)0.5305 (2)0.0242 (9)
H19B0.3020.49270.53060.029*
C6A0.0553 (3)0.3375 (3)0.0502 (2)0.0279 (10)
H6A0.03820.33370.09770.033*
C1A0.2318 (3)0.2083 (2)0.0850 (2)0.0159 (8)
H1A10.19540.14990.09390.019*
H1A20.28940.19530.05310.019*
C13B0.1290 (3)0.0456 (3)0.4143 (2)0.0211 (9)
H13B0.16230.10220.40480.025*
C10B0.0285 (3)0.1225 (2)0.44585 (19)0.0143 (7)
C18B0.2053 (3)0.4181 (3)0.5926 (2)0.0231 (9)
H18B0.23310.43920.63490.028*
C9A0.2468 (3)0.1974 (2)0.21582 (19)0.0148 (8)
H9A0.17360.17660.21210.018*
C8B0.0167 (3)0.2854 (2)0.4040 (2)0.0184 (8)
H8B0.03110.25560.35850.022*
C20B0.2038 (3)0.4185 (2)0.4669 (2)0.0190 (8)
H20B0.23020.44050.42440.023*
C21A0.3903 (3)0.3462 (2)0.21365 (19)0.0138 (8)
C15A0.4194 (3)0.1085 (3)0.2206 (2)0.0197 (8)
H15A0.45220.15880.19860.024*
O21A0.1778 (3)0.2291 (3)0.13132 (18)0.0549 (11)
C12A0.3238 (3)0.0421 (3)0.2855 (2)0.0253 (9)
H12A0.29110.09260.30730.03*
C12B0.0268 (3)0.0320 (3)0.39325 (19)0.0186 (8)
H12B0.00850.07870.36860.022*
C17A0.3930 (3)0.3493 (2)0.0882 (2)0.0161 (8)
H17A0.36750.32880.0450.019*
C16B0.0804 (3)0.3195 (2)0.5305 (2)0.0150 (8)
C6B0.2018 (3)0.3512 (3)0.7354 (2)0.0246 (9)
H6B0.2130.34810.78370.03*
C7B0.1375 (3)0.2867 (3)0.7026 (2)0.0180 (8)
C3A0.1106 (3)0.3480 (3)0.0891 (2)0.0203 (8)
H3A0.12880.35380.13630.024*
C1B0.0440 (3)0.2183 (2)0.5937 (2)0.0184 (8)
H1B10.0130.20080.62490.022*
H1B20.08380.16210.5830.022*
C17B0.1231 (3)0.3546 (3)0.5934 (2)0.0190 (8)
H17B0.09560.33490.63630.023*
C19A0.5096 (3)0.4480 (2)0.1537 (2)0.0196 (8)
H19A0.56260.49280.15510.023*
C2B0.1151 (3)0.2880 (2)0.6311 (2)0.0149 (8)
C7A0.1272 (3)0.2745 (3)0.0214 (2)0.0193 (8)
C5A0.0100 (3)0.4046 (3)0.0091 (2)0.0309 (10)
H5A0.03960.44540.02790.037*
C4B0.2285 (3)0.4243 (3)0.6249 (2)0.0237 (9)
H4B0.25960.47090.59780.028*
C2A0.1559 (3)0.2770 (2)0.0497 (2)0.0157 (8)
C15B0.1323 (3)0.1074 (3)0.4654 (2)0.0201 (8)
H15B0.16860.15390.48960.024*
C21B0.1224 (3)0.3544 (3)0.4673 (2)0.0166 (8)
C11A0.2657 (3)0.0354 (3)0.2666 (2)0.0199 (8)
H11A0.1940.03650.27590.024*
C3B0.1625 (3)0.3602 (3)0.5934 (2)0.0199 (8)
H3B0.14910.36540.54540.024*
C14B0.1824 (3)0.0243 (3)0.4494 (2)0.0228 (9)
H14B0.25210.01540.46240.027*
C9B0.0301 (3)0.2126 (3)0.46218 (19)0.0163 (8)
H9B0.10510.19730.4650.02*
C11B0.0240 (3)0.0526 (2)0.40908 (19)0.0177 (8)
H11B0.09310.06190.39490.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0165 (14)0.0217 (13)0.0126 (13)0.0024 (10)0.0029 (11)0.0010 (11)
O1B0.0179 (14)0.0223 (13)0.0162 (14)0.0010 (11)0.0002 (11)0.0038 (10)
O2B0.0200 (15)0.0231 (14)0.0240 (15)0.0070 (11)0.0034 (12)0.0018 (11)
O2A0.0266 (16)0.0328 (15)0.0277 (17)0.0095 (13)0.0048 (13)0.0000 (13)
O22B0.065 (2)0.0267 (16)0.0185 (18)0.0054 (15)0.0077 (15)0.0012 (13)
O21B0.063 (2)0.0168 (15)0.0258 (17)0.0039 (13)0.0028 (16)0.0007 (12)
O22A0.049 (2)0.0251 (16)0.0287 (17)0.0089 (14)0.0047 (15)0.0047 (13)
C20A0.0142 (18)0.0158 (17)0.0170 (19)0.0008 (15)0.0041 (15)0.0056 (15)
N1A0.0174 (16)0.0162 (15)0.0132 (16)0.0016 (13)0.0005 (13)0.0023 (12)
N1B0.0185 (16)0.0180 (15)0.0107 (16)0.0047 (13)0.0003 (13)0.0038 (13)
N2B0.029 (2)0.0204 (18)0.0195 (19)0.0011 (14)0.0045 (15)0.0010 (14)
C16A0.0096 (18)0.0136 (17)0.020 (2)0.0007 (14)0.0004 (15)0.0009 (14)
C8A0.0119 (17)0.0217 (18)0.017 (2)0.0025 (14)0.0003 (15)0.0050 (15)
C10A0.0170 (19)0.0183 (18)0.0100 (18)0.0005 (15)0.0015 (15)0.0036 (14)
C4A0.024 (2)0.028 (2)0.032 (2)0.0089 (19)0.0022 (18)0.0013 (18)
C5B0.021 (2)0.029 (2)0.033 (2)0.0070 (18)0.0082 (18)0.0042 (18)
N2A0.036 (2)0.0277 (19)0.016 (2)0.0025 (16)0.0012 (16)0.0003 (14)
C13A0.030 (2)0.0200 (19)0.017 (2)0.0072 (16)0.0006 (17)0.0013 (15)
C14A0.0176 (19)0.0186 (19)0.030 (2)0.0043 (15)0.0035 (17)0.0020 (16)
C18A0.0161 (19)0.0146 (18)0.021 (2)0.0003 (16)0.0007 (16)0.0043 (15)
C19B0.0126 (19)0.0184 (19)0.042 (3)0.0017 (15)0.0027 (18)0.0051 (18)
C6A0.031 (2)0.035 (2)0.017 (2)0.0023 (19)0.0083 (19)0.0076 (17)
C1A0.0109 (18)0.0176 (19)0.019 (2)0.0025 (14)0.0031 (16)0.0023 (15)
C13B0.033 (2)0.0149 (18)0.0155 (19)0.0057 (16)0.0098 (18)0.0005 (14)
C10B0.0158 (18)0.0165 (17)0.0107 (18)0.0038 (14)0.0017 (15)0.0011 (14)
C18B0.018 (2)0.021 (2)0.031 (2)0.0032 (17)0.0048 (18)0.0104 (17)
C9A0.0119 (18)0.0184 (18)0.0140 (19)0.0021 (14)0.0011 (15)0.0037 (14)
C8B0.0165 (19)0.0211 (19)0.018 (2)0.0013 (15)0.0035 (16)0.0037 (15)
C20B0.0143 (19)0.0160 (19)0.027 (2)0.0021 (15)0.0031 (16)0.0010 (16)
C21A0.0116 (17)0.0175 (19)0.0122 (19)0.0048 (14)0.0011 (15)0.0021 (14)
C15A0.019 (2)0.0181 (19)0.022 (2)0.0004 (15)0.0054 (17)0.0004 (16)
O21A0.085 (3)0.058 (2)0.022 (2)0.031 (2)0.0133 (19)0.0036 (16)
C12A0.030 (2)0.0213 (19)0.024 (2)0.0002 (17)0.0033 (19)0.0067 (17)
C12B0.025 (2)0.0182 (18)0.0129 (19)0.0037 (15)0.0028 (16)0.0066 (14)
C17A0.0142 (19)0.0178 (19)0.0162 (19)0.0020 (15)0.0026 (16)0.0007 (15)
C16B0.0121 (18)0.0182 (18)0.0148 (19)0.0053 (15)0.0020 (15)0.0042 (14)
C6B0.026 (2)0.031 (2)0.017 (2)0.0018 (18)0.0058 (17)0.0006 (16)
C7B0.0161 (19)0.017 (2)0.021 (2)0.0041 (15)0.0012 (16)0.0028 (15)
C3A0.019 (2)0.023 (2)0.020 (2)0.0020 (16)0.0004 (17)0.0026 (16)
C1B0.021 (2)0.0147 (18)0.020 (2)0.0007 (16)0.0014 (17)0.0009 (15)
C17B0.018 (2)0.021 (2)0.018 (2)0.0023 (16)0.0016 (16)0.0041 (15)
C19A0.0130 (18)0.0157 (18)0.030 (2)0.0009 (15)0.0030 (17)0.0003 (16)
C2B0.0112 (18)0.0133 (17)0.020 (2)0.0040 (14)0.0000 (15)0.0005 (14)
C7A0.022 (2)0.020 (2)0.015 (2)0.0036 (15)0.0007 (16)0.0013 (15)
C5A0.024 (2)0.035 (2)0.034 (3)0.013 (2)0.0023 (19)0.0071 (19)
C4B0.017 (2)0.024 (2)0.030 (2)0.0067 (17)0.0015 (17)0.0034 (17)
C2A0.0142 (18)0.0144 (18)0.019 (2)0.0053 (15)0.0010 (15)0.0039 (14)
C15B0.018 (2)0.020 (2)0.022 (2)0.0006 (16)0.0007 (16)0.0030 (16)
C21B0.015 (2)0.0167 (19)0.018 (2)0.0022 (15)0.0002 (16)0.0049 (15)
C11A0.015 (2)0.027 (2)0.017 (2)0.0021 (16)0.0008 (15)0.0062 (15)
C3B0.018 (2)0.023 (2)0.018 (2)0.0012 (16)0.0009 (16)0.0009 (16)
C14B0.018 (2)0.027 (2)0.022 (2)0.0055 (16)0.0006 (17)0.0008 (17)
C9B0.0094 (18)0.025 (2)0.014 (2)0.0016 (15)0.0006 (15)0.0039 (15)
C11B0.0180 (19)0.0220 (19)0.0130 (19)0.0021 (15)0.0006 (16)0.0012 (15)
Geometric parameters (Å, º) top
O1A—C21A1.389 (4)C6A—C7A1.395 (6)
O1A—C8A1.432 (4)C6A—H6A0.93
O1B—C21B1.379 (5)C1A—C2A1.532 (5)
O1B—C8B1.426 (4)C1A—H1A10.97
O2B—C8B1.402 (4)C1A—H1A20.97
O2B—H2B0.82C13B—C12B1.375 (6)
O2A—C8A1.391 (4)C13B—C14B1.380 (6)
O2A—H2A0.82C13B—H13B0.93
O22B—N2B1.229 (5)C10B—C11B1.390 (5)
O21B—N2B1.215 (4)C10B—C15B1.390 (5)
O22A—N2A1.207 (4)C10B—C9B1.519 (5)
C20A—C21A1.376 (5)C18B—C17B1.385 (6)
C20A—C19A1.380 (6)C18B—H18B0.93
C20A—H20A0.93C9A—H9A0.98
N1A—C16A1.393 (4)C8B—C9B1.527 (5)
N1A—C1A1.434 (5)C8B—H8B0.98
N1A—C9A1.451 (5)C20B—C21B1.382 (5)
N1B—C16B1.372 (5)C20B—H20B0.93
N1B—C1B1.455 (5)C15A—H15A0.93
N1B—C9B1.459 (5)C12A—C11A1.379 (5)
N2B—C7B1.467 (5)C12A—H12A0.93
C16A—C21A1.393 (5)C12B—C11B1.403 (5)
C16A—C17A1.401 (5)C12B—H12B0.93
C8A—C9A1.524 (5)C17A—H17A0.93
C8A—H8A0.98C16B—C17B1.406 (5)
C10A—C15A1.389 (5)C16B—C21B1.407 (5)
C10A—C11A1.392 (5)C6B—C7B1.381 (6)
C10A—C9A1.516 (5)C6B—H6B0.93
C4A—C5A1.375 (6)C7B—C2B1.389 (6)
C4A—C3A1.393 (6)C3A—C2A1.386 (5)
C4A—H4A0.93C3A—H3A0.93
C5B—C6B1.375 (6)C1B—C2B1.522 (5)
C5B—C4B1.376 (6)C1B—H1B10.97
C5B—H5B0.93C1B—H1B20.97
N2A—O21A1.224 (5)C17B—H17B0.93
N2A—C7A1.443 (5)C19A—H19A0.93
C13A—C12A1.378 (6)C2B—C3B1.393 (5)
C13A—C14A1.386 (5)C7A—C2A1.401 (6)
C13A—H13A0.93C5A—H5A0.93
C14A—C15A1.390 (5)C4B—C3B1.378 (6)
C14A—H14A0.93C4B—H4B0.93
C18A—C19A1.384 (6)C15B—C14B1.381 (5)
C18A—C17A1.386 (5)C15B—H15B0.93
C18A—H18A0.93C11A—H11A0.93
C19B—C18B1.370 (6)C3B—H3B0.93
C19B—C20B1.401 (6)C14B—H14B0.93
C19B—H19B0.93C9B—H9B0.98
C6A—C5A1.363 (6)C11B—H11B0.93
C21A—O1A—C8A115.6 (3)C21B—C20B—H20B119.9
C21B—O1B—C8B114.3 (3)C19B—C20B—H20B119.9
C8B—O2B—H2B109.5C20A—C21A—O1A117.8 (3)
C8A—O2A—H2A109.5C20A—C21A—C16A121.6 (3)
C21A—C20A—C19A120.3 (3)O1A—C21A—C16A120.6 (3)
C21A—C20A—H20A119.8C10A—C15A—C14A120.7 (4)
C19A—C20A—H20A119.8C10A—C15A—H15A119.6
C16A—N1A—C1A120.6 (3)C14A—C15A—H15A119.6
C16A—N1A—C9A118.7 (3)C13A—C12A—C11A120.3 (4)
C1A—N1A—C9A119.9 (3)C13A—C12A—H12A119.9
C16B—N1B—C1B120.7 (3)C11A—C12A—H12A119.9
C16B—N1B—C9B119.7 (3)C13B—C12B—C11B119.7 (3)
C1B—N1B—C9B118.6 (3)C13B—C12B—H12B120.2
O21B—N2B—O22B123.6 (4)C11B—C12B—H12B120.2
O21B—N2B—C7B119.0 (3)C18A—C17A—C16A121.4 (4)
O22B—N2B—C7B117.4 (3)C18A—C17A—H17A119.3
N1A—C16A—C21A120.3 (3)C16A—C17A—H17A119.3
N1A—C16A—C17A122.5 (3)N1B—C16B—C17B123.1 (3)
C21A—C16A—C17A117.2 (3)N1B—C16B—C21B120.0 (3)
O2A—C8A—O1A110.0 (3)C17B—C16B—C21B116.9 (3)
O2A—C8A—C9A109.8 (3)C5B—C6B—C7B119.2 (4)
O1A—C8A—C9A110.4 (3)C5B—C6B—H6B120.4
O2A—C8A—H8A108.9C7B—C6B—H6B120.4
O1A—C8A—H8A108.9C6B—C7B—C2B123.7 (4)
C9A—C8A—H8A108.9C6B—C7B—N2B115.8 (3)
C15A—C10A—C11A118.1 (3)C2B—C7B—N2B120.5 (3)
C15A—C10A—C9A122.0 (3)C2A—C3A—C4A122.2 (4)
C11A—C10A—C9A119.9 (3)C2A—C3A—H3A118.9
C5A—C4A—C3A120.6 (4)C4A—C3A—H3A118.9
C5A—C4A—H4A119.7N1B—C1B—C2B112.4 (3)
C3A—C4A—H4A119.7N1B—C1B—H1B1109.1
C6B—C5B—C4B119.1 (4)C2B—C1B—H1B1109.1
C6B—C5B—H5B120.5N1B—C1B—H1B2109.1
C4B—C5B—H5B120.5C2B—C1B—H1B2109.1
O22A—N2A—O21A123.4 (4)H1B1—C1B—H1B2107.9
O22A—N2A—C7A119.3 (3)C18B—C17B—C16B121.1 (4)
O21A—N2A—C7A117.2 (3)C18B—C17B—H17B119.5
C12A—C13A—C14A119.4 (4)C16B—C17B—H17B119.5
C12A—C13A—H13A120.3C20A—C19A—C18A119.7 (3)
C14A—C13A—H13A120.3C20A—C19A—H19A120.2
C13A—C14A—C15A120.2 (4)C18A—C19A—H19A120.2
C13A—C14A—H14A119.9C7B—C2B—C3B115.1 (3)
C15A—C14A—H14A119.9C7B—C2B—C1B124.7 (3)
C19A—C18A—C17A119.8 (4)C3B—C2B—C1B120.1 (4)
C19A—C18A—H18A120.1C6A—C7A—C2A122.2 (4)
C17A—C18A—H18A120.1C6A—C7A—N2A116.4 (4)
C18B—C19B—C20B119.0 (4)C2A—C7A—N2A121.4 (3)
C18B—C19B—H19B120.5C6A—C5A—C4A118.9 (4)
C20B—C19B—H19B120.5C6A—C5A—H5A120.6
C5A—C6A—C7A120.5 (4)C4A—C5A—H5A120.6
C5A—C6A—H6A119.8C5B—C4B—C3B120.7 (4)
C7A—C6A—H6A119.8C5B—C4B—H4B119.6
N1A—C1A—C2A112.9 (3)C3B—C4B—H4B119.6
N1A—C1A—H1A1109C3A—C2A—C7A115.6 (4)
C2A—C1A—H1A1109C3A—C2A—C1A119.6 (3)
N1A—C1A—H1A2109C7A—C2A—C1A124.8 (3)
C2A—C1A—H1A2109C14B—C15B—C10B120.9 (4)
H1A1—C1A—H1A2107.8C14B—C15B—H15B119.5
C12B—C13B—C14B120.3 (3)C10B—C15B—H15B119.5
C12B—C13B—H13B119.8O1B—C21B—C20B117.4 (3)
C14B—C13B—H13B119.8O1B—C21B—C16B121.0 (3)
C11B—C10B—C15B118.7 (3)C20B—C21B—C16B121.6 (4)
C11B—C10B—C9B118.3 (3)C12A—C11A—C10A121.3 (4)
C15B—C10B—C9B123.0 (3)C12A—C11A—H11A119.4
C19B—C18B—C17B121.3 (4)C10A—C11A—H11A119.4
C19B—C18B—H18B119.4C4B—C3B—C2B122.1 (4)
C17B—C18B—H18B119.4C4B—C3B—H3B118.9
N1A—C9A—C10A115.4 (3)C2B—C3B—H3B118.9
N1A—C9A—C8A109.0 (3)C13B—C14B—C15B120.0 (4)
C10A—C9A—C8A110.3 (3)C13B—C14B—H14B120
N1A—C9A—H9A107.3C15B—C14B—H14B120
C10A—C9A—H9A107.3N1B—C9B—C10B114.1 (3)
C8A—C9A—H9A107.3N1B—C9B—C8B108.1 (3)
O2B—C8B—O1B110.8 (3)C10B—C9B—C8B111.9 (3)
O2B—C8B—C9B108.4 (3)N1B—C9B—H9B107.5
O1B—C8B—C9B111.2 (3)C10B—C9B—H9B107.5
O2B—C8B—H8B108.8C8B—C9B—H9B107.5
O1B—C8B—H8B108.8C10B—C11B—C12B120.3 (3)
C9B—C8B—H8B108.8C10B—C11B—H11B119.8
C21B—C20B—C19B120.1 (4)C12B—C11B—H11B119.8
C1A—N1A—C16A—C21A178.9 (3)C21A—C20A—C19A—C18A0.1 (5)
C9A—N1A—C16A—C21A10.7 (5)C17A—C18A—C19A—C20A0.5 (5)
C1A—N1A—C16A—C17A0.1 (5)C6B—C7B—C2B—C3B0.0 (5)
C9A—N1A—C16A—C17A170.3 (3)N2B—C7B—C2B—C3B179.8 (3)
C21A—O1A—C8A—O2A71.7 (4)C6B—C7B—C2B—C1B179.6 (4)
C21A—O1A—C8A—C9A49.7 (4)N2B—C7B—C2B—C1B0.2 (6)
C12A—C13A—C14A—C15A0.3 (6)N1B—C1B—C2B—C7B156.3 (3)
C16A—N1A—C1A—C2A75.7 (4)N1B—C1B—C2B—C3B23.2 (5)
C9A—N1A—C1A—C2A114.0 (3)C5A—C6A—C7A—C2A0.0 (6)
C20B—C19B—C18B—C17B0.3 (6)C5A—C6A—C7A—N2A179.2 (4)
C16A—N1A—C9A—C10A87.3 (4)O22A—N2A—C7A—C6A151.1 (4)
C1A—N1A—C9A—C10A83.1 (4)O21A—N2A—C7A—C6A27.3 (6)
C16A—N1A—C9A—C8A37.4 (4)O22A—N2A—C7A—C2A29.7 (6)
C1A—N1A—C9A—C8A152.2 (3)O21A—N2A—C7A—C2A151.9 (4)
C15A—C10A—C9A—N1A38.8 (5)C7A—C6A—C5A—C4A2.0 (7)
C11A—C10A—C9A—N1A142.9 (3)C3A—C4A—C5A—C6A2.1 (7)
C15A—C10A—C9A—C8A85.3 (4)C6B—C5B—C4B—C3B0.6 (7)
C11A—C10A—C9A—C8A93.0 (4)C4A—C3A—C2A—C7A1.9 (6)
O2A—C8A—C9A—N1A65.3 (4)C4A—C3A—C2A—C1A178.2 (4)
O1A—C8A—C9A—N1A56.1 (4)C6A—C7A—C2A—C3A1.9 (6)
O2A—C8A—C9A—C10A167.0 (3)N2A—C7A—C2A—C3A177.3 (3)
O1A—C8A—C9A—C10A71.5 (4)C6A—C7A—C2A—C1A178.1 (4)
C21B—O1B—C8B—O2B68.7 (4)N2A—C7A—C2A—C1A2.7 (6)
C21B—O1B—C8B—C9B51.9 (4)N1A—C1A—C2A—C3A19.0 (5)
C18B—C19B—C20B—C21B1.0 (5)N1A—C1A—C2A—C7A161.0 (3)
C19A—C20A—C21A—O1A179.0 (3)C11B—C10B—C15B—C14B0.7 (6)
C19A—C20A—C21A—C16A1.3 (5)C9B—C10B—C15B—C14B180.0 (4)
C8A—O1A—C21A—C20A159.9 (3)C8B—O1B—C21B—C20B158.0 (3)
C8A—O1A—C21A—C16A22.3 (4)C8B—O1B—C21B—C16B25.5 (5)
N1A—C16A—C21A—C20A178.9 (3)C19B—C20B—C21B—O1B176.5 (3)
C17A—C16A—C21A—C20A2.1 (5)C19B—C20B—C21B—C16B0.0 (5)
N1A—C16A—C21A—O1A1.2 (5)N1B—C16B—C21B—O1B3.5 (5)
C17A—C16A—C21A—O1A179.7 (3)C17B—C16B—C21B—O1B178.0 (3)
C11A—C10A—C15A—C14A0.4 (6)N1B—C16B—C21B—C20B179.9 (3)
C9A—C10A—C15A—C14A178.0 (3)C17B—C16B—C21B—C20B1.6 (5)
C13A—C14A—C15A—C10A0.4 (6)C13A—C12A—C11A—C10A0.0 (6)
C14A—C13A—C12A—C11A0.1 (6)C15A—C10A—C11A—C12A0.2 (6)
C14B—C13B—C12B—C11B1.4 (6)C9A—C10A—C11A—C12A178.2 (4)
C19A—C18A—C17A—C16A0.4 (5)C5B—C4B—C3B—C2B1.0 (6)
N1A—C16A—C17A—C18A179.3 (3)C7B—C2B—C3B—C4B1.3 (5)
C21A—C16A—C17A—C18A1.7 (5)C1B—C2B—C3B—C4B179.1 (4)
C1B—N1B—C16B—C17B2.3 (5)C12B—C13B—C14B—C15B1.8 (6)
C9B—N1B—C16B—C17B171.1 (3)C10B—C15B—C14B—C13B0.8 (6)
C1B—N1B—C16B—C21B179.3 (3)C16B—N1B—C9B—C10B89.6 (4)
C9B—N1B—C16B—C21B10.4 (5)C1B—N1B—C9B—C10B79.4 (4)
C4B—C5B—C6B—C7B1.8 (6)C16B—N1B—C9B—C8B35.5 (4)
C5B—C6B—C7B—C2B1.5 (6)C1B—N1B—C9B—C8B155.4 (3)
C5B—C6B—C7B—N2B178.7 (4)C11B—C10B—C9B—N1B146.7 (3)
O21B—N2B—C7B—C6B145.4 (4)C15B—C10B—C9B—N1B33.9 (5)
O22B—N2B—C7B—C6B33.2 (5)C11B—C10B—C9B—C8B90.2 (4)
O21B—N2B—C7B—C2B34.8 (5)C15B—C10B—C9B—C8B89.2 (4)
O22B—N2B—C7B—C2B146.6 (4)O2B—C8B—C9B—N1B66.3 (4)
C5A—C4A—C3A—C2A0.0 (7)O1B—C8B—C9B—N1B55.8 (4)
C16B—N1B—C1B—C2B75.9 (4)O2B—C8B—C9B—C10B167.3 (3)
C9B—N1B—C1B—C2B115.1 (3)O1B—C8B—C9B—C10B70.7 (4)
C19B—C18B—C17B—C16B1.4 (6)C15B—C10B—C11B—C12B1.0 (5)
N1B—C16B—C17B—C18B179.3 (3)C9B—C10B—C11B—C12B179.5 (3)
C21B—C16B—C17B—C18B2.3 (5)C13B—C12B—C11B—C10B0.0 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the controids of the C10A–C15A and C10B–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O1B0.822.062.843 (4)161
C6B—H6B···O21Ai0.932.403.175 (5)141
C8B—H8B···O1Aii0.982.343.234 (4)151
C14A—H14A···O2Aiii0.932.573.177 (5)123
C19A—H19A···O21Biv0.932.453.134 (4)131
C19B—H19B···O22Av0.932.473.057 (5)121
O2B—H2B···Cg1ii0.822.693.484 (3)164
C18A—H18A···Cg2iv0.932.833.564 (4)137
C18B—H18B···Cg1v0.932.943.601 (4)130
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the controids of the C10A–C15A and C10B–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O1B0.822.062.843 (4)161
C6B—H6B···O21Ai0.932.403.175 (5)141
C8B—H8B···O1Aii0.982.343.234 (4)151
C14A—H14A···O2Aiii0.932.573.177 (5)123
C19A—H19A···O21Biv0.932.453.134 (4)131
C19B—H19B···O22Av0.932.473.057 (5)121
O2B—H2B···Cg1ii0.822.693.484 (3)164
C18A—H18A···Cg2iv0.932.833.564 (4)137
C18B—H18B···Cg1v0.932.943.601 (4)130
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to all personnel of the Laboratoire de Synthèse des Molécules d'Intérêts Biologiques and UR–CHEMS, Université Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Algeria) for financial support.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHartenstein, H. & Sicker, D. (1994). Phytochemistry, 35, 827–828.  CrossRef CAS Web of Science Google Scholar
First citationIlas, J., Anderluh, P. Š., Dolenc, M. S. & Kikelj, D. (2005). Tetrahedron, 61, 7325–7348.  CAS Google Scholar
First citationLargeron, M., Lockhart, B., Pfeiffer, B. & Fleury, M. B. (1999). J. Med. Chem. 42, 5043–5052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOzden, S., Ozden, T., Attila, I., Kucukislamoglu, M. & Okatan, A. (1992). J. Chromatogr. 609, 402–409.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorisu, K., Kobayashi, K., Iwahashi, M., Nakai, Y., Onoda, T., Nagase, T., Sugimoto, I., Okada, Y., Matsumoto, R., Nanbu, F., Ohuchida, S., Nakai, H. & Toda, M. (2004). Bioorg. Med. Chem. 12, 5361–5378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTouzeau, F., Arrault, A., Guillaumet, G., Scalbert, E., Pfeiffer, B., Rettori, M.-C., Renard, P. & Mérour, J.-Y. (2003). J. Med. Chem. 46, 1962–1979.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o863-o864
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds