organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-3-meth­­oxy­benzaldehyde 4-ethyl­thio­semicarbazone

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão–SE, Brazil, and bInstitut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
*Correspondence e-mail: adriano@daad-alumni.de

Edited by I. Brito, University of Antofagasta, Chile (Received 15 June 2014; accepted 9 July 2014; online 17 July 2014)

In the crystal structure of the title compound, C11H15N3O2S, the C—N—N—C and C—N—C—C torsion angles involving the benzene ring and ethyl group are 11.91 (15) and 99.4 (2)°, respectively. An intra­molecular N—H⋯N hydrogen bond is observed. In the crystal, mol­ecules are linked via N—H⋯O and N—H⋯S hydrogen bonds into a three-dimensional hydrogen bonded network. Finally, the molecules show a herringbone arrangement when viewed along the a axis.

Related literature

For the synthesis and biological applications of thio­semicarbazone derivatives, see: Lovejoy & Richardson (2008[Lovejoy, D. & Richardson, D. R. (2008). The development of iron chelators for the treatment of cancer - Aroylhydrazone and thiosemicarbazone chelators for cancer treatment, pp. 1-117. Köln: Lambert Academic Publishing AG & Co. KG.]). For one of the first reports on the synthesis of thio­semicarbazone derivatives, see: Freund & Schander (1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N3O2S

  • Mr = 253.32

  • Orthorhombic, P n a 21

  • a = 8.9962 (2) Å

  • b = 16.1159 (2) Å

  • c = 8.5491 (1) Å

  • V = 1239.46 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.939, Tmax = 0.990

  • 22619 measured reflections

  • 2837 independent reflections

  • 2590 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.071

  • S = 1.01

  • 2837 reflections

  • 214 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.03 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—HO2⋯S1i 0.86 (3) 2.26 (3) 3.1144 (14) 173 (2)
N3—HN3⋯N1 0.77 (2) 2.25 (2) 2.643 (2) 112.4 (19)
N3—HN3⋯O2ii 0.77 (2) 2.43 (2) 3.023 (2) 135 (2)
N3—HN3⋯O1ii 0.77 (2) 2.52 (2) 3.061 (2) 128.3 (19)
Symmetry codes: (i) x+1, y, z-1; (ii) [-x+1, -y, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL, DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related Literature top

For Biological activities of thio­semicarbazone derivatives see Lovejoy & Richardson, 2008.

Comment top

Thiosemicarbazone derivatives have a wide range of biological properties. For example, some thiosemicarbazones show anti-proliferative activity against tumor cells (Lovejoy & Richardson, 2008). As part of our study on synthesis and structural chemistry of thiosemicarbazone derivatives from natural products, we report herein the crystal structure of a derivative of vanillin.

In the title compound, C11H15N3O2S, Fig. 1, the C-N-N-C and C–N–C–C fragments makes torsion angles of 11.91 (15)° and 99.4 (2)° with the benzene ring and ethyl group respectively. The molecule matches the asymmetric unit (Fig. 1) and shows a trans conformation at the C7—N1 and N1—N2 bonds. In the crystal structure the molecules are linked via N—H···O and O—H···S hydrogen bonds interactions into a crystal packing which shows a herringbone arrangement viewed along the a-axis,Fig.2. Additionally, one N—H···N intramolecular hydrogen bond interactions is observed, Table 1,

Related literature top

For the synthesis and biological applications of thiosemicarbazone derivatives, see: Lovejoy & Richardson (2008). For one of the first reports on the synthesis of thiosemicarbazone derivatives, see: Freund & Schander (1902).

Experimental top

Starting materials were commercially available and were used without further purification. The synthesis of the title compound was adapted to a procedure reported previously (Freund & Schander, 1902). In a hydrochloric acid catalyzed reaction, a mixture of vanillin (10 mmol) and 4-ethyl-3-thiosemicarbazide (10 mmol) in ethanol (80 ml), was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction were obtained in ethanol by the slow evaporation of solvent.

Refinement top

All hydrogen atoms were localized in a difference density Fourier map. Their positions and isotropic displacement parameters were refined.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL, DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed along the b-axis. The herringbone pattern of the crystal packing along the a-axis is observed.
4-Hydroxy-3-methoxybenzaldehyde 4-ethylthiosemicarbazone top
Crystal data top
C11H15N3O2SF(000) = 536
Mr = 253.32Dx = 1.358 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 31793 reflections
a = 8.9962 (2) Åθ = 2.9–27.5°
b = 16.1159 (2) ŵ = 0.26 mm1
c = 8.5491 (1) ÅT = 293 K
V = 1239.46 (3) Å3Prism, yellow
Z = 40.15 × 0.13 × 0.12 mm
Data collection top
Nonius Kappa CCD
diffractometer
2837 independent reflections
Radiation source: fine-focus sealed tube, Nonius KappaCCD2590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD rotation images, thick slices scansh = 1111
Absorption correction: multi-scan
(Blessing, 1995)
k = 2020
Tmin = 0.939, Tmax = 0.990l = 1111
22619 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030All H-atom parameters refined
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.3575P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2837 reflectionsΔρmax = 0.15 e Å3
214 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C11H15N3O2SV = 1239.46 (3) Å3
Mr = 253.32Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.9962 (2) ŵ = 0.26 mm1
b = 16.1159 (2) ÅT = 293 K
c = 8.5491 (1) Å0.15 × 0.13 × 0.12 mm
Data collection top
Nonius Kappa CCD
diffractometer
2837 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2590 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.990Rint = 0.050
22619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030All H-atom parameters refined
wR(F2) = 0.071Δρmax = 0.15 e Å3
S = 1.01Δρmin = 0.23 e Å3
2837 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
214 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13718 (5)0.18485 (2)0.32559 (6)0.02743 (12)
O10.63909 (13)0.01577 (7)0.84398 (16)0.0256 (3)
O20.77231 (14)0.08623 (8)1.02714 (15)0.0254 (3)
N10.21760 (16)0.15200 (8)0.58307 (17)0.0196 (3)
N20.10393 (16)0.18657 (9)0.49707 (18)0.0212 (3)
N30.03634 (18)0.05684 (9)0.41867 (19)0.0210 (3)
C10.42396 (18)0.17397 (10)0.7544 (2)0.0189 (3)
C20.47154 (19)0.09078 (10)0.7448 (2)0.0190 (3)
C30.58669 (18)0.06350 (9)0.8387 (2)0.0195 (3)
C40.65784 (18)0.11894 (11)0.9413 (2)0.0193 (3)
C50.61052 (19)0.20035 (11)0.9515 (2)0.0211 (3)
C60.49352 (18)0.22780 (10)0.8580 (2)0.0208 (3)
C70.29879 (19)0.20341 (11)0.6600 (2)0.0199 (3)
C80.00811 (18)0.13729 (10)0.4166 (2)0.0194 (3)
C90.0612 (2)0.00841 (10)0.3584 (2)0.0242 (4)
C100.1481 (2)0.04899 (14)0.4896 (2)0.0328 (4)
C110.5543 (2)0.07826 (11)0.7660 (3)0.0306 (4)
HO20.795 (3)0.1171 (16)1.105 (3)0.052 (8)*
HN20.094 (2)0.2387 (13)0.487 (2)0.019 (5)*
HN30.109 (2)0.0442 (13)0.461 (2)0.022 (5)*
H20.425 (2)0.0549 (12)0.676 (2)0.022 (5)*
H50.664 (2)0.2354 (12)1.029 (2)0.021 (5)*
H60.461 (2)0.2851 (12)0.866 (2)0.026 (5)*
H70.2793 (19)0.2637 (12)0.662 (2)0.017 (4)*
H9A0.008 (2)0.0526 (12)0.307 (2)0.023 (5)*
H9B0.129 (2)0.0134 (12)0.279 (2)0.022 (5)*
H10A0.078 (3)0.0751 (15)0.573 (3)0.047 (7)*
H10B0.212 (2)0.0056 (12)0.544 (3)0.028 (5)*
H10C0.215 (3)0.0921 (15)0.450 (3)0.046 (6)*
H11A0.604 (2)0.1297 (13)0.788 (3)0.032 (6)*
H11B0.448 (3)0.0771 (13)0.803 (3)0.038 (6)*
H11C0.553 (3)0.0652 (14)0.645 (3)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0304 (2)0.02365 (19)0.0283 (2)0.00829 (17)0.0134 (2)0.0068 (2)
O10.0267 (6)0.0195 (5)0.0305 (7)0.0043 (5)0.0100 (6)0.0047 (6)
O20.0264 (6)0.0264 (6)0.0234 (7)0.0068 (5)0.0098 (5)0.0045 (5)
N10.0187 (7)0.0211 (7)0.0190 (7)0.0021 (6)0.0033 (6)0.0017 (6)
N20.0221 (7)0.0163 (7)0.0253 (8)0.0019 (6)0.0089 (6)0.0004 (6)
N30.0207 (7)0.0180 (7)0.0244 (8)0.0002 (6)0.0054 (6)0.0001 (6)
C10.0183 (8)0.0217 (8)0.0168 (7)0.0011 (6)0.0002 (7)0.0038 (6)
C20.0181 (8)0.0205 (8)0.0182 (8)0.0023 (6)0.0014 (7)0.0012 (7)
C30.0207 (7)0.0184 (7)0.0192 (8)0.0006 (6)0.0001 (7)0.0011 (7)
C40.0191 (8)0.0235 (8)0.0154 (7)0.0009 (6)0.0022 (7)0.0021 (6)
C50.0217 (8)0.0217 (8)0.0200 (9)0.0020 (6)0.0019 (7)0.0016 (7)
C60.0209 (8)0.0188 (7)0.0226 (8)0.0005 (6)0.0008 (7)0.0013 (7)
C70.0212 (8)0.0202 (8)0.0182 (8)0.0006 (7)0.0006 (7)0.0013 (7)
C80.0208 (8)0.0213 (8)0.0162 (7)0.0021 (7)0.0002 (7)0.0015 (7)
C90.0299 (9)0.0190 (7)0.0238 (9)0.0026 (7)0.0081 (8)0.0024 (7)
C100.0321 (10)0.0347 (10)0.0316 (10)0.0121 (9)0.0042 (9)0.0003 (9)
C110.0323 (11)0.0192 (9)0.0404 (12)0.0005 (8)0.0100 (9)0.0054 (8)
Geometric parameters (Å, º) top
S1—C81.7035 (17)C2—H20.93 (2)
O1—C31.3625 (18)C3—C41.406 (2)
O1—C111.429 (2)C4—C51.382 (2)
O2—C41.370 (2)C5—C61.394 (2)
O2—HO20.86 (3)C5—H50.99 (2)
N1—C71.286 (2)C6—H60.97 (2)
N1—N21.377 (2)C7—N11.286 (2)
N2—C81.359 (2)C7—H70.988 (18)
N2—N11.377 (2)C9—C101.515 (3)
N2—HN20.85 (2)C9—H9A1.046 (19)
N3—C81.321 (2)C9—H9B0.98 (2)
N3—C91.463 (2)C10—H10A1.04 (3)
N3—HN30.77 (2)C10—H10B1.02 (2)
C1—C61.389 (2)C10—H10C0.98 (3)
C1—C21.410 (2)C11—H11A0.96 (2)
C1—C71.464 (2)C11—H11B1.00 (2)
C2—C31.382 (2)C11—H11C1.06 (3)
C3—O1—C11117.43 (14)C5—C6—H6119.1 (12)
C4—O2—HO2112.0 (18)N1—C7—C1120.67 (15)
C7—N1—N2115.75 (14)N1—C7—C1120.67 (15)
C8—N2—N1120.31 (14)N1—C7—H7122.7 (11)
C8—N2—N1120.31 (14)N1—C7—H7122.7 (11)
C8—N2—HN2117.5 (13)C1—C7—H7116.6 (11)
N1—N2—HN2122.1 (13)N3—C8—N2116.42 (15)
N1—N2—HN2122.1 (13)N3—C8—S1126.51 (13)
C8—N3—C9125.82 (15)N2—C8—S1117.07 (12)
C8—N3—HN3115.3 (16)N3—C9—C10111.04 (15)
C9—N3—HN3118.8 (16)N3—C9—H9A106.1 (10)
C6—C1—C2119.64 (15)C10—C9—H9A109.0 (11)
C6—C1—C7119.69 (15)N3—C9—H9B111.2 (11)
C2—C1—C7120.63 (15)C10—C9—H9B110.1 (11)
C3—C2—C1119.74 (15)H9A—C9—H9B109.3 (16)
C3—C2—H2120.7 (12)C9—C10—H10A111.8 (14)
C1—C2—H2119.5 (12)C9—C10—H10B109.3 (12)
O1—C3—C2125.22 (15)H10A—C10—H10B108.0 (18)
O1—C3—C4114.69 (14)C9—C10—H10C111.4 (15)
C2—C3—C4120.09 (14)H10A—C10—H10C109 (2)
O2—C4—C5124.25 (15)H10B—C10—H10C107.4 (17)
O2—C4—C3115.59 (14)O1—C11—H11A105.6 (12)
C5—C4—C3120.17 (15)O1—C11—H11B110.1 (13)
C4—C5—C6119.85 (16)H11A—C11—H11B113.4 (17)
C4—C5—H5115.7 (11)O1—C11—H11C108.9 (13)
C6—C5—H5124.4 (11)H11A—C11—H11C111.5 (19)
C1—C6—C5120.50 (15)H11B—C11—H11C107 (2)
C1—C6—H6120.4 (12)
C7—N1—N2—C8177.34 (16)C7—C1—C6—C5178.46 (16)
C6—C1—C2—C30.1 (3)C4—C5—C6—C10.0 (3)
C7—C1—C2—C3177.84 (15)N2—N1—C7—C1179.36 (15)
C11—O1—C3—C210.6 (3)C6—C1—C7—N1168.55 (16)
C11—O1—C3—C4168.32 (16)C2—C1—C7—N19.4 (3)
C1—C2—C3—O1177.64 (16)C6—C1—C7—N1168.55 (16)
C1—C2—C3—C41.2 (3)C2—C1—C7—N19.4 (3)
O1—C3—C4—O22.2 (2)C9—N3—C8—N2171.47 (17)
C2—C3—C4—O2178.86 (14)C9—N3—C8—S17.6 (3)
O1—C3—C4—C5177.30 (15)N1—N2—C8—N34.0 (2)
C2—C3—C4—C51.6 (3)N1—N2—C8—N34.0 (2)
O2—C4—C5—C6179.51 (15)N1—N2—C8—S1175.21 (13)
C3—C4—C5—C61.0 (3)N1—N2—C8—S1175.21 (13)
C2—C1—C6—C50.5 (2)C8—N3—C9—C1099.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—HO2···S1i0.86 (3)2.26 (3)3.1144 (14)173 (2)
N3—HN3···N10.77 (2)2.25 (2)2.643 (2)112.4 (19)
N3—HN3···O2ii0.77 (2)2.43 (2)3.023 (2)135 (2)
N3—HN3···O1ii0.77 (2)2.52 (2)3.061 (2)128.3 (19)
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—HO2···S1i0.86 (3)2.26 (3)3.1144 (14)173 (2)
N3—HN3···N10.77 (2)2.25 (2)2.643 (2)112.4 (19)
N3—HN3···O2ii0.77 (2)2.43 (2)3.023 (2)135 (2)
N3—HN3···O1ii0.77 (2)2.52 (2)3.061 (2)128.3 (19)
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support by the German Research Foundation (DFG) through the Collaborative Research Center SFB 813, Chemistry at Spin Centers. BRSF acknowledges the CNPq/UFS for the award of a PIBIC scholarship.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFreund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationLovejoy, D. & Richardson, D. R. (2008). The development of iron chelators for the treatment of cancer - Aroylhydrazone and thiosemicarbazone chelators for cancer treatment, pp. 1–117. Köln: Lambert Academic Publishing AG & Co. KG.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds