organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Methyl-2,6-di­phenyl­piperidin-4-one O-(3-methyl­benzo­yl)oxime

aDepartment of Physics, Goverment Arts College, Karur 639 005, India, bDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram, India, cDepartment of Physics, Shri Angalamman College of Engineering and Technology, Siruganoor, Tiruchirappalli, India, and dDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India
*Correspondence e-mail: sakthi2udc@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 5 June 2014; accepted 17 July 2014; online 31 July 2014)

In the title compound, C26H26N2O2, the piperidine ring exhibits a chair conformation. The phenyl rings are attached to the central heterocycle in an equatorial position. The dihedral angle between the planes of the phenyl rings is 57.58 (8)°. In the crystal, C—H⋯O inter­actions connect the mol­ecules into zigzag chains along [001].

Related literature

For the biological activity of oxime esters, see: Crichlow et al. (2007[Crichlow, G. V., Cheng, K. F., Dabideen, D., Ochani, M., Aljabari, B., Pavlov, V. A., Miller, E. J., Lolis, E. & Al-Abed, Y. (2007). J. Biol. Chem., 282, 23089-23095.]); Hwu et al. (2008[Hwu, J. R., Yang, J. R., Tsay, S. C., Hsu, M. H., Chen, Y. C. & Chou, S. S. P. (2008). Tetrahedron Lett., 49, 3312-3315.]); Neely et al. (2013[Neely, J. M. & Rovis, T. (2013). J. Am. Chem. Soc., 135, 66-69.]); Liu et al. (2011[Liu, X. H., Pan, L., Tan, C. X., Weng, J. Q., Wang, B. L. & Li, Z. M. (2011). Pestic. Biochem. Physiol., pp. 101-143.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For comparable structures, see: Park et al. (2012a[Park, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524.],b[Park, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26N2O2

  • Mr = 398.49

  • Monoclinic, P 21 /n

  • a = 10.6265 (6) Å

  • b = 12.7146 (7) Å

  • c = 16.4031 (8) Å

  • β = 99.524 (2)°

  • V = 2185.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.985

  • 37978 measured reflections

  • 5367 independent reflections

  • 3097 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.175

  • S = 1.04

  • 5367 reflections

  • 275 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.59 3.485 (3) 160
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of oxime esters are serving as important synthetic intermediate, and have been employed as starting materials for both synthetic and medicinal chemistry (Crichlow et al. 2007; Hwu et al.2008; Neely et al.2013). Oxime esters have received great potential in biologically active molecules such as agrochemical industries (Liu et al., 2011).

The central ring (N1/C7/C8/C9/C10/C11) adopts a chair conformation with the puckering parameters Q=0.5398 Å, θ=8.88° and ϕ=30.1509° (Cremer & Pople, 1975).

The bond distances and bond angles in the title compound agree very well with the corresponding values reported in closely related compounds (Park et al., 2012a,b).

This stucture was stabilized by C—H···O intramolecular interactions linking the molecules to zigzag chains running parallel to [001] axis.

Related literature top

For the biological activity of oxime esters. see Crichlow et al. (2007); Hwu et al. (2008) and Neely et al. (2013); Liu et al. (2011). For ring conformations see: Cremer & Pople(1975). For comparable structures, see: Park et al. (2012a, 2012b).

Experimental top

A mixture of 3-methyl-2,6-diphenylpiperidin-4-one oxime (0.73 g, 2.5 mmol) and m-methylbenzoic acid (0.37 g, 2.75 mmol) in dry pyridine (7 ml) was stirred at ambient temperature. POCl3 (0.25 ml, 2.75 mmol) was added drop wise to the reaction mixture and stirring is continued for 20 to 30 min. The progress of the reaction was monitored by TLC. After completion of the reaction, a saturated solution of NaHCO3 was added portion wise to the reaction mixture and the crude product was thrown out as a precipitate. The crude product was then recrystallized from absolute ethanol to get the pure 3-methyl-2,6-diphenylpiperidin-4-one-O-(3-methylbenzoyl) oxime. Yield 0.76 g (78%).

Refinement top

The positions of the hydrogen atoms were identified from difference electron density maps. The hydrogen atoms bound to the C atoms are treated as riding atoms, with d(C—H)=0.93 and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H)=0.97 and Uiso(H)=1.2Ueq(C) for methylene and d(C—H)=0.96 and Uiso(H) =1.5Ueq(C) for methyl groups. The H atom bonded to N was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius.
[Figure 2] Fig. 2. Part of crystal structure of the title compound, showing the formation one dimensional C(12) chains running parallel to [0 0 1] axis.
(E)-3-Methyl-2,6-diphenylpiperidin-4-one O-(3-methylbenzoyl)oxime top
Crystal data top
C26H26N2O2F(000) = 848
Mr = 398.49Dx = 1.211 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3910 reflections
a = 10.6265 (6) Åθ = 2.0–28.3°
b = 12.7146 (7) ŵ = 0.08 mm1
c = 16.4031 (8) ÅT = 293 K
β = 99.524 (2)°Block, colourless
V = 2185.7 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5367 independent reflections
Radiation source: fine-focus sealed tube3097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω & ϕ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.977, Tmax = 0.985k = 1616
37978 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.070P)2 + 0.8065P]
where P = (Fo2 + 2Fc2)/3
5367 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C26H26N2O2V = 2185.7 (2) Å3
Mr = 398.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6265 (6) ŵ = 0.08 mm1
b = 12.7146 (7) ÅT = 293 K
c = 16.4031 (8) Å0.30 × 0.25 × 0.20 mm
β = 99.524 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5367 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3097 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.034
37978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
5367 reflectionsΔρmin = 0.23 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1A0.018 (2)1.0450 (18)0.1578 (13)0.061 (7)*
O10.02902 (16)0.61978 (10)0.21324 (9)0.0619 (4)
O20.06469 (18)0.49464 (12)0.27901 (11)0.0731 (5)
N10.04764 (16)0.99163 (12)0.18907 (10)0.0436 (4)
C110.04007 (18)0.97408 (14)0.24813 (11)0.0440 (4)
H110.12570.96080.21720.053*
N20.01386 (18)0.69687 (13)0.26740 (11)0.0564 (5)
C200.05405 (18)0.44768 (15)0.17305 (12)0.0456 (4)
C100.0019 (2)0.87831 (15)0.30293 (12)0.0515 (5)
H100.08280.89740.33780.062*
C70.05728 (18)0.90311 (15)0.13409 (11)0.0446 (4)
H70.02820.88570.10470.054*
C60.14265 (18)0.92717 (15)0.07160 (11)0.0459 (5)
C90.0297 (2)0.78632 (15)0.25099 (12)0.0480 (5)
C120.04334 (19)1.07383 (15)0.29832 (11)0.0445 (4)
C190.00232 (19)0.51999 (15)0.22822 (12)0.0478 (5)
C250.10773 (19)0.48317 (16)0.10675 (12)0.0500 (5)
H250.10560.55470.09460.060*
C240.1646 (2)0.41475 (18)0.05806 (13)0.0563 (5)
C130.1543 (2)1.13041 (16)0.29641 (12)0.0511 (5)
H130.22951.10700.26430.061*
C80.1099 (2)0.80955 (16)0.18605 (14)0.0562 (5)
H8A0.11150.74850.15080.067*
H8B0.19680.82430.21230.067*
C140.1543 (3)1.22239 (18)0.34226 (15)0.0652 (6)
H140.22941.26070.34000.078*
C150.0451 (3)1.25700 (18)0.39050 (15)0.0694 (7)
H150.04631.31770.42190.083*
C170.0669 (2)1.11168 (17)0.34612 (14)0.0606 (6)
H170.14331.07560.34710.073*
C160.0654 (3)1.20238 (19)0.39244 (15)0.0703 (7)
H160.14001.22610.42500.084*
C10.2413 (2)0.99896 (18)0.08749 (15)0.0611 (6)
H10.25421.03650.13680.073*
C180.0920 (3)0.85368 (19)0.36119 (16)0.0790 (8)
H18A0.10440.91530.39280.119*
H18B0.05870.79790.39790.119*
H18C0.17210.83240.32950.119*
C220.1156 (3)0.27329 (18)0.14423 (17)0.0735 (7)
H220.11930.20190.15690.088*
C210.0567 (2)0.34152 (16)0.19135 (15)0.0590 (6)
H210.01920.31640.23490.071*
C230.1689 (2)0.30943 (19)0.07893 (16)0.0698 (7)
H230.20860.26220.04810.084*
C50.1289 (2)0.87079 (19)0.00125 (13)0.0608 (6)
H50.06400.82130.01260.073*
C40.2102 (3)0.8869 (2)0.05753 (14)0.0768 (8)
H40.19980.84790.10620.092*
C20.3212 (3)1.0150 (2)0.0298 (2)0.0838 (8)
H20.38641.06440.04050.101*
C30.3058 (3)0.9595 (3)0.04244 (18)0.0880 (9)
H30.35970.97110.08080.106*
C260.2245 (3)0.4555 (3)0.01269 (15)0.0841 (8)
H26A0.25960.39780.03930.126*
H26B0.29120.50430.00790.126*
H26C0.16090.49040.05180.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0913 (11)0.0369 (7)0.0691 (9)0.0054 (7)0.0472 (8)0.0056 (7)
O20.0998 (13)0.0492 (9)0.0847 (11)0.0049 (8)0.0569 (10)0.0115 (8)
N10.0528 (10)0.0380 (8)0.0433 (9)0.0039 (7)0.0178 (7)0.0007 (7)
C110.0469 (11)0.0431 (10)0.0446 (10)0.0001 (8)0.0154 (8)0.0039 (8)
N20.0797 (12)0.0400 (9)0.0575 (10)0.0013 (8)0.0349 (9)0.0037 (8)
C200.0474 (11)0.0413 (10)0.0487 (11)0.0028 (8)0.0102 (9)0.0016 (8)
C100.0714 (14)0.0422 (10)0.0452 (11)0.0007 (9)0.0221 (10)0.0006 (8)
C70.0484 (11)0.0440 (10)0.0445 (10)0.0022 (8)0.0166 (8)0.0035 (8)
C60.0493 (11)0.0487 (11)0.0420 (10)0.0070 (9)0.0145 (8)0.0073 (8)
C90.0611 (12)0.0387 (10)0.0486 (11)0.0028 (9)0.0217 (9)0.0021 (8)
C120.0528 (11)0.0408 (10)0.0429 (10)0.0008 (8)0.0169 (9)0.0015 (8)
C190.0561 (12)0.0395 (10)0.0508 (11)0.0021 (9)0.0177 (9)0.0052 (8)
C250.0560 (12)0.0471 (11)0.0486 (11)0.0020 (9)0.0136 (9)0.0011 (9)
C240.0520 (12)0.0665 (14)0.0519 (12)0.0056 (10)0.0131 (9)0.0136 (10)
C130.0547 (12)0.0510 (12)0.0519 (11)0.0030 (9)0.0214 (9)0.0016 (9)
C80.0706 (14)0.0422 (11)0.0638 (13)0.0050 (10)0.0350 (11)0.0044 (9)
C140.0804 (17)0.0522 (13)0.0720 (15)0.0162 (12)0.0390 (13)0.0023 (11)
C150.106 (2)0.0467 (12)0.0627 (14)0.0041 (13)0.0359 (14)0.0135 (11)
C170.0611 (14)0.0520 (12)0.0677 (14)0.0033 (10)0.0084 (11)0.0089 (10)
C160.0871 (18)0.0604 (14)0.0627 (14)0.0126 (13)0.0103 (13)0.0135 (11)
C10.0604 (14)0.0604 (13)0.0679 (14)0.0016 (11)0.0267 (11)0.0030 (11)
C180.127 (2)0.0534 (14)0.0716 (16)0.0007 (14)0.0616 (16)0.0000 (11)
C220.0898 (18)0.0391 (12)0.0947 (19)0.0051 (12)0.0247 (15)0.0114 (12)
C210.0699 (14)0.0406 (11)0.0693 (14)0.0073 (10)0.0192 (11)0.0018 (10)
C230.0723 (15)0.0579 (14)0.0811 (17)0.0024 (12)0.0180 (13)0.0283 (12)
C50.0667 (14)0.0741 (15)0.0440 (11)0.0095 (11)0.0158 (10)0.0007 (10)
C40.0833 (18)0.108 (2)0.0433 (12)0.0332 (17)0.0227 (12)0.0103 (13)
C20.0679 (16)0.0896 (19)0.103 (2)0.0024 (14)0.0420 (15)0.0255 (17)
C30.085 (2)0.117 (2)0.0742 (18)0.0317 (18)0.0482 (15)0.0371 (17)
C260.0888 (19)0.110 (2)0.0610 (15)0.0015 (16)0.0345 (14)0.0119 (14)
Geometric parameters (Å, º) top
O1—C191.345 (2)C8—H8A0.9700
O1—N21.446 (2)C8—H8B0.9700
O2—C191.192 (2)C14—C151.364 (4)
N1—C71.456 (2)C14—H140.9300
N1—C111.468 (2)C15—C161.360 (4)
N1—H1A0.88 (2)C15—H150.9300
C11—C121.516 (2)C17—C161.383 (3)
C11—C101.535 (3)C17—H170.9300
C11—H110.9800C16—H160.9300
N2—C91.273 (2)C1—C21.387 (3)
C20—C211.382 (3)C1—H10.9300
C20—C251.384 (3)C18—H18A0.9600
C20—C191.484 (3)C18—H18B0.9600
C10—C91.505 (3)C18—H18C0.9600
C10—C181.524 (3)C22—C231.371 (3)
C10—H100.9800C22—C211.379 (3)
C7—C61.508 (2)C22—H220.9300
C7—C81.516 (3)C21—H210.9300
C7—H70.9800C23—H230.9300
C6—C51.380 (3)C5—C41.380 (3)
C6—C11.382 (3)C5—H50.9300
C9—C81.500 (3)C4—C31.365 (4)
C12—C131.377 (3)C4—H40.9300
C12—C171.384 (3)C2—C31.366 (4)
C25—C241.386 (3)C2—H20.9300
C25—H250.9300C3—H30.9300
C24—C231.381 (3)C26—H26A0.9600
C24—C261.505 (3)C26—H26B0.9600
C13—C141.390 (3)C26—H26C0.9600
C13—H130.9300
C19—O1—N2114.49 (14)C7—C8—H8B109.5
C7—N1—C11114.11 (15)H8A—C8—H8B108.1
C7—N1—H1A106.9 (14)C15—C14—C13120.6 (2)
C11—N1—H1A107.4 (14)C15—C14—H14119.7
N1—C11—C12107.78 (15)C13—C14—H14119.7
N1—C11—C10110.62 (15)C16—C15—C14119.8 (2)
C12—C11—C10112.10 (15)C16—C15—H15120.1
N1—C11—H11108.8C14—C15—H15120.1
C12—C11—H11108.8C16—C17—C12121.0 (2)
C10—C11—H11108.8C16—C17—H17119.5
C9—N2—O1108.23 (15)C12—C17—H17119.5
C21—C20—C25119.53 (19)C15—C16—C17120.1 (2)
C21—C20—C19117.92 (18)C15—C16—H16119.9
C25—C20—C19122.50 (17)C17—C16—H16119.9
C9—C10—C18113.92 (17)C6—C1—C2120.0 (2)
C9—C10—C11110.50 (15)C6—C1—H1120.0
C18—C10—C11111.89 (18)C2—C1—H1120.0
C9—C10—H10106.7C10—C18—H18A109.5
C18—C10—H10106.7C10—C18—H18B109.5
C11—C10—H10106.7H18A—C18—H18B109.5
N1—C7—C6112.08 (16)C10—C18—H18C109.5
N1—C7—C8108.40 (16)H18A—C18—H18C109.5
C6—C7—C8109.50 (15)H18B—C18—H18C109.5
N1—C7—H7108.9C23—C22—C21120.8 (2)
C6—C7—H7108.9C23—C22—H22119.6
C8—C7—H7108.9C21—C22—H22119.6
C5—C6—C1118.31 (19)C22—C21—C20119.2 (2)
C5—C6—C7119.59 (19)C22—C21—H21120.4
C1—C6—C7121.92 (18)C20—C21—H21120.4
N2—C9—C8126.54 (17)C22—C23—C24121.2 (2)
N2—C9—C10117.54 (17)C22—C23—H23119.4
C8—C9—C10115.90 (16)C24—C23—H23119.4
C13—C12—C17118.20 (19)C4—C5—C6120.9 (2)
C13—C12—C11121.42 (18)C4—C5—H5119.5
C17—C12—C11120.36 (18)C6—C5—H5119.5
O2—C19—O1124.49 (18)C3—C4—C5120.6 (3)
O2—C19—C20125.87 (18)C3—C4—H4119.7
O1—C19—C20109.63 (15)C5—C4—H4119.7
C20—C25—C24121.6 (2)C3—C2—C1121.1 (3)
C20—C25—H25119.2C3—C2—H2119.4
C24—C25—H25119.2C1—C2—H2119.4
C23—C24—C25117.7 (2)C4—C3—C2119.0 (2)
C23—C24—C26121.6 (2)C4—C3—H3120.5
C25—C24—C26120.6 (2)C2—C3—H3120.5
C12—C13—C14120.3 (2)C24—C26—H26A109.5
C12—C13—H13119.9C24—C26—H26B109.5
C14—C13—H13119.9H26A—C26—H26B109.5
C9—C8—C7110.72 (16)C24—C26—H26C109.5
C9—C8—H8A109.5H26A—C26—H26C109.5
C7—C8—H8A109.5H26B—C26—H26C109.5
C9—C8—H8B109.5
C7—N1—C11—C12177.94 (16)C19—C20—C25—C24177.28 (19)
C7—N1—C11—C1059.2 (2)C20—C25—C24—C231.5 (3)
C19—O1—N2—C9175.23 (19)C20—C25—C24—C26178.8 (2)
N1—C11—C10—C948.2 (2)C17—C12—C13—C140.6 (3)
C12—C11—C10—C9168.54 (16)C11—C12—C13—C14179.19 (17)
N1—C11—C10—C18176.30 (18)N2—C9—C8—C7131.3 (2)
C12—C11—C10—C1863.4 (2)C10—C9—C8—C750.5 (3)
C11—N1—C7—C6176.81 (16)N1—C7—C8—C955.3 (2)
C11—N1—C7—C862.2 (2)C6—C7—C8—C9177.81 (17)
N1—C7—C6—C5157.34 (18)C12—C13—C14—C150.9 (3)
C8—C7—C6—C582.3 (2)C13—C14—C15—C161.4 (3)
N1—C7—C6—C127.6 (3)C13—C12—C17—C161.6 (3)
C8—C7—C6—C192.7 (2)C11—C12—C17—C16179.80 (19)
O1—N2—C9—C80.9 (3)C14—C15—C16—C170.4 (4)
O1—N2—C9—C10177.23 (17)C12—C17—C16—C151.1 (4)
C18—C10—C9—N28.3 (3)C5—C6—C1—C21.9 (3)
C11—C10—C9—N2135.2 (2)C7—C6—C1—C2177.0 (2)
C18—C10—C9—C8173.4 (2)C23—C22—C21—C201.3 (4)
C11—C10—C9—C846.4 (3)C25—C20—C21—C221.6 (3)
N1—C11—C12—C13117.95 (19)C19—C20—C21—C22176.0 (2)
C10—C11—C12—C13120.1 (2)C21—C22—C23—C240.4 (4)
N1—C11—C12—C1760.6 (2)C25—C24—C23—C221.7 (4)
C10—C11—C12—C1761.4 (2)C26—C24—C23—C22179.1 (2)
N2—O1—C19—O23.1 (3)C1—C6—C5—C41.1 (3)
N2—O1—C19—C20176.11 (16)C7—C6—C5—C4176.3 (2)
C21—C20—C19—O213.2 (3)C6—C5—C4—C30.3 (4)
C25—C20—C19—O2169.3 (2)C6—C1—C2—C31.2 (4)
C21—C20—C19—O1165.91 (19)C5—C4—C3—C21.0 (4)
C25—C20—C19—O111.5 (3)C1—C2—C3—C40.3 (4)
C21—C20—C25—C240.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.593.485 (3)160
Symmetry code: (i) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.593.485 (3)160.4
Symmetry code: (i) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer SAIF, IIT Madras, India, for carrying out the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrichlow, G. V., Cheng, K. F., Dabideen, D., Ochani, M., Aljabari, B., Pavlov, V. A., Miller, E. J., Lolis, E. & Al-Abed, Y. (2007). J. Biol. Chem., 282, 23089–23095.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHwu, J. R., Yang, J. R., Tsay, S. C., Hsu, M. H., Chen, Y. C. & Chou, S. S. P. (2008). Tetrahedron Lett., 49, 3312–3315.  Web of Science CrossRef CAS Google Scholar
First citationLiu, X. H., Pan, L., Tan, C. X., Weng, J. Q., Wang, B. L. & Li, Z. M. (2011). Pestic. Biochem. Physiol., pp. 101–143.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNeely, J. M. & Rovis, T. (2013). J. Am. Chem. Soc., 135, 66–69.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds