organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-Benzyl­­idene-9-phenyl-3,4-di­hydro­acridin-1(2H)-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, Chennai 600 025, India, and bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 3 January 2014; accepted 8 July 2014; online 17 July 2014)

In the title compound, C26H19NO, the plane of the aromatic heterocycle makes a dihedral angle of 75.22 (4)° with that of the attached phenyl ring. In the crystal, mol­ecules are connected by C—H⋯O inter­actions, generating R22(12) dimers. These dimers are further connected by C—H⋯π inter­actions, linking the mol­ecules into chains running along the a-axis direction.

Keywords: crystal structure.

Related literature

For background to acridines, see: Kumar et al. (2012[Kumar, R., Kaur, M. & Kumari, M. (2012). Acta Pol. Pharm. 69, 3-9.]). For the biological activity of acridine derivatives, see: Pigatto et al. (2011[Pigatto, M. C., Lima, M. C. A., Galdino, S. L., Pitta, I. R., Vessecchi, R., Assis, M. D., Santos, J. S., Costa, T. C. T. D. & Lopes, P. N. (2011). Eur. J. Med. Chem. 1, 4245-4251.]); Das et al. (2011[Das, S., Kundu, S. & Suresh, K. G. (2011). DNA Cell Biol. 30, 525-535.]); Kumar et al. (2012[Kumar, R., Kaur, M. & Kumari, M. (2012). Acta Pol. Pharm. 69, 3-9.]); Prommier et al. (2006[Prommier, Y. & Goldwasser, F., Chabner, B. A. & Longo, D. L. (2006). Editors. Cancer Chemother. Biother. pp. 451-475.]) Denny et al. (1982[Denny, W. A., Cain B. F., Atwell, G. J., Hansch, C. & Panthananickal, A. (1982). J. Med. Chem. 25, 276-315.]); Baguley & Ferguson (1998[Baguley, B. C. & Ferguson, L. R. (1998). Biochim. Biophys. Acta, 1400, 213-222.]). For the synthesis of acridines, see: Tomar et al. (2010[Tomar, V., Bhattacharjee, G., Uddin, K., Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Eur. J. Med. Chem. 45, 745-751.]). For related structures, see: Buckleton & Waters (1984[Buckleton, J. S. & Waters, T. N. (1984). Acta Cryst. C40, 1587-1589.]); Chantrapromma et al. (2010[Chantrapromma, S., Boonnak, N., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o81-o82.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H19NO

  • Mr = 361.42

  • Monoclinic, P 21 /c

  • a = 9.2222 (3) Å

  • b = 10.7555 (4) Å

  • c = 19.4962 (5) Å

  • β = 95.503 (2)°

  • V = 1924.90 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.662, Tmax = 0.746

  • 18382 measured reflections

  • 4776 independent reflections

  • 3205 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 1.00

  • 4776 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.97 2.58 3.2700 (18) 128
C26—H26⋯Cg1ii 0.93 2.71 3.577 (18) 156
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acridine is structurally related to anthracene with one of the central CH group replaced by nitrogen. Amsacrine which is an acridine derivative is clinically used for the treatment of cancer (Denny et al., 1982; Baguley & Ferguson, 1998). The strong activity of acridine derivatives is due to their ability to intercalate into DNA base pairs and leading to cell cycle arrest and apoptosis (Prommier et al., 2006).

The phenyl (C21—C26) and benzyl (C14—C20) rings deviate from the plane of the acridine system by 72.48 (6) ° and 49.24 (6) °, respectively. The crystal packing is stabilized by intermolecular C—H···O (C10—H10B···O1) interactions generating a R22(12) ring motif (Bernstein et al., 1995). These dimers are further connected by C—H···π (C26—H26···Cg1) interactions generating chains running along the a-axis.

Related literature top

For background to acridines, see: Kumar et al. (2012). For the biological activity of acridine derivatives, see: Pigatto et al. (2011); Das et al. (2011); Kumar et al. (2012); Prommier et al. (2006) Denny et al. (1982); Baguley & Ferguson (1998). For the synthesis of acridines, see: Tomar et al. (2010). For related structures, see: Buckleton & Waters (1984); Chantrapromma et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A 1:2 molar mixture of 9-phenyl-3,4-dihydroacridin-1(2H)-one was treated with aromatic aldehydes in the presence of NaOH and allowed to stir at room temperature for 5–7 h. After completion of the reaction as inferred by the TLC, the mixture was poured into 200 g of crushed ice and neutralized with dil HCl. The precipitate thus formed after adding into crushed ice was filtered off and the residue subjected to column chromatography using petroleum ether: ethyl acetate mixture (3:1) v/v as eluent and compound obtained as a pale yellow solid.

Refinement top

All H atoms were located in a difference map. Nevertheless, they were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The cystal packing of the title compound showing the intermolecular C—H···O and C—H···π interactions chain running along aaxis, where Cg1 is the centroid of ring atoms C1—C6. Symmetry codes: (i) X,1/2-Y,1/2+Z; (ii) 1-X,-1/2+Y,1/2-Z; (iii) X,3/2-Y,1/2+Z and (iv) 1-X,1/2+Y,1/2-Z.
(2E)-2-Benzylidene-9-phenyl-3,4-dihydroacridin-1(2H)-one top
Crystal data top
C26H19NOF(000) = 760
Mr = 361.42Dx = 1.247 Mg m3
Dm = 1.25 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4776 reflections
a = 9.2222 (3) Åθ = 2.1–28.3°
b = 10.7555 (4) ŵ = 0.08 mm1
c = 19.4962 (5) ÅT = 293 K
β = 95.503 (2)°Block, white
V = 1924.90 (11) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4776 independent reflections
Radiation source: fine-focus sealed tube3205 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1210
Tmin = 0.662, Tmax = 0.746k = 1314
18382 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.3326P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.013
4776 reflectionsΔρmax = 0.23 e Å3
254 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (8)
Crystal data top
C26H19NOV = 1924.90 (11) Å3
Mr = 361.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2222 (3) ŵ = 0.08 mm1
b = 10.7555 (4) ÅT = 293 K
c = 19.4962 (5) Å0.20 × 0.20 × 0.20 mm
β = 95.503 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4776 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3205 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.746Rint = 0.029
18382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
4776 reflectionsΔρmin = 0.16 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47972 (17)0.49247 (14)0.17309 (8)0.0542 (4)
H10.48410.40620.17570.065*
C20.5587 (2)0.56214 (17)0.22142 (9)0.0711 (5)
H20.61620.52330.25690.085*
C30.5539 (2)0.69204 (17)0.21798 (10)0.0811 (6)
H30.60890.73880.25110.097*
C40.4701 (2)0.75058 (15)0.16689 (9)0.0677 (5)
H40.46740.83700.16550.081*
C50.38702 (16)0.68116 (12)0.11582 (7)0.0457 (3)
C60.39092 (15)0.54970 (12)0.11883 (7)0.0416 (3)
C70.30846 (14)0.48187 (11)0.06585 (6)0.0376 (3)
C80.23412 (14)0.54820 (11)0.01290 (6)0.0381 (3)
C90.23927 (14)0.68112 (11)0.01406 (7)0.0399 (3)
C100.15959 (17)0.75179 (12)0.04403 (7)0.0484 (3)
H10A0.19960.83500.04560.058*
H10B0.05770.75900.03610.058*
C110.17193 (18)0.68716 (12)0.11266 (7)0.0502 (4)
H11A0.11590.73280.14900.060*
H11B0.27300.68700.12270.060*
C120.11714 (15)0.55543 (12)0.11151 (7)0.0434 (3)
C130.14319 (15)0.48612 (11)0.04483 (6)0.0399 (3)
C140.04150 (17)0.49483 (12)0.16301 (7)0.0475 (3)
H140.01340.41460.15230.057*
C150.00427 (18)0.53472 (12)0.23384 (7)0.0488 (3)
C160.0762 (2)0.61459 (14)0.27197 (8)0.0565 (4)
H160.16470.64600.25250.068*
C170.0255 (2)0.64745 (16)0.33848 (8)0.0688 (5)
H170.08090.69980.36350.083*
C180.1053 (3)0.60374 (18)0.36787 (9)0.0773 (6)
H180.13980.62800.41220.093*
C190.1857 (2)0.52368 (18)0.33150 (9)0.0739 (5)
H190.27450.49350.35150.089*
C200.1349 (2)0.48783 (15)0.26524 (8)0.0601 (4)
H200.18860.43190.24150.072*
C210.31014 (14)0.34287 (11)0.06809 (6)0.0398 (3)
C220.23121 (16)0.27801 (12)0.11307 (7)0.0486 (3)
H220.17760.32080.14350.058*
C230.23196 (19)0.14904 (14)0.11288 (9)0.0607 (4)
H230.17700.10560.14250.073*
C240.3134 (2)0.08513 (14)0.06919 (10)0.0710 (5)
H240.31380.00130.06910.085*
C250.3942 (2)0.14968 (16)0.02578 (10)0.0766 (5)
H250.45090.10680.00330.092*
C260.39204 (19)0.27804 (14)0.02481 (9)0.0604 (4)
H260.44630.32090.00530.072*
N10.31024 (13)0.74545 (10)0.06376 (6)0.0459 (3)
O10.09155 (12)0.38323 (8)0.03732 (5)0.0517 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0594 (9)0.0455 (8)0.0552 (8)0.0054 (7)0.0065 (7)0.0014 (6)
C20.0810 (12)0.0635 (10)0.0627 (10)0.0080 (9)0.0252 (9)0.0038 (8)
C30.1013 (15)0.0616 (11)0.0722 (11)0.0025 (10)0.0351 (11)0.0180 (9)
C40.0883 (13)0.0435 (8)0.0671 (10)0.0003 (8)0.0153 (9)0.0135 (7)
C50.0519 (8)0.0371 (7)0.0476 (7)0.0009 (6)0.0017 (6)0.0063 (6)
C60.0442 (7)0.0374 (7)0.0431 (7)0.0019 (6)0.0029 (6)0.0019 (5)
C70.0401 (7)0.0310 (6)0.0421 (6)0.0006 (5)0.0059 (5)0.0004 (5)
C80.0424 (7)0.0301 (6)0.0419 (7)0.0008 (5)0.0045 (5)0.0012 (5)
C90.0441 (7)0.0298 (6)0.0460 (7)0.0005 (5)0.0054 (6)0.0008 (5)
C100.0619 (9)0.0281 (6)0.0537 (8)0.0006 (6)0.0023 (7)0.0052 (6)
C110.0655 (9)0.0372 (7)0.0470 (7)0.0054 (6)0.0013 (7)0.0077 (6)
C120.0527 (8)0.0340 (6)0.0434 (7)0.0007 (6)0.0039 (6)0.0030 (5)
C130.0467 (7)0.0299 (6)0.0428 (7)0.0002 (5)0.0028 (6)0.0022 (5)
C140.0638 (9)0.0346 (7)0.0437 (7)0.0006 (6)0.0037 (6)0.0023 (5)
C150.0669 (9)0.0376 (7)0.0415 (7)0.0072 (7)0.0042 (7)0.0024 (6)
C160.0744 (11)0.0466 (8)0.0493 (8)0.0060 (7)0.0093 (7)0.0015 (7)
C170.1057 (15)0.0537 (9)0.0488 (9)0.0118 (10)0.0160 (10)0.0080 (7)
C180.1155 (17)0.0686 (12)0.0457 (9)0.0241 (11)0.0039 (10)0.0050 (8)
C190.0860 (13)0.0770 (12)0.0544 (10)0.0099 (10)0.0154 (9)0.0101 (9)
C200.0771 (11)0.0542 (9)0.0477 (8)0.0002 (8)0.0000 (8)0.0060 (7)
C210.0437 (7)0.0315 (6)0.0429 (7)0.0038 (5)0.0031 (6)0.0013 (5)
C220.0569 (9)0.0395 (7)0.0485 (8)0.0022 (6)0.0000 (6)0.0072 (6)
C230.0715 (11)0.0423 (8)0.0648 (10)0.0094 (7)0.0124 (8)0.0168 (7)
C240.0966 (14)0.0291 (7)0.0817 (12)0.0063 (8)0.0204 (11)0.0012 (8)
C250.1012 (15)0.0443 (9)0.0846 (13)0.0234 (9)0.0111 (11)0.0074 (9)
C260.0708 (10)0.0422 (8)0.0705 (10)0.0103 (7)0.0191 (8)0.0008 (7)
N10.0549 (7)0.0322 (5)0.0499 (6)0.0004 (5)0.0015 (5)0.0035 (5)
O10.0673 (7)0.0343 (5)0.0514 (6)0.0106 (4)0.0052 (5)0.0058 (4)
Geometric parameters (Å, º) top
C1—C21.359 (2)C13—O11.2191 (15)
C1—C61.4151 (19)C14—C151.4689 (18)
C1—H10.9300C14—H140.9300
C2—C31.399 (2)C15—C201.393 (2)
C2—H20.9300C15—C161.395 (2)
C3—C41.356 (2)C16—C171.381 (2)
C3—H30.9300C16—H160.9300
C4—C51.411 (2)C17—C181.369 (3)
C4—H40.9300C17—H170.9300
C5—N11.3682 (17)C18—C191.377 (3)
C5—C61.4154 (18)C18—H180.9300
C6—C71.4236 (17)C19—C201.386 (2)
C7—C81.3818 (17)C19—H190.9300
C7—C211.4957 (17)C20—H200.9300
C8—C91.4304 (17)C21—C261.3750 (19)
C8—C131.4949 (17)C21—C221.3813 (19)
C9—N11.3132 (16)C22—C231.387 (2)
C9—C101.4970 (18)C22—H220.9300
C10—C111.522 (2)C23—C241.373 (3)
C10—H10A0.9700C23—H230.9300
C10—H10B0.9700C24—C251.369 (3)
C11—C121.5051 (18)C24—H240.9300
C11—H11A0.9700C25—C261.381 (2)
C11—H11B0.9700C25—H250.9300
C12—C141.3361 (18)C26—H260.9300
C12—C131.4978 (17)
C2—C1—C6120.76 (14)O1—C13—C12121.60 (12)
C2—C1—H1119.6C8—C13—C12117.57 (11)
C6—C1—H1119.6C12—C14—C15130.26 (13)
C1—C2—C3120.33 (15)C12—C14—H14114.9
C1—C2—H2119.8C15—C14—H14114.9
C3—C2—H2119.8C20—C15—C16118.07 (14)
C4—C3—C2120.80 (15)C20—C15—C14117.78 (14)
C4—C3—H3119.6C16—C15—C14124.14 (14)
C2—C3—H3119.6C17—C16—C15120.55 (17)
C3—C4—C5120.37 (15)C17—C16—H16119.7
C3—C4—H4119.8C15—C16—H16119.7
C5—C4—H4119.8C18—C17—C16120.70 (18)
N1—C5—C4117.62 (13)C18—C17—H17119.7
N1—C5—C6123.01 (12)C16—C17—H17119.7
C4—C5—C6119.32 (13)C17—C18—C19119.74 (16)
C1—C6—C5118.43 (12)C17—C18—H18120.1
C1—C6—C7123.37 (12)C19—C18—H18120.1
C5—C6—C7118.18 (12)C18—C19—C20120.23 (18)
C8—C7—C6118.02 (11)C18—C19—H19119.9
C8—C7—C21122.74 (11)C20—C19—H19119.9
C6—C7—C21119.20 (11)C19—C20—C15120.66 (17)
C7—C8—C9119.39 (11)C19—C20—H20119.7
C7—C8—C13122.29 (11)C15—C20—H20119.7
C9—C8—C13118.27 (11)C26—C21—C22119.17 (13)
N1—C9—C8123.48 (12)C26—C21—C7119.59 (12)
N1—C9—C10117.68 (11)C22—C21—C7121.24 (12)
C8—C9—C10118.84 (11)C21—C22—C23120.02 (14)
C9—C10—C11111.14 (11)C21—C22—H22120.0
C9—C10—H10A109.4C23—C22—H22120.0
C11—C10—H10A109.4C24—C23—C22120.35 (16)
C9—C10—H10B109.4C24—C23—H23119.8
C11—C10—H10B109.4C22—C23—H23119.8
H10A—C10—H10B108.0C25—C24—C23119.48 (15)
C12—C11—C10111.30 (11)C25—C24—H24120.3
C12—C11—H11A109.4C23—C24—H24120.3
C10—C11—H11A109.4C24—C25—C26120.52 (17)
C12—C11—H11B109.4C24—C25—H25119.7
C10—C11—H11B109.4C26—C25—H25119.7
H11A—C11—H11B108.0C21—C26—C25120.43 (16)
C14—C12—C13115.98 (12)C21—C26—H26119.8
C14—C12—C11126.86 (12)C25—C26—H26119.8
C13—C12—C11117.09 (11)C9—N1—C5117.84 (11)
O1—C13—C8120.83 (11)
C6—C1—C2—C30.3 (3)C14—C12—C13—O13.7 (2)
C1—C2—C3—C40.4 (3)C11—C12—C13—O1173.38 (13)
C2—C3—C4—C50.5 (3)C14—C12—C13—C8176.83 (12)
C3—C4—C5—N1176.88 (17)C11—C12—C13—C86.04 (18)
C3—C4—C5—C60.6 (3)C13—C12—C14—C15179.30 (14)
C2—C1—C6—C50.4 (2)C11—C12—C14—C152.5 (3)
C2—C1—C6—C7178.48 (15)C12—C14—C15—C20148.09 (16)
N1—C5—C6—C1176.83 (13)C12—C14—C15—C1633.2 (2)
C4—C5—C6—C10.5 (2)C20—C15—C16—C171.1 (2)
N1—C5—C6—C71.4 (2)C14—C15—C16—C17179.87 (14)
C4—C5—C6—C7178.70 (14)C15—C16—C17—C180.9 (3)
C1—C6—C7—C8175.42 (13)C16—C17—C18—C191.6 (3)
C5—C6—C7—C82.67 (18)C17—C18—C19—C200.3 (3)
C1—C6—C7—C212.24 (19)C18—C19—C20—C151.8 (3)
C5—C6—C7—C21179.67 (12)C16—C15—C20—C192.5 (2)
C6—C7—C8—C91.66 (18)C14—C15—C20—C19178.72 (14)
C21—C7—C8—C9179.24 (12)C8—C7—C21—C2674.02 (18)
C6—C7—C8—C13179.36 (11)C6—C7—C21—C26103.53 (15)
C21—C7—C8—C133.06 (19)C8—C7—C21—C22106.21 (15)
C7—C8—C9—N10.88 (19)C6—C7—C21—C2276.24 (16)
C13—C8—C9—N1176.92 (12)C26—C21—C22—C231.8 (2)
C7—C8—C9—C10179.33 (12)C7—C21—C22—C23178.44 (13)
C13—C8—C9—C102.87 (18)C21—C22—C23—C241.4 (2)
N1—C9—C10—C11141.67 (13)C22—C23—C24—C250.0 (3)
C8—C9—C10—C1138.53 (17)C23—C24—C25—C261.2 (3)
C9—C10—C11—C1256.53 (17)C22—C21—C26—C250.7 (2)
C10—C11—C12—C14142.07 (15)C7—C21—C26—C25179.55 (15)
C10—C11—C12—C1334.70 (18)C24—C25—C26—C210.8 (3)
C7—C8—C13—O124.48 (19)C8—C9—N1—C52.25 (19)
C9—C8—C13—O1153.24 (13)C10—C9—N1—C5177.96 (12)
C7—C8—C13—C12156.08 (12)C4—C5—N1—C9176.28 (13)
C9—C8—C13—C1226.19 (17)C6—C5—N1—C91.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.972.583.2700 (18)128
C26—H26···Cg1ii0.932.713.577 (18)156
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.972.583.2700 (18)128
C26—H26···Cg1ii0.932.713.577 (18)156
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TV and DV also thank the UGC (SAP–CAS) for the facilities to the department.

References

First citationBaguley, B. C. & Ferguson, L. R. (1998). Biochim. Biophys. Acta, 1400, 213–222.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuckleton, J. S. & Waters, T. N. (1984). Acta Cryst. C40, 1587–1589.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChantrapromma, S., Boonnak, N., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o81–o82.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDas, S., Kundu, S. & Suresh, K. G. (2011). DNA Cell Biol. 30, 525–535.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDenny, W. A., Cain B. F., Atwell, G. J., Hansch, C. & Panthananickal, A. (1982). J. Med. Chem. 25, 276–315.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, R., Kaur, M. & Kumari, M. (2012). Acta Pol. Pharm. 69, 3–9.  Web of Science CAS PubMed Google Scholar
First citationPigatto, M. C., Lima, M. C. A., Galdino, S. L., Pitta, I. R., Vessecchi, R., Assis, M. D., Santos, J. S., Costa, T. C. T. D. & Lopes, P. N. (2011). Eur. J. Med. Chem. 1, 4245–4251.  Web of Science CrossRef Google Scholar
First citationPrommier, Y. & Goldwasser, F., Chabner, B. A. & Longo, D. L. (2006). Editors. Cancer Chemother. Biother. pp. 451–475.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomar, V., Bhattacharjee, G., Uddin, K., Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Eur. J. Med. Chem. 45, 745–751.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds