organic compounds
4-Hydroxy-3-methoxybenzaldehyde 4-ethylthiosemicarbazone
aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão–SE, Brazil, and bInstitut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
*Correspondence e-mail: adriano@daad-alumni.de
In the 11H15N3O2S, the C—N—N—C and C—N—C—C torsion angles involving the benzene ring and ethyl group are 11.91 (15) and 99.4 (2)°, respectively. An intramolecular N—H⋯N hydrogen bond is observed. In the crystal, molecules are linked via N—H⋯O and N—H⋯S hydrogen bonds into a three-dimensional hydrogen bonded network. Finally, the molecules show a herringbone arrangement when viewed along the a axis.
of the title compound, CKeywords: Synthesis thiosemicarbazones; biological properties of thiosemicarbazones.; crystal structure.
CCDC reference: 1013029
Related literature
For the synthesis and biological applications of thiosemicarbazone derivatives, see: Lovejoy & Richardson (2008). For one of the first reports on the synthesis of thiosemicarbazone derivatives, see: Freund & Schander (1902).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL, DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1013029
10.1107/S1600536814016018/bx2462sup1.cif
contains datablocks I, publication_text. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814016018/bx2462Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814016018/bx2462Isup3.cml
Starting materials were commercially available and were used without further purification. The synthesis of the title compound was adapted to a procedure reported previously (Freund & Schander, 1902). In a hydrochloric acid catalyzed reaction, a mixture of vanillin (10 mmol) and 4-ethyl-3-thiosemicarbazide (10 mmol) in ethanol (80 ml), was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction were obtained in ethanol by the slow evaporation of solvent.
All hydrogen atoms were localized in a difference density Fourier map. Their positions and isotropic displacement parameters were refined.
Data collection: COLLECT (Nonius, 1998); cell
HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL, DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Crystal structure of the title compound viewed along the b-axis. The herringbone pattern of the crystal packing along the a-axis is observed. |
C11H15N3O2S | F(000) = 536 |
Mr = 253.32 | Dx = 1.358 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 31793 reflections |
a = 8.9962 (2) Å | θ = 2.9–27.5° |
b = 16.1159 (2) Å | µ = 0.26 mm−1 |
c = 8.5491 (1) Å | T = 293 K |
V = 1239.46 (3) Å3 | Prism, yellow |
Z = 4 | 0.15 × 0.13 × 0.12 mm |
Nonius Kappa CCD diffractometer | 2837 independent reflections |
Radiation source: fine-focus sealed tube, Nonius KappaCCD | 2590 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
CCD rotation images, thick slices scans | h = −11→11 |
Absorption correction: multi-scan (Blessing, 1995) | k = −20→20 |
Tmin = 0.939, Tmax = 0.990 | l = −11→11 |
22619 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | All H-atom parameters refined |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0355P)2 + 0.3575P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2837 reflections | Δρmax = 0.15 e Å−3 |
214 parameters | Δρmin = −0.23 e Å−3 |
1 restraint | Absolute structure: Flack (1983), ???? Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (6) |
C11H15N3O2S | V = 1239.46 (3) Å3 |
Mr = 253.32 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 8.9962 (2) Å | µ = 0.26 mm−1 |
b = 16.1159 (2) Å | T = 293 K |
c = 8.5491 (1) Å | 0.15 × 0.13 × 0.12 mm |
Nonius Kappa CCD diffractometer | 2837 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 2590 reflections with I > 2σ(I) |
Tmin = 0.939, Tmax = 0.990 | Rint = 0.050 |
22619 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | All H-atom parameters refined |
wR(F2) = 0.071 | Δρmax = 0.15 e Å−3 |
S = 1.01 | Δρmin = −0.23 e Å−3 |
2837 reflections | Absolute structure: Flack (1983), ???? Friedel pairs |
214 parameters | Absolute structure parameter: 0.03 (6) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.13718 (5) | −0.18485 (2) | −0.32559 (6) | 0.02743 (12) | |
O1 | 0.63909 (13) | 0.01577 (7) | −0.84398 (16) | 0.0256 (3) | |
O2 | 0.77231 (14) | −0.08623 (8) | −1.02714 (15) | 0.0254 (3) | |
N1 | 0.21760 (16) | −0.15200 (8) | −0.58307 (17) | 0.0196 (3) | |
N2 | 0.10393 (16) | −0.18657 (9) | −0.49707 (18) | 0.0212 (3) | |
N3 | 0.03634 (18) | −0.05684 (9) | −0.41867 (19) | 0.0210 (3) | |
C1 | 0.42396 (18) | −0.17397 (10) | −0.7544 (2) | 0.0189 (3) | |
C2 | 0.47154 (19) | −0.09078 (10) | −0.7448 (2) | 0.0190 (3) | |
C3 | 0.58669 (18) | −0.06350 (9) | −0.8387 (2) | 0.0195 (3) | |
C4 | 0.65784 (18) | −0.11894 (11) | −0.9413 (2) | 0.0193 (3) | |
C5 | 0.61052 (19) | −0.20035 (11) | −0.9515 (2) | 0.0211 (3) | |
C6 | 0.49352 (18) | −0.22780 (10) | −0.8580 (2) | 0.0208 (3) | |
C7 | 0.29879 (19) | −0.20341 (11) | −0.6600 (2) | 0.0199 (3) | |
C8 | 0.00811 (18) | −0.13729 (10) | −0.4166 (2) | 0.0194 (3) | |
C9 | −0.0612 (2) | 0.00841 (10) | −0.3584 (2) | 0.0242 (4) | |
C10 | −0.1481 (2) | 0.04899 (14) | −0.4896 (2) | 0.0328 (4) | |
C11 | 0.5543 (2) | 0.07826 (11) | −0.7660 (3) | 0.0306 (4) | |
HO2 | 0.795 (3) | −0.1171 (16) | −1.105 (3) | 0.052 (8)* | |
HN2 | 0.094 (2) | −0.2387 (13) | −0.487 (2) | 0.019 (5)* | |
HN3 | 0.109 (2) | −0.0442 (13) | −0.461 (2) | 0.022 (5)* | |
H2 | 0.425 (2) | −0.0549 (12) | −0.676 (2) | 0.022 (5)* | |
H5 | 0.664 (2) | −0.2354 (12) | −1.029 (2) | 0.021 (5)* | |
H6 | 0.461 (2) | −0.2851 (12) | −0.866 (2) | 0.026 (5)* | |
H7 | 0.2793 (19) | −0.2637 (12) | −0.662 (2) | 0.017 (4)* | |
H9A | 0.008 (2) | 0.0526 (12) | −0.307 (2) | 0.023 (5)* | |
H9B | −0.129 (2) | −0.0134 (12) | −0.279 (2) | 0.022 (5)* | |
H10A | −0.078 (3) | 0.0751 (15) | −0.573 (3) | 0.047 (7)* | |
H10B | −0.212 (2) | 0.0056 (12) | −0.544 (3) | 0.028 (5)* | |
H10C | −0.215 (3) | 0.0921 (15) | −0.450 (3) | 0.046 (6)* | |
H11A | 0.604 (2) | 0.1297 (13) | −0.788 (3) | 0.032 (6)* | |
H11B | 0.448 (3) | 0.0771 (13) | −0.803 (3) | 0.038 (6)* | |
H11C | 0.553 (3) | 0.0652 (14) | −0.645 (3) | 0.045 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0304 (2) | 0.02365 (19) | 0.0283 (2) | −0.00829 (17) | 0.0134 (2) | −0.0068 (2) |
O1 | 0.0267 (6) | 0.0195 (5) | 0.0305 (7) | −0.0043 (5) | 0.0100 (6) | −0.0047 (6) |
O2 | 0.0264 (6) | 0.0264 (6) | 0.0234 (7) | −0.0068 (5) | 0.0098 (5) | −0.0045 (5) |
N1 | 0.0187 (7) | 0.0211 (7) | 0.0190 (7) | −0.0021 (6) | 0.0033 (6) | 0.0017 (6) |
N2 | 0.0221 (7) | 0.0163 (7) | 0.0253 (8) | −0.0019 (6) | 0.0089 (6) | 0.0004 (6) |
N3 | 0.0207 (7) | 0.0180 (7) | 0.0244 (8) | −0.0002 (6) | 0.0054 (6) | 0.0001 (6) |
C1 | 0.0183 (8) | 0.0217 (8) | 0.0168 (7) | 0.0011 (6) | −0.0002 (7) | 0.0038 (6) |
C2 | 0.0181 (8) | 0.0205 (8) | 0.0182 (8) | 0.0023 (6) | 0.0014 (7) | −0.0012 (7) |
C3 | 0.0207 (7) | 0.0184 (7) | 0.0192 (8) | −0.0006 (6) | −0.0001 (7) | 0.0011 (7) |
C4 | 0.0191 (8) | 0.0235 (8) | 0.0154 (7) | −0.0009 (6) | 0.0022 (7) | 0.0021 (6) |
C5 | 0.0217 (8) | 0.0217 (8) | 0.0200 (9) | 0.0020 (6) | 0.0019 (7) | −0.0016 (7) |
C6 | 0.0209 (8) | 0.0188 (7) | 0.0226 (8) | −0.0005 (6) | 0.0008 (7) | 0.0013 (7) |
C7 | 0.0212 (8) | 0.0202 (8) | 0.0182 (8) | 0.0006 (7) | 0.0006 (7) | 0.0013 (7) |
C8 | 0.0208 (8) | 0.0213 (8) | 0.0162 (7) | −0.0021 (7) | 0.0002 (7) | −0.0015 (7) |
C9 | 0.0299 (9) | 0.0190 (7) | 0.0238 (9) | 0.0026 (7) | 0.0081 (8) | −0.0024 (7) |
C10 | 0.0321 (10) | 0.0347 (10) | 0.0316 (10) | 0.0121 (9) | 0.0042 (9) | −0.0003 (9) |
C11 | 0.0323 (11) | 0.0192 (9) | 0.0404 (12) | −0.0005 (8) | 0.0100 (9) | −0.0054 (8) |
S1—C8 | 1.7035 (17) | C2—H2 | 0.93 (2) |
O1—C3 | 1.3625 (18) | C3—C4 | 1.406 (2) |
O1—C11 | 1.429 (2) | C4—C5 | 1.382 (2) |
O2—C4 | 1.370 (2) | C5—C6 | 1.394 (2) |
O2—HO2 | 0.86 (3) | C5—H5 | 0.99 (2) |
N1—C7 | 1.286 (2) | C6—H6 | 0.97 (2) |
N1—N2 | 1.377 (2) | C7—N1 | 1.286 (2) |
N2—C8 | 1.359 (2) | C7—H7 | 0.988 (18) |
N2—N1 | 1.377 (2) | C9—C10 | 1.515 (3) |
N2—HN2 | 0.85 (2) | C9—H9A | 1.046 (19) |
N3—C8 | 1.321 (2) | C9—H9B | 0.98 (2) |
N3—C9 | 1.463 (2) | C10—H10A | 1.04 (3) |
N3—HN3 | 0.77 (2) | C10—H10B | 1.02 (2) |
C1—C6 | 1.389 (2) | C10—H10C | 0.98 (3) |
C1—C2 | 1.410 (2) | C11—H11A | 0.96 (2) |
C1—C7 | 1.464 (2) | C11—H11B | 1.00 (2) |
C2—C3 | 1.382 (2) | C11—H11C | 1.06 (3) |
C3—O1—C11 | 117.43 (14) | C5—C6—H6 | 119.1 (12) |
C4—O2—HO2 | 112.0 (18) | N1—C7—C1 | 120.67 (15) |
C7—N1—N2 | 115.75 (14) | N1—C7—C1 | 120.67 (15) |
C8—N2—N1 | 120.31 (14) | N1—C7—H7 | 122.7 (11) |
C8—N2—N1 | 120.31 (14) | N1—C7—H7 | 122.7 (11) |
C8—N2—HN2 | 117.5 (13) | C1—C7—H7 | 116.6 (11) |
N1—N2—HN2 | 122.1 (13) | N3—C8—N2 | 116.42 (15) |
N1—N2—HN2 | 122.1 (13) | N3—C8—S1 | 126.51 (13) |
C8—N3—C9 | 125.82 (15) | N2—C8—S1 | 117.07 (12) |
C8—N3—HN3 | 115.3 (16) | N3—C9—C10 | 111.04 (15) |
C9—N3—HN3 | 118.8 (16) | N3—C9—H9A | 106.1 (10) |
C6—C1—C2 | 119.64 (15) | C10—C9—H9A | 109.0 (11) |
C6—C1—C7 | 119.69 (15) | N3—C9—H9B | 111.2 (11) |
C2—C1—C7 | 120.63 (15) | C10—C9—H9B | 110.1 (11) |
C3—C2—C1 | 119.74 (15) | H9A—C9—H9B | 109.3 (16) |
C3—C2—H2 | 120.7 (12) | C9—C10—H10A | 111.8 (14) |
C1—C2—H2 | 119.5 (12) | C9—C10—H10B | 109.3 (12) |
O1—C3—C2 | 125.22 (15) | H10A—C10—H10B | 108.0 (18) |
O1—C3—C4 | 114.69 (14) | C9—C10—H10C | 111.4 (15) |
C2—C3—C4 | 120.09 (14) | H10A—C10—H10C | 109 (2) |
O2—C4—C5 | 124.25 (15) | H10B—C10—H10C | 107.4 (17) |
O2—C4—C3 | 115.59 (14) | O1—C11—H11A | 105.6 (12) |
C5—C4—C3 | 120.17 (15) | O1—C11—H11B | 110.1 (13) |
C4—C5—C6 | 119.85 (16) | H11A—C11—H11B | 113.4 (17) |
C4—C5—H5 | 115.7 (11) | O1—C11—H11C | 108.9 (13) |
C6—C5—H5 | 124.4 (11) | H11A—C11—H11C | 111.5 (19) |
C1—C6—C5 | 120.50 (15) | H11B—C11—H11C | 107 (2) |
C1—C6—H6 | 120.4 (12) | ||
C7—N1—N2—C8 | −177.34 (16) | C7—C1—C6—C5 | 178.46 (16) |
C6—C1—C2—C3 | 0.1 (3) | C4—C5—C6—C1 | 0.0 (3) |
C7—C1—C2—C3 | −177.84 (15) | N2—N1—C7—C1 | −179.36 (15) |
C11—O1—C3—C2 | −10.6 (3) | C6—C1—C7—N1 | −168.55 (16) |
C11—O1—C3—C4 | 168.32 (16) | C2—C1—C7—N1 | 9.4 (3) |
C1—C2—C3—O1 | 177.64 (16) | C6—C1—C7—N1 | −168.55 (16) |
C1—C2—C3—C4 | −1.2 (3) | C2—C1—C7—N1 | 9.4 (3) |
O1—C3—C4—O2 | 2.2 (2) | C9—N3—C8—N2 | 171.47 (17) |
C2—C3—C4—O2 | −178.86 (14) | C9—N3—C8—S1 | −7.6 (3) |
O1—C3—C4—C5 | −177.30 (15) | N1—N2—C8—N3 | −4.0 (2) |
C2—C3—C4—C5 | 1.6 (3) | N1—N2—C8—N3 | −4.0 (2) |
O2—C4—C5—C6 | 179.51 (15) | N1—N2—C8—S1 | 175.21 (13) |
C3—C4—C5—C6 | −1.0 (3) | N1—N2—C8—S1 | 175.21 (13) |
C2—C1—C6—C5 | 0.5 (2) | C8—N3—C9—C10 | −99.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—HO2···S1i | 0.86 (3) | 2.26 (3) | 3.1144 (14) | 173 (2) |
N3—HN3···N1 | 0.77 (2) | 2.25 (2) | 2.643 (2) | 112.4 (19) |
N3—HN3···O2ii | 0.77 (2) | 2.43 (2) | 3.023 (2) | 135 (2) |
N3—HN3···O1ii | 0.77 (2) | 2.52 (2) | 3.061 (2) | 128.3 (19) |
Symmetry codes: (i) x+1, y, z−1; (ii) −x+1, −y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—HO2···S1i | 0.86 (3) | 2.26 (3) | 3.1144 (14) | 173 (2) |
N3—HN3···N1 | 0.77 (2) | 2.25 (2) | 2.643 (2) | 112.4 (19) |
N3—HN3···O2ii | 0.77 (2) | 2.43 (2) | 3.023 (2) | 135 (2) |
N3—HN3···O1ii | 0.77 (2) | 2.52 (2) | 3.061 (2) | 128.3 (19) |
Symmetry codes: (i) x+1, y, z−1; (ii) −x+1, −y, z+1/2. |
Acknowledgements
We gratefully acknowledge financial support by the German Research Foundation (DFG) through the Collaborative Research Center SFB 813, Chemistry at Spin Centers. BRSF acknowledges the CNPq/UFS for the award of a PIBIC scholarship.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606. CrossRef CAS Google Scholar
Lovejoy, D. & Richardson, D. R. (2008). The development of iron chelators for the treatment of cancer - Aroylhydrazone and thiosemicarbazone chelators for cancer treatment, pp. 1–117. Köln: Lambert Academic Publishing AG & Co. KG. Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazone derivatives have a wide range of biological properties. For example, some thiosemicarbazones show anti-proliferative activity against tumor cells (Lovejoy & Richardson, 2008). As part of our study on synthesis and structural chemistry of thiosemicarbazone derivatives from natural products, we report herein the crystal structure of a derivative of vanillin.
In the title compound, C11H15N3O2S, Fig. 1, the C-N-N-C and C–N–C–C fragments makes torsion angles of 11.91 (15)° and 99.4 (2)° with the benzene ring and ethyl group respectively. The molecule matches the asymmetric unit (Fig. 1) and shows a trans conformation at the C7—N1 and N1—N2 bonds. In the crystal structure the molecules are linked via N—H···O and O—H···S hydrogen bonds interactions into a crystal packing which shows a herringbone arrangement viewed along the a-axis,Fig.2. Additionally, one N—H···N intramolecular hydrogen bond interactions is observed, Table 1,