metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(isoquinolin-2-ium) tetra­chlorido­zincate dihydrate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: a_sp59@yahoo.in

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 6 April 2014; accepted 5 July 2014; online 23 July 2014)

In the title compound, (C9H8N)2[ZnCl4]·2H2O, the tetra­chlorido­zincate ion is located on a twofold rotation axis with the Zn atom on a special position. The crystal packing is stabilized by N—H⋯O and O—H⋯Cl inter­actions.

Keywords: crystal structure.

Related literature

For the synthesis of the title compound, see: Anbalagan & Lydia (2011[Anbalagan, K. & Lydia, I. S. (2011). J. Phys. Org. Chem. 24, 45-53.]). For applications of iso­quinoline derivatives, see: Katritsky & Pozharskii (2000[Katritsky, A. R. & Pozharskii, A. F. (2000). Handbook of Heterocyclic Chemistry, 2nd ed. Oxford: Elsevier.]). For a related structure, see: Harrison (2005[Harrison, W. T. A. (2005). Acta Cryst. E61, m1951-m1952.]). For a description of the Cambridge Crystallographic Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • 2(C9H8N)·Cl4Zn·2(H2O)

  • Mr = 503.53

  • Monoclinic, C 2/c

  • a = 11.4337 (5) Å

  • b = 9.9160 (5) Å

  • c = 19.1544 (11) Å

  • β = 100.120 (6)°

  • V = 2137.87 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 293 K

  • 0.45 × 0.35 × 0.35 mm

Data collection
  • Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.502, Tmax = 0.559

  • 5345 measured reflections

  • 1857 independent reflections

  • 1578 reflections with I > 2σ(I)

  • Rint = 0.024

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.04

  • 1857 reflections

  • 129 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.92 2.747 (4) 161
O1—H1B⋯Cl1i 0.85 (1) 2.47 (2) 3.270 (3) 157 (4)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoquinoline derivatives are of interest in synthesizing new fungicides, insecticides, textile assistants, corrosion inhibitors, dye stabilizers, and pharmaceuticals (Katritsky & Pozharskii, 2000) Against this background and to ascertain the molecular structure and conformation of the title compound, the crystal structure determination has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The tetrachlorozincate ion is located on a two-fold rotation axis with the Zn atom on the special position. The bond lengths and angles in the title compound are within normal ranges (Allen, 2002) and are comparable with those in related structures (Harrison, 2005).

The crystal packing is stabilized by intermolecular N—H···O and O—H···Cl interactions, which are linking the molecules to a three dimensional network.

Related literature top

For the synthesis of the title compound, see: Anbalagan & Lydia (2011). For applications of isoquinoline derivatives, see: Katritsky & Pozharskii (2000). For a related structure, see: Harrison (2005). For a description of the Cambridge Crystallographic Database, see: Allen (2002).

Experimental top

Zinc(II) chloride was dissolved in 10 mL(1 mmol) of distilled water. To this isoquinoline in 20 ml of EtOH/HCl mixture (1:5 v/v) 1 mmol was added in drops. The mixture was heated to 70°C for 2 h and allowed to stand, colorless crystals separated out were filtered and recrystallized using acidified water. X-ray quality crystals were obtained by repeated recrystallization from hot acidified distilled water. Microcrystalline pink color crystal was obtained for analysis.

Refinement top

N and C-bound H atoms were positioned geometrically (N–H =0.84Å, C–H =0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for all other H atoms. The coordinates of the H atoms bonded to O were refined with O-H restrained to 0.85 (1)Å and H···H restrained to 1.38 (1)Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules viewed down a-axis.
Bis(isoquinolin-2-ium) tetrachloridozincate dihydrate top
Crystal data top
2(C9H8N)·Cl4Zn·2(H2O)F(000) = 1024
Mr = 503.53Dx = 1.564 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1578 reflections
a = 11.4337 (5) Åθ = 3.9–25.0°
b = 9.9160 (5) ŵ = 1.66 mm1
c = 19.1544 (11) ÅT = 293 K
β = 100.120 (6)°Block, pink
V = 2137.87 (19) Å30.45 × 0.35 × 0.35 mm
Z = 4
Data collection top
Xcalibur, Eos
diffractometer
1857 independent reflections
Radiation source: fine-focus sealed tube1578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.0°, θmin = 3.9°
Absorption correction: multi-scan
CrysAlis PRO (Oxford Diffraction, 2009)
h = 1313
Tmin = 0.502, Tmax = 0.559k = 1111
5345 measured reflectionsl = 1522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0445P)2 + 1.8258P]
where P = (Fo2 + 2Fc2)/3
1857 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.61 e Å3
4 restraintsΔρmin = 0.32 e Å3
Crystal data top
2(C9H8N)·Cl4Zn·2(H2O)V = 2137.87 (19) Å3
Mr = 503.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.4337 (5) ŵ = 1.66 mm1
b = 9.9160 (5) ÅT = 293 K
c = 19.1544 (11) Å0.45 × 0.35 × 0.35 mm
β = 100.120 (6)°
Data collection top
Xcalibur, Eos
diffractometer
1857 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Oxford Diffraction, 2009)
1578 reflections with I > 2σ(I)
Tmin = 0.502, Tmax = 0.559Rint = 0.024
5345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0334 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.61 e Å3
1857 reflectionsΔρmin = 0.32 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.5564 (3)0.7834 (3)0.5659 (2)0.0638 (9)
H20.63100.74460.57970.077*
C30.5124 (3)0.8013 (3)0.49629 (19)0.0547 (8)
H30.55630.77480.46210.066*
C40.3988 (3)0.8607 (3)0.47563 (15)0.0426 (6)
C50.3464 (3)0.8850 (3)0.40473 (16)0.0551 (8)
H50.38580.86050.36810.066*
C60.2388 (3)0.9441 (3)0.39003 (18)0.0663 (10)
H60.20530.96050.34300.080*
C70.1760 (3)0.9815 (3)0.4434 (2)0.0630 (9)
H70.10181.02200.43140.076*
C80.2223 (3)0.9590 (3)0.51179 (18)0.0543 (8)
H80.18000.98320.54710.065*
C90.3354 (3)0.8986 (3)0.52987 (14)0.0434 (6)
C100.3869 (3)0.8765 (3)0.59995 (16)0.0537 (8)
H100.34620.90080.63600.064*
Cl10.63080 (8)0.80565 (9)0.32392 (5)0.0717 (3)
N10.4918 (3)0.8221 (2)0.61579 (15)0.0630 (8)
H10.52170.81000.65980.076*
Zn10.50000.67743 (4)0.25000.04026 (17)
Cl20.39409 (7)0.54525 (9)0.31295 (4)0.0624 (3)
O10.6337 (2)0.7676 (4)0.74389 (14)0.0902 (9)
H1A0.647 (3)0.8552 (12)0.7531 (15)0.108*
H1B0.7009 (18)0.737 (3)0.738 (2)0.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0525 (18)0.0463 (17)0.086 (3)0.0002 (15)0.0053 (19)0.0048 (18)
C30.0550 (18)0.0445 (16)0.067 (2)0.0010 (14)0.0165 (16)0.0013 (15)
C40.0547 (16)0.0303 (12)0.0429 (15)0.0075 (12)0.0092 (13)0.0024 (11)
C50.079 (2)0.0473 (16)0.0403 (16)0.0048 (17)0.0133 (16)0.0035 (14)
C60.091 (3)0.0501 (18)0.0491 (19)0.0068 (19)0.0103 (19)0.0034 (15)
C70.0583 (19)0.0479 (18)0.078 (2)0.0025 (15)0.0020 (18)0.0034 (17)
C80.0575 (18)0.0441 (16)0.065 (2)0.0015 (15)0.0193 (16)0.0013 (15)
C90.0560 (16)0.0329 (13)0.0423 (15)0.0078 (13)0.0112 (13)0.0001 (12)
C100.073 (2)0.0450 (15)0.0430 (16)0.0059 (16)0.0110 (15)0.0021 (14)
Cl10.0560 (5)0.0770 (6)0.0835 (6)0.0228 (4)0.0165 (5)0.0287 (5)
N10.085 (2)0.0496 (15)0.0473 (15)0.0087 (15)0.0087 (15)0.0038 (12)
Zn10.0361 (3)0.0450 (3)0.0418 (3)0.0000.01239 (19)0.000
Cl20.0637 (5)0.0713 (5)0.0561 (5)0.0201 (4)0.0216 (4)0.0066 (4)
O10.0648 (15)0.149 (3)0.0565 (15)0.0270 (18)0.0102 (13)0.0027 (17)
Geometric parameters (Å, º) top
C2—C31.351 (5)C8—C91.412 (4)
C2—N11.362 (5)C8—H80.9300
C2—H20.9300C9—C101.385 (4)
C3—C41.417 (4)C10—N11.302 (4)
C3—H30.9300C10—H100.9300
C4—C51.406 (4)Cl1—Zn12.2614 (9)
C4—C91.418 (4)N1—H10.8600
C5—C61.347 (5)Zn1—Cl1i2.2614 (9)
C5—H50.9300Zn1—Cl22.2697 (7)
C6—C71.399 (5)Zn1—Cl2i2.2697 (7)
C6—H60.9300O1—H1A0.894 (10)
C7—C81.343 (5)O1—H1B0.850 (10)
C7—H70.9300
C3—C2—N1120.1 (3)C7—C8—H8120.1
C3—C2—H2119.9C9—C8—H8120.1
N1—C2—H2119.9C10—C9—C8121.3 (3)
C2—C3—C4119.6 (3)C10—C9—C4118.9 (3)
C2—C3—H3120.2C8—C9—C4119.8 (3)
C4—C3—H3120.2N1—C10—C9120.6 (3)
C5—C4—C3123.7 (3)N1—C10—H10119.7
C5—C4—C9118.4 (3)C9—C10—H10119.7
C3—C4—C9117.8 (3)C10—N1—C2123.0 (3)
C6—C5—C4119.7 (3)C10—N1—H1118.5
C6—C5—H5120.2C2—N1—H1118.5
C4—C5—H5120.2Cl1—Zn1—Cl1i111.58 (6)
C5—C6—C7122.0 (3)Cl1—Zn1—Cl2110.36 (3)
C5—C6—H6119.0Cl1i—Zn1—Cl2107.54 (3)
C7—C6—H6119.0Cl1—Zn1—Cl2i107.55 (3)
C8—C7—C6120.3 (3)Cl1i—Zn1—Cl2i110.36 (3)
C8—C7—H7119.9Cl2—Zn1—Cl2i109.45 (5)
C6—C7—H7119.9H1A—O1—H1B104.4 (16)
C7—C8—C9119.8 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.922.747 (4)161
O1—H1B···Cl1ii0.85 (1)2.47 (2)3.270 (3)157 (4)
Symmetry code: (ii) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.922.747 (4)160.7
O1—H1B···Cl1i0.850 (10)2.47 (2)3.270 (3)157 (4)
Symmetry code: (i) x+3/2, y+3/2, z+1.
 

Acknowledgements

EG and KA are thankful to the CSIR, New Delhi (Lr: No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project. The authors are thankful to Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnbalagan, K. & Lydia, I. S. (2011). J. Phys. Org. Chem. 24, 45–53.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2005). Acta Cryst. E61, m1951–m1952.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatritsky, A. R. & Pozharskii, A. F. (2000). Handbook of Heterocyclic Chemistry, 2nd ed. Oxford: Elsevier.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds