metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages m301-m302

Di­chlorido{(2E)-2-[phen­yl(pyridin-2-yl)methyl­­idene]hydrazinecarbo­thio­amide}cadmium(II) methanol monosolvate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com

Edited by L. Farrugia, University of Glasgow, Scotland (Received 6 June 2014; accepted 5 July 2014; online 17 July 2014)

In the title compound, [CdCl2(C13H12N4S)]·CH3OH, the coord­ination geometry of the CdII ion is slightly distorted square-pyramidal, as indicated by the τ index of 0.36 (8). The S atom, two N atoms from the pyridyl-azomethine moiety and one of the Cl atoms comprise the basal plane, while the other Cl atom occupies the apical position. The hydrazinecarbo­thio­amide moiety adopts an E conformation with respect to the azomethine bond. The solvate mol­ecule in the crystal lattice plays a major role in inter­connecting adjacent mol­ecules by means of O—H⋯Cl and N—H⋯O hydrogen-bonding inter­actions. A supra­molecular three-dimensional architecture is sustained in terms of further N—H⋯Cl and C—H⋯Cl hydrogen-bonding inter­actions.

Keywords: crystal structure.

Related literature

For metal complexes of hydrazinecarbo­thio­amide and its derivatives, see: Sreekanth et al. (2004[Sreekanth, A., Fun, H.-K. & Kurup, M. R. P. (2004). Inorg. Chem. Commun. 7, 1250-1253.]). For applications of hydrazinecarbo­thio­amides, see: Joseph et al. (2004[Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069-3080.]); Kumar et al. (2011[Kumar, S. L. A., Gopiraman, M., Kumar, M. S. & Sreekanth, A. (2011). Ind. Eng. Chem. Res. 50, 7824-7832.], 2013[Kumar, S. L. A., Kumar, M. S., Sreeja, P. B. & Sreekanth, A. (2013). Spectrochim. Acta Part A, 113, 123-129.]). For the synthesis of related compounds, see: Philip et al. (2006[Philip, V., Suni, V., Kurup, M. R. P. & Nethaji, M. (2006). Polyhedron, 25, 1931-1938.]). For related structures, see: Kunnath et al. (2012[Kunnath, R. J., Sithambaresan, M., Kurup, M. R. P., Natarajan, A. & Aravindakshan, A. A. (2012). Acta Cryst. E68, m346-m347.]). For the calculation of the τ index, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C13H12N4S)]·CH4O

  • Mr = 471.67

  • Monoclinic, P 21 /n

  • a = 7.7213 (4) Å

  • b = 12.9759 (8) Å

  • c = 18.3318 (11) Å

  • β = 95.248 (2)°

  • V = 1828.98 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.624, Tmax = 0.725

  • 13483 measured reflections

  • 4392 independent reflections

  • 3804 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 0.99

  • 4392 reflections

  • 226 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1S 0.85 (1) 2.14 (2) 2.890 (3) 148 (2)
N4—H4B⋯Cl2i 0.84 (1) 2.43 (1) 3.253 (2) 167 (3)
N3—H3′⋯O1S 0.88 (1) 2.15 (2) 2.924 (3) 147 (3)
O1S—H1′⋯Cl1ii 0.85 (1) 2.40 (2) 3.201 (3) 158 (4)
C2—H2⋯Cl1iii 0.93 2.80 3.680 (3) 159
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2008 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The importance of hydrazinecarbothioamide is increasing in various fields due to its wide range of medicinal applications (Joseph et al., 2004) and structural diversity due to their variable coordinative abilities (Sreekanth et al., 2004) arising from thioamido-thioiminol tautomerism. Moreover it also found to serve as a corrosion inhibitor on mild steel in HCl (Kumar et al., 2011). Recently a new heterocyclic hydrazinecarbothioamide has been developed as colorimetric and turn on fluorescent sensors for fluoride anion (Kumar et al., 2013).

The title complex [C13H12CdCl2N4S]·(CH4O) adopts an E configuration with respect to C6N2 bond and the tridentate ligand has its coordinating entities disposed in a cis fashion to each other (Fig. 1). The Cd atom in the complex is N,N',S chelated by the thioamido form of the hydrazinecarbothioamide ligand. The C6N2 [1.278 (3) Å] and C13=S1 [1.690 (2) Å] bond distances, very close to the formal CN and CS bond lengths respectively confirm the azomethine bond formation and the coordination via thioamido form. The coordination geometry around Cd(II) ion is almost square pyramidal (Addison et al., 1984) with a slight distortion (τ = 0.36 (8)). The S1 atom of the hydrazinecarbothioamide moiety, the imino N2 atom, pyridine N1 atom and the Cl1 atom comprise the basal plane while the apical position is occupied by the Cl2 atom (Kunnath et al., 2012). However, the deviation from the ideal square pyramidal geometry is observed by the displacement of Cd atom from the basal plane and the trans angle of the basal atoms (Table 1).

There are four classical O–H···Cl, N–H···O and N–H···Cl and one non-classical C–H···Cl intermolecular hydrogen bonding interactions (Table 1, Fig. 2). Three of the classical interactions connect two neighbouring complexes through a solvate molecule with D···A distances of 3.201 (3), 2.924 (3) and 2.890 (3) Å. The other two classical and non-classical interactions directly connect two more neighbouring molecules directly to the main molecule with D···A distances of 3.253 (2) and 3.680 (3) Å respectively. These hydrogen bonding interactions build a double layer (Fig. 3) supramolecular chain along c axis. In addition to this, there are two very weak π···π interactions present with Cg···Cg distances of greater than 4 Å. Fig. 4 shows the packing diagram of the title compound along a axis.

Related literature top

For metal complexes of hydrazinecarbothioamide and its derivatives, see: Sreekanth et al. (2004). For applications of hydrazinecarbothioamides, see: Joseph et al. (2004); Kumar et al. (2011, 2013). For the synthesis of related compounds, see: Philip et al. (2006). For related structures, see: Kunnath et al. (2012). For the calculation of the τ index, see: Addison et al. (1984).

Experimental top

The potentialy tridentate ligand (2E)-2-[phenyl(pyridin-2-yl)methylidene]hydrazinecarbothioamide was synthesized in situ by mixing equimolar methanolic solutions of phenyl(pyridin-2-yl)methanone (0.0916 g, 0.5 mmol), hydrazinecarbothioamide (0.0455 g, 0.5 mmol) and 5 drops of glacial acetic acid for 2 h. The title complex was prepared by adapting a reported procedure (Philip et al., 2006) by refluxing the above ligand solution and CdCl2·2.5H2O (0.1141 g, 0.5 mmol) for 3 h. The resulting solution was cooled at room temperature. Upon slow evaporation, yellow coloured product formed were collected, washed with few drops of methanol and dried over P4O10 in vacuo. Yellow blocked shaped single crystals of the title compound suitable for X-ray analysis were obtained by recrystallization from methanol. The compound was obtained in 56%, yield (0.1320 g).

IR (KBr, \v in cm-1): 3439, 3225, 3125, 1603, 1380, 1314, 1213, 1147, 780, 659, 560.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93–0.96 Å. H atoms were assigned Uiso(H) values of 1.2Ueq(1.5 for methyl group). H3', H1', H4A and H4B were located from a difference Fourier map and refined isotropically. Omitted owing to bad disagreement were reflections (0 1 1), (0 0 2) and (0 2 0).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2008 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Graphical representation showing hydrogen bonding interactions in the crystal structure of [C13H12CdCl2N4S]·(CH4O).
[Figure 3] Fig. 3. The hydrogen bonding interactions build a double layer progressing along c axis in the title compound.
[Figure 4] Fig. 4. A view of the unit cell along a axis.
Dichlorido{(2E)-2-[phenyl(pyridin-2-yl)methylidene]hydrazinecarbothioamide}cadmium(II) methanol monosolvate top
Crystal data top
[CdCl2(C13H12N4S)]·CH4OF(000) = 936
Mr = 471.67Dx = 1.713 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7213 (4) ÅCell parameters from 8955 reflections
b = 12.9759 (8) Åθ = 2.7–28.1°
c = 18.3318 (11) ŵ = 1.61 mm1
β = 95.248 (2)°T = 293 K
V = 1828.98 (18) Å3Block, yellow
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4392 independent reflections
Radiation source: fine-focus sealed tube3804 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.031
ω and ϕ scanθmax = 28.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 910
Tmin = 0.624, Tmax = 0.725k = 1713
13483 measured reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.2328P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.001
S = 0.99Δρmax = 0.50 e Å3
4392 reflectionsΔρmin = 0.60 e Å3
226 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.0143 (5)
Crystal data top
[CdCl2(C13H12N4S)]·CH4OV = 1828.98 (18) Å3
Mr = 471.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7213 (4) ŵ = 1.61 mm1
b = 12.9759 (8) ÅT = 293 K
c = 18.3318 (11) Å0.30 × 0.25 × 0.20 mm
β = 95.248 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3804 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.725Rint = 0.031
13483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0285 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.50 e Å3
4392 reflectionsΔρmin = 0.60 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6778 (3)0.0088 (2)0.60386 (14)0.0421 (6)
H10.64640.00120.55420.050*
C1S1.5904 (6)0.1528 (4)0.8959 (2)0.0876 (14)
H1S11.70000.18430.91160.131*
H1S21.61020.08580.87620.131*
H1S31.52230.14630.93690.131*
C20.5687 (3)0.0651 (2)0.64401 (17)0.0507 (7)
H20.46630.09310.62180.061*
C30.6140 (4)0.0790 (3)0.71739 (17)0.0526 (7)
H30.54150.11570.74580.063*
C40.7687 (3)0.0379 (2)0.74891 (15)0.0416 (6)
H40.80210.04730.79850.050*
C50.8727 (3)0.01721 (18)0.70534 (12)0.0314 (4)
C61.0420 (3)0.06173 (18)0.73536 (12)0.0306 (4)
C71.0948 (3)0.05746 (19)0.81515 (12)0.0330 (5)
C81.0602 (4)0.1385 (2)0.85957 (16)0.0522 (7)
H81.00300.19650.83970.063*
C91.1105 (5)0.1341 (3)0.93427 (17)0.0629 (9)
H91.08810.18950.96420.075*
C101.1920 (5)0.0491 (3)0.96346 (16)0.0654 (9)
H101.22260.04551.01370.078*
C111.2297 (5)0.0314 (3)0.91957 (18)0.0739 (11)
H111.28790.08890.93990.089*
C121.1816 (4)0.0279 (2)0.84519 (16)0.0557 (7)
H121.20750.08270.81540.067*
C131.3920 (3)0.18172 (19)0.65912 (12)0.0330 (5)
N10.8267 (2)0.03206 (16)0.63337 (10)0.0334 (4)
N21.1338 (2)0.10222 (16)0.68830 (10)0.0319 (4)
N31.2894 (3)0.14580 (17)0.71024 (11)0.0361 (5)
S11.33814 (8)0.17757 (6)0.56772 (3)0.03929 (15)
Cl10.87665 (9)0.10250 (6)0.44174 (3)0.04381 (16)
Cl20.88268 (9)0.29835 (6)0.61058 (4)0.04826 (16)
Cd11.00948 (2)0.13266 (2)0.56724 (2)0.03757 (8)
O1S1.5008 (3)0.2144 (2)0.84178 (12)0.0690 (7)
N41.5417 (3)0.2202 (2)0.68671 (12)0.0442 (5)
H3'1.326 (4)0.147 (2)0.7569 (7)0.051 (9)*
H1'1.469 (6)0.2722 (18)0.857 (2)0.094 (15)*
H4A1.572 (3)0.227 (2)0.7320 (6)0.041 (8)*
H4B1.618 (3)0.244 (2)0.6613 (12)0.049 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (12)0.0465 (15)0.0425 (13)0.0005 (11)0.0063 (10)0.0023 (11)
C1S0.072 (3)0.121 (4)0.068 (2)0.026 (2)0.006 (2)0.008 (2)
C20.0336 (13)0.0547 (17)0.0611 (17)0.0111 (12)0.0094 (11)0.0044 (14)
C30.0382 (14)0.0572 (18)0.0623 (17)0.0142 (12)0.0041 (12)0.0157 (15)
C40.0363 (12)0.0457 (14)0.0422 (12)0.0057 (10)0.0008 (10)0.0085 (11)
C50.0290 (10)0.0334 (12)0.0317 (10)0.0004 (9)0.0019 (8)0.0002 (9)
C60.0304 (10)0.0323 (11)0.0290 (10)0.0006 (9)0.0018 (8)0.0000 (9)
C70.0327 (11)0.0383 (13)0.0280 (10)0.0060 (9)0.0018 (8)0.0016 (9)
C80.0618 (18)0.0534 (18)0.0414 (14)0.0111 (13)0.0053 (13)0.0063 (12)
C90.077 (2)0.074 (2)0.0386 (15)0.0028 (17)0.0085 (14)0.0200 (15)
C100.084 (2)0.079 (2)0.0308 (13)0.0169 (19)0.0070 (14)0.0060 (15)
C110.109 (3)0.062 (2)0.0453 (17)0.004 (2)0.0225 (18)0.0132 (15)
C120.079 (2)0.0440 (16)0.0415 (14)0.0086 (15)0.0104 (13)0.0027 (12)
C130.0301 (11)0.0344 (12)0.0350 (11)0.0020 (9)0.0055 (9)0.0026 (9)
N10.0307 (9)0.0377 (11)0.0312 (9)0.0007 (8)0.0005 (7)0.0020 (8)
N20.0271 (9)0.0381 (10)0.0299 (9)0.0059 (8)0.0004 (7)0.0006 (8)
N30.0295 (10)0.0521 (13)0.0261 (9)0.0099 (8)0.0006 (7)0.0007 (8)
S10.0343 (3)0.0535 (4)0.0306 (3)0.0059 (3)0.0057 (2)0.0016 (3)
Cl10.0462 (3)0.0522 (4)0.0309 (3)0.0028 (3)0.0080 (2)0.0044 (3)
Cl20.0479 (4)0.0491 (4)0.0494 (3)0.0008 (3)0.0134 (3)0.0027 (3)
Cd10.03411 (11)0.05315 (14)0.02497 (10)0.00521 (7)0.00006 (6)0.00039 (7)
O1S0.0751 (15)0.091 (2)0.0399 (11)0.0034 (14)0.0001 (10)0.0176 (12)
N40.0326 (11)0.0592 (15)0.0409 (11)0.0146 (10)0.0046 (9)0.0074 (11)
Geometric parameters (Å, º) top
C1—N11.334 (3)C9—C101.356 (5)
C1—C21.378 (4)C9—H90.9300
C1—H10.9300C10—C111.366 (5)
C1S—O1S1.405 (5)C10—H100.9300
C1S—H1S10.9600C11—C121.381 (4)
C1S—H1S20.9600C11—H110.9300
C1S—H1S30.9600C12—H120.9300
C2—C31.370 (4)C13—N41.317 (3)
C2—H20.9300C13—N31.363 (3)
C3—C41.385 (4)C13—S11.690 (2)
C3—H30.9300N1—Cd12.341 (2)
C4—C51.383 (3)N2—N31.356 (3)
C4—H40.9300N2—Cd12.3690 (19)
C5—N11.349 (3)N3—H3'0.876 (10)
C5—C61.488 (3)S1—Cd12.6030 (6)
C6—N21.278 (3)Cl1—Cd12.4630 (6)
C6—C71.483 (3)Cl2—Cd12.5208 (7)
C7—C81.371 (4)O1S—H1'0.846 (10)
C7—C121.382 (4)N4—H4A0.845 (9)
C8—C91.390 (4)N4—H4B0.841 (10)
C8—H80.9300
N1—C1—C2122.7 (2)C11—C10—H10119.8
N1—C1—H1118.7C10—C11—C12120.2 (3)
C2—C1—H1118.7C10—C11—H11119.9
O1S—C1S—H1S1109.5C12—C11—H11119.9
O1S—C1S—H1S2109.5C11—C12—C7119.8 (3)
H1S1—C1S—H1S2109.5C11—C12—H12120.1
O1S—C1S—H1S3109.5C7—C12—H12120.1
H1S1—C1S—H1S3109.5N4—C13—N3114.2 (2)
H1S2—C1S—H1S3109.5N4—C13—S1121.38 (18)
C3—C2—C1118.7 (2)N3—C13—S1124.39 (17)
C3—C2—H2120.7C1—N1—C5118.7 (2)
C1—C2—H2120.7C1—N1—Cd1123.32 (17)
C2—C3—C4119.5 (3)C5—N1—Cd1117.97 (14)
C2—C3—H3120.3C6—N2—N3120.16 (19)
C4—C3—H3120.3C6—N2—Cd1119.91 (15)
C5—C4—C3118.8 (2)N3—N2—Cd1118.72 (14)
C5—C4—H4120.6N2—N3—C13119.59 (19)
C3—C4—H4120.6N2—N3—H3'120 (2)
N1—C5—C4121.6 (2)C13—N3—H3'121 (2)
N1—C5—C6116.77 (19)C13—S1—Cd199.32 (8)
C4—C5—C6121.6 (2)N1—Cd1—N268.51 (6)
N2—C6—C7124.2 (2)N1—Cd1—Cl1100.12 (5)
N2—C6—C5115.62 (19)N2—Cd1—Cl1161.25 (6)
C7—C6—C5120.20 (19)N1—Cd1—Cl292.43 (5)
C8—C7—C12119.4 (2)N2—Cd1—Cl289.01 (5)
C8—C7—C6120.4 (2)Cl1—Cd1—Cl2106.82 (2)
C12—C7—C6120.2 (2)N1—Cd1—S1139.20 (5)
C7—C8—C9120.1 (3)N2—Cd1—S173.91 (5)
C7—C8—H8120.0Cl1—Cd1—S1111.18 (2)
C9—C8—H8120.0Cl2—Cd1—S1102.39 (2)
C10—C9—C8120.0 (3)C1S—O1S—H1'114 (3)
C10—C9—H9120.0C13—N4—H4A124.5 (17)
C8—C9—H9120.0C13—N4—H4B124.1 (18)
C9—C10—C11120.4 (3)H4A—N4—H4B111 (2)
C9—C10—H10119.8
N1—C1—C2—C30.6 (5)C8—C7—C12—C111.2 (5)
C1—C2—C3—C41.1 (5)C6—C7—C12—C11179.7 (3)
C2—C3—C4—C50.7 (5)C2—C1—N1—C50.3 (4)
C3—C4—C5—N10.2 (4)C2—C1—N1—Cd1177.9 (2)
C3—C4—C5—C6178.9 (3)C4—C5—N1—C10.7 (4)
N1—C5—C6—N25.7 (3)C6—C5—N1—C1178.4 (2)
C4—C5—C6—N2173.4 (2)C4—C5—N1—Cd1177.54 (19)
N1—C5—C6—C7174.3 (2)C6—C5—N1—Cd13.3 (3)
C4—C5—C6—C76.6 (4)C7—C6—N2—N30.6 (4)
N2—C6—C7—C886.1 (3)C5—C6—N2—N3179.3 (2)
C5—C6—C7—C893.9 (3)C7—C6—N2—Cd1167.91 (17)
N2—C6—C7—C1293.0 (3)C5—C6—N2—Cd112.1 (3)
C5—C6—C7—C1287.0 (3)C6—N2—N3—C13175.0 (2)
C12—C7—C8—C90.7 (5)Cd1—N2—N3—C1317.5 (3)
C6—C7—C8—C9179.8 (3)N4—C13—N3—N2178.5 (2)
C7—C8—C9—C100.8 (5)S1—C13—N3—N20.8 (3)
C8—C9—C10—C111.8 (6)N4—C13—S1—Cd1167.7 (2)
C9—C10—C11—C121.4 (6)N3—C13—S1—Cd113.1 (2)
C10—C11—C12—C70.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1S0.85 (1)2.14 (2)2.890 (3)148 (2)
N4—H4B···Cl2i0.84 (1)2.43 (1)3.253 (2)167 (3)
N3—H3···O1S0.88 (1)2.15 (2)2.924 (3)147 (3)
O1S—H1···Cl1ii0.85 (1)2.40 (2)3.201 (3)158 (4)
C2—H2···Cl1iii0.932.803.680 (3)159
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1S0.845 (9)2.139 (15)2.890 (3)148 (2)
N4—H4B···Cl2i0.841 (10)2.427 (12)3.253 (2)167 (3)
N3—H3'···O1S0.876 (10)2.15 (2)2.924 (3)147 (3)
O1S—H1'···Cl1ii0.846 (10)2.40 (2)3.201 (3)158 (4)
C2—H2···Cl1iii0.93002.803.680 (3)159
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1.
 

Acknowledgements

AAA is grateful to the Council for Scientific and Industrial Research, New Delhi, India for the award of a Senior Research Fellowship. MRPK thanks the University Grants Commission, New Delhi, for a UGC–BSR one-time grant to faculty. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, Kochi-22, India, for the diffraction measurements and FT–IR studies.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, S. L. A., Gopiraman, M., Kumar, M. S. & Sreekanth, A. (2011). Ind. Eng. Chem. Res. 50, 7824–7832.  Web of Science CrossRef CAS Google Scholar
First citationKumar, S. L. A., Kumar, M. S., Sreeja, P. B. & Sreekanth, A. (2013). Spectrochim. Acta Part A, 113, 123–129.  Google Scholar
First citationKunnath, R. J., Sithambaresan, M., Kurup, M. R. P., Natarajan, A. & Aravindakshan, A. A. (2012). Acta Cryst. E68, m346–m347.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPhilip, V., Suni, V., Kurup, M. R. P. & Nethaji, M. (2006). Polyhedron, 25, 1931–1938.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreekanth, A., Fun, H.-K. & Kurup, M. R. P. (2004). Inorg. Chem. Commun. 7, 1250–1253.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages m301-m302
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds