organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(methyl­sulfon­yl)methane

aFaculty of Pharmacy and Medical Science, University of Petra, Amman, Jordan, bDepartment of Chemistry, Faculty of Science, The University of Jordan, Amman, Jordan, and cUniversity of Tübingen, Inorganic Chemistry, Auf der Morgenstelle 18, 72076 Tübingen, Germany
*Correspondence e-mail: eyad782002@yahoo.com

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 6 June 2014; accepted 11 July 2014; online 23 July 2014)

In the title compound, C3H8O4S2, the two central S—C(H2) bond lengths are almost identical [1.781 (2) and 1.789 (2) Å]. In the crystal, each mol­ecule utilizes CH2 and CH3 bonds to form weak C—H⋯O hydrogen bonds to six other mol­ecules, thus linking mol­ecules into a three-dimensional network.

Keywords: crystal structure.

Related literature

For the structures of similar compounds, see: Berthou et al. (1972[Berthou, J., Jéminet, G. & Laurent, A. (1972). Acta Cryst. B28, 2480-2485.]); Glidewell et al. (1995[Glidewell, C., Lightfoot, P. & Patterson, I. L. J. (1995). Acta Cryst. C51, 1648-1651.], 1996[Glidewell, C., Ferguson, G., Nikas, S. & Varvoglis, A. (1996). Acta Cryst. C52, 1488-1490.]); Meehan et al. (1997[Meehan, P. R., Gregson, R. M., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. C53, 1975-1978.]); Zhang et al. (2009[Zhang, B., Chen, X., Kang, H., Sun, F., Wang, Y., Liu, J. & Wang, D. (2009). Acta Cryst. E65, o3198.]). For information of the use of the title compound in the food industry, see: Awaleh et al. (2007[Awaleh, M. O., Badia, A. & Brisse, F. (2007). Inorg. Chem. 46, 3185-3191.]); Gereben & Pusztai (2012[Gereben, O. & Pusztai, L. (2012). J. Phys. Chem. B, 116, 9114-9121.]).

[Scheme 1]

Experimental

Crystal data
  • C3H8O4S2

  • Mr = 172.21

  • Monoclinic, P 21 /n

  • a = 11.0496 (18) Å

  • b = 5.793 (3) Å

  • c = 11.0496 (6) Å

  • β = 96.77 (3)°

  • V = 702.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 173 K

  • 0.25 × 0.05 × 0.05 mm

Data collection
  • Stoe IPDS diffractometer

  • 9692 measured reflections

  • 1441 independent reflections

  • 1274 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.073

  • S = 1.10

  • 1441 reflections

  • 115 parameters

  • All H-atom parameters refined

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4i 0.94 (2) 2.55 (2) 3.342 (3) 142.3 (18)
C1—H1B⋯O4ii 0.92 (2) 2.43 (2) 3.254 (3) 149.1 (19)
C2—H2C⋯O5iii 0.89 (3) 2.51 (3) 3.365 (3) 160.3 (19)
C3—H3A⋯O6iv 0.96 (2) 2.56 (2) 3.339 (3) 138.1 (18)
C3—H3A⋯O7v 0.96 (2) 2.45 (2) 3.206 (3) 135.5 (18)
C3—H3B⋯O6vi 0.96 (2) 2.27 (2) 3.184 (3) 159.2 (19)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y+1, z; (iii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y+2, -z; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: IPDS (Stoe & Cie, 2008[Stoe & Cie (2008). IPDS, X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). IPDS, X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.]); data reduction: IPDS; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, bis (methylthio) methane (I), is an odorous constituent of truffle which considered as an essential food and industrial flavor used as a primary aromatic ingredient in the truffle oil when combined in an olive oil base (Gereben & Pusztai, 2012; Awaleh et al., 2007).

In (I) (Fig. 1), the two central C—S bond distances [1.781 (2) Å and 1.789 (2) Å] are very close to those reported by Glidewell et al. (1995) for (PhSO2)2CH2 [1.786 Å], but smaller than the corresponding distances in the (PhSO2)2CBr2 [1.863 Å] and (PhSO2)2CI)2 [1.854 Å], respectively. This fact could be attributed due to the large size of halogen atoms Br and I relative to the hydrogen atom in the prepared molecule. The S2—C3—S1 angle of 117.20 (10)° and the two O—S—O angles of 118.02 (8)° and 108.72 (9)° entirely consistent with those reported previously by Lucchi et al. (1985). The overall conformation is close to the corresponding conformations reported for similar compounds (Berthou et al., 1972; Glidewell et al., 1995).

Related literature top

For the structures of similar compounds, see: Berthou et al. (1972); Glidewell et al. (1995, 1996); Meehan et al. (1997); Zhang et al. (2009). For information of the use of the title compound in the food industry, see: Awaleh et al. (2007); Gereben & Pusztai (2012).

Experimental top

The title compound was prepared by addition of Bis (methylthio) methane (2.00 ml, 19.58 mmol) to a solution containing acetic acid (16.00 ml, 279.76 mmol) with stirring at 0°C for 15 min. After that (17.00 ml, 720 mmol) of hydrogen peroxide was added drop wise at room temperature, and then the mixture was heated for 3 h at 55°C, the whit precipitate was formed, washed with methanol and dried in vacuo. Yield after recystallization from dichloromethane / diethyl ether 2.72 g (82%), as colorless plate crystals.

Refinement top

H atoms were found on electron density map and isotropically refined.

Computing details top

Data collection: IPDS (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: IPDS (Stoe & Cie, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.
Bis(methylsulfonyl)methane top
Crystal data top
C3H8O4S2F(000) = 360
Mr = 172.21Dx = 1.629 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.0496 (18) Åθ = 5.7–16.2°
b = 5.793 (3) ŵ = 0.70 mm1
c = 11.0496 (6) ÅT = 173 K
β = 96.77 (3)°Needle, colourless
V = 702.3 (3) Å30.25 × 0.05 × 0.05 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
1274 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 26.3°, θmin = 3.7°
πhi scansh = 1313
9692 measured reflectionsk = 67
1441 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.429P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1441 reflectionsΔρmax = 0.42 e Å3
115 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (18)
Crystal data top
C3H8O4S2V = 702.3 (3) Å3
Mr = 172.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0496 (18) ŵ = 0.70 mm1
b = 5.793 (3) ÅT = 173 K
c = 11.0496 (6) Å0.25 × 0.05 × 0.05 mm
β = 96.77 (3)°
Data collection top
Stoe IPDS
diffractometer
1274 reflections with I > 2σ(I)
9692 measured reflectionsRint = 0.074
1441 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.073All H-atom parameters refined
S = 1.10Δρmax = 0.42 e Å3
1441 reflectionsΔρmin = 0.28 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16353 (4)1.01190 (7)0.35533 (4)0.01773 (15)
S20.07227 (4)1.00358 (8)0.18190 (4)0.02323 (16)
C10.11691 (19)1.2396 (3)0.44401 (18)0.0233 (4)
H1A0.033 (2)1.226 (4)0.448 (2)0.034 (6)*
H1B0.137 (2)1.376 (4)0.409 (2)0.030 (6)*
H1C0.160 (2)1.220 (4)0.524 (2)0.037 (6)*
C20.0862 (2)0.7028 (4)0.1665 (2)0.0349 (5)
H2A0.052 (2)0.634 (5)0.239 (2)0.041 (7)*
H2B0.046 (3)0.657 (5)0.099 (3)0.048 (7)*
H2C0.166 (3)0.673 (5)0.158 (2)0.049 (8)*
C30.08763 (16)1.0559 (3)0.20496 (16)0.0210 (4)
H3A0.127 (2)0.955 (4)0.153 (2)0.028 (6)*
H3B0.103 (2)1.214 (4)0.1858 (19)0.027 (6)*
O40.12487 (12)0.7950 (2)0.40149 (12)0.0254 (3)
O50.12516 (12)1.0780 (3)0.28823 (13)0.0325 (4)
O60.29086 (11)1.0408 (2)0.34274 (12)0.0248 (3)
O70.11405 (14)1.1120 (3)0.06711 (13)0.0360 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0156 (2)0.0170 (2)0.0206 (2)0.00100 (16)0.00237 (15)0.00051 (16)
S20.0151 (2)0.0293 (3)0.0248 (3)0.00225 (17)0.00043 (17)0.00117 (18)
C10.0216 (9)0.0220 (9)0.0267 (9)0.0008 (7)0.0044 (7)0.0055 (8)
C20.0240 (11)0.0325 (12)0.0479 (14)0.0070 (9)0.0031 (10)0.0062 (10)
C30.0170 (8)0.0243 (9)0.0218 (9)0.0013 (7)0.0024 (7)0.0023 (7)
O40.0295 (7)0.0196 (6)0.0273 (7)0.0003 (5)0.0047 (5)0.0038 (5)
O50.0189 (7)0.0465 (9)0.0327 (8)0.0046 (6)0.0053 (5)0.0066 (7)
O60.0145 (6)0.0274 (7)0.0325 (7)0.0017 (5)0.0019 (5)0.0021 (6)
O70.0273 (7)0.0492 (10)0.0292 (7)0.0091 (7)0.0061 (6)0.0039 (7)
Geometric parameters (Å, º) top
S1—O61.4398 (13)S2—O51.4386 (14)
S1—O41.4397 (14)S2—O71.4416 (15)
S1—C11.7563 (19)S2—C21.756 (2)
S1—C31.7889 (18)S2—C31.7811 (19)
O6—S1—O4118.02 (8)O5—S2—C2109.70 (11)
O6—S1—C1108.72 (9)O7—S2—C2109.39 (11)
O4—S1—C1109.82 (10)O5—S2—C3108.90 (9)
O6—S1—C3104.48 (8)O7—S2—C3105.13 (9)
O4—S1—C3109.10 (8)C2—S2—C3104.87 (10)
C1—S1—C3105.96 (10)S2—C3—S1117.20 (10)
O5—S2—O7117.99 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.94 (2)2.55 (2)3.342 (3)142.3 (18)
C1—H1B···O4ii0.92 (2)2.43 (2)3.254 (3)149.1 (19)
C2—H2C···O5iii0.89 (3)2.51 (3)3.365 (3)160.3 (19)
C3—H3A···O6iv0.96 (2)2.56 (2)3.339 (3)138.1 (18)
C3—H3A···O7v0.96 (2)2.45 (2)3.206 (3)135.5 (18)
C3—H3B···O6vi0.96 (2)2.27 (2)3.184 (3)159.2 (19)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z; (iii) x1/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y+2, z; (vi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.94 (2)2.55 (2)3.342 (3)142.3 (18)
C1—H1B···O4ii0.92 (2)2.43 (2)3.254 (3)149.1 (19)
C2—H2C···O5iii0.89 (3)2.51 (3)3.365 (3)160.3 (19)
C3—H3A···O6iv0.96 (2)2.56 (2)3.339 (3)138.1 (18)
C3—H3A···O7v0.96 (2)2.45 (2)3.206 (3)135.5 (18)
C3—H3B···O6vi0.96 (2)2.27 (2)3.184 (3)159.2 (19)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z; (iii) x1/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y+2, z; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the University of Petra for financial support and the University of Tübingen for technical assistance.

References

First citationAwaleh, M. O., Badia, A. & Brisse, F. (2007). Inorg. Chem. 46, 3185–3191.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBerthou, J., Jéminet, G. & Laurent, A. (1972). Acta Cryst. B28, 2480–2485.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGereben, O. & Pusztai, L. (2012). J. Phys. Chem. B, 116, 9114–9121.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGlidewell, C., Ferguson, G., Nikas, S. & Varvoglis, A. (1996). Acta Cryst. C52, 1488–1490.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlidewell, C., Lightfoot, P. & Patterson, I. L. J. (1995). Acta Cryst. C51, 1648–1651.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMeehan, P. R., Gregson, R. M., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. C53, 1975–1978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). IPDS, X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZhang, B., Chen, X., Kang, H., Sun, F., Wang, Y., Liu, J. & Wang, D. (2009). Acta Cryst. E65, o3198.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds