organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o861-o862

(Z)-2,3-Di­chloro-1,4-bis­­(4-chloro­phen­yl)but-2-ene-1,4-dione

aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauzkhas, New Delhi 110 016, India, and bDepartment of Chemistry, St. Stephen's College, University Enclave, Delhi 110 007, India
*Correspondence e-mail: rktittaliitd@nitkkr.ac.in

Edited by L. Farrugia, University of Glasgow, Scotland (Received 9 June 2014; accepted 2 July 2014; online 11 July 2014)

The title compound, C16H8Cl4O2, crystallizes with two independent mol­ecules in the asymmetric unit. Both mol­ecules have a Z conformation around the central double bond and they show significantly different C—C—C—O torsion angles between the aromatic ring and the carbonyl group [30.1 (7) and 3.9 (7)° in one molecule and 23.5 (7) and 9.3 (8)° in the other]. The crystal packing shows short halogen Cl⋯O [3.003 (5) and 3.246 (4) Å] and Cl⋯Cl [3.452 (2) Å] contacts and aromatic C—H⋯Cl and C—H⋯O inter­actions link the molecules, resulting in chains propogating along [100]. The crystal structure also features ππ stacking inter­actions between aromatic units of the two independent mol­ecules, with a centroid–centroid distance of 3.9264 (6) Å.

Keywords: crystal structure.

Related literature

For general background and details of the synthesis, see: Clark (2002[Clark, A. J. (2002). Chem. Soc. Rev. 31, 1-11.]); Martin et al. (1985[Martin, P., Steiner, E., Streith, J., Winkler, T. & Bellus, D. (1985). Tetrahedron, 41, 4057-4078.]); Matyjaszewski & Xia (2001[Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921-2990.]); Ram & Charles (1999[Ram, R. N. & Charles, I. (1999). Chem. Commun. pp. 2267-2268.]); Ram & Kumar (2008[Ram, R. N. & Kumar, N. (2008). Tetrahedron Lett. 49, 799-802.]); Ram & Tittal (2014a[Ram, R. N. & Tittal, R. K. (2014a). Tetrahedron Lett. Submitted. http://dx.doi.org/10.1016/j.tetlet.2014.06.008 ],b[Ram, R. N. & Tittal, R. K. (2014b). Tetrahedron Lett. Submitted. http://dx.doi.org/10.1016/j.tetlet.2014.05.097 ]); Ram & Manoj (2008[Ram, R. N. & Manoj, T. P. (2008). J. Org. Chem. 73, 5633-5635.]); Ram & Meher (2003[Ram, R. N. & Meher, N. K. (2003). Org. Lett. 5, 145-147.]); Ram et al. (2007[Ram, R. N., Tittal, R. K. & Upreti, S. (2007). Tetrahedron Lett. 48, 7994-7997.]); Tomislav & Matyjaszewski (2008[Tomislav, P. T. & Matyjaszewski, K. (2008). Chem. Soc. Rev. 37, 1087-1097.]). For halogen-bond inter­actions, see: Agarwal et al. (2014[Agarwal, P., Mishra, P., Gupta, N., Neelam, , Sahoo, P. & Kumar, S. (2014). Acta Cryst. E70, o418.]); Gonnade et al. (2008[Gonnade, R. G., Bhadbhade, M. M. & Shashidhar, M. S. (2008). CrystEngComm, 10, 288-296.]); Pedireddi et al. (1992[Pedireddi, V. R., Sarma, J. A. R. P. & Desiraju, G. R. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 311-320.]). For short aromatic inteactions, see: Warad et al. (2013[Warad, I., Al-Noaimi, M., Haddad, S. F., Al-Demeri, Y. & Hammouti, B. (2013). Acta Cryst. E69, o1075.]).

[Scheme 1]

Experimental

Crystal data
  • C16H8Cl4O2

  • Mr = 374.02

  • Orthorhombic, A b a 2

  • a = 19.065 (2) Å

  • b = 28.668 (4) Å

  • c = 11.8800 (14) Å

  • V = 6493.1 (14) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 273 K

  • 0.37 × 0.28 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.782, Tmax = 0.863

  • 31827 measured reflections

  • 6044 independent reflections

  • 5194 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.145

  • S = 1.13

  • 6044 reflections

  • 397 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1939 Friedel pairs

  • Absolute structure parameter: 0.08 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl7 0.93 2.74 3.160 (5) 109
C28—H28⋯Cl2 0.93 2.72 3.191 (5) 112
C3—H3⋯O1i 0.93 2.55 3.290 (6) 137
C5—H5⋯O3ii 0.93 2.75 3.418 (6) 129
C6—H6⋯O3ii 0.93 2.91 3.502 (6) 122
C13—H13⋯O2iii 0.93 2.45 3.302 (7) 152
C29—H29⋯Cl8iv 0.93 2.81 3.645 (5) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) [x, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iv) [x, y+{\script{1\over 2}}, z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and SHELXTL.

Supporting information


Structural commentary top

Free radical reactions are intimately involved in the chemistry of tri­chloro­methyl compounds. Generation of free radicals from tri­chloro­methyl group by homolysis of a C—Cl bond is relatively easy. Free radicals can easily be generated by the action of UV-light, radical initiators or redox active metal salts or its complexes. Considerable amount of information is available in the literature on radical reactions involving tri­chloro­methyl group containing compounds. For example, the radical generated by reaction of a tri­chloro­methyl group substituted compound under non reducing condition with CuCl or its complexes with bpy or with other bi- or tridentate tertiary amine ligands readily undergo inter­molecular (Martin et al., 1985) or intra­molecular (Clark, 2002), (Ram & Kumar, 2008) addition/cyclization on to a suitably substituted carbon-carbon double bond. The formation of mono-and/or di-reduction product are also reported under non reducing conditions along with cyclization products (Ram et al., 2007). Such radicals also acts as radical initiator in atom transfer radical polymerization reactions (Tomislav & Matyjaszewski, 2008), (Matyjaszewski & Xia , 2001). However, if the carbon-carbon double bond in such radical centre is replaced by any weak or relatively better leaving group at the β-position of the radical centre, it underwent predominantly rearrangement and/or fragmentation by the inter­mediate formation of contact ion pair (Ram & Meher, 2003). It is worthwhile to mention that 2,2,2-tri­chloro­ethyl­alkyl ethers and tri­chloro­methyl carbinols having no suitably located carbon-carbon double bond or a leaving group β-position to the tri­chloro­methyl carbon underwent 1,2-H shift under similar conditions through the inter­mediacy of a copper-carbenoid species (Ram & Charles, 1999), (Ram & Manoj, 2008). In this context, we have decided to explore the behavior of the radicals derived from tri­chloro­methyl compounds which neither contains any suitably located carbon-carbon double bond nor any leaving group or any hydrogen atom at the β-position of the radical centre so as to restrict the above transformations i.e. inter­molecular or intra­molecular addition; ATRP; rearrangement and/or fragmentation or 1,2-H shift. The major product obtained under such reaction conditions is reported here. The asymmetric unit (Fig. 1) consists of the two formula units of the compound. Each formula unit adopts Z conformation about the C=C bond: C8=C9 and C24=C25. The aromatic ring of two units are nearly coplanar with a dihedral angle of 12.73° (C12—C15—C21—C18). A centroid to centroid distance of 3.9264 (6) Å between aromatic units of two independent molecules present in the asymmetric unit is observed indicating the presence of ππ stacking inter­actions (Fig. 1). The structure is stabilized by short inter­molecular C—H···Cl [3.160 (5), 3.191 (5) and 3.645 (5)Å], C—H···O [3.290 (6), 3.418 (6), 3.502 (6) and 3.302 (7)Å] inter­actions [Warad et al. (2013)] (Fig. 2). In addition, the crystal packing also features short Cl···O {O2···Cl3 [3.003 (5)] Å and O4···Cl8 [3.246 (4) Å]} and Cl2···Cl6 [3.452 (2)Å] halogen bond inter­actions (Fig. 3) (Gonnade et al., 2008), (Pedireddi et al., 1992), Agarwal et al. (2014).

Synthesis and crystallization top

A two-neck round bottom flask fitted with a rubber septum was charged with CuCl (0.8 g, 0.008mol), 2,2'-bi­pyridine (1.25 g, 0.008 mol). Nitro­gen was introduced into the flask followed by addition of 15 mL dry DCE or benzene into the flask to ensure the formation of the brown colored CuCl-bpy complex. To the reaction flask a solution of the 2,2,2-tri­chloro-1-(4-chloro-phenyl)-ethanone(0.004 mol) in dry DCE or benzene (5 mL) was added with the with the help of a syringe and the reaction mixture was heated to reflux with stirring under a slow and continuous flow of nitro­gen. After the completion of the reaction as indicated by TLC (1-2 h), the reaction mixture was cooled and filtered through a celite pad. The filtrate was evaporated under reduced pressure on a rotary evaporator and purified by column chromatography using silica gel as the solid support. A solution of n-hexane and ethyl­acetate was used as the solvent for elution to get 1 in 52 or 60 % isolated yields in DCE or benzene respectively. Suitable crystals were obtained from chloro­form/henxane. Melting point 110 °C.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed at their ideal position with C—H = 0.93 A°.

Related literature top

For general background and details of the synthesis, see: Clark (2002); Martin et al. (1985); Matyjaszewski & Xia (2001); Ram & Charles (1999); Ram & Kumar (2008); Ram & Tittal (2014a,b); Ram & Manoj (2008); Ram & Meher (2003); Ram et al. (2007); Tomislav & Matyjaszewski (2008). For halogen-bond interactions, see: Agarwal et al. (2014); Gonnade et al. (2008); Pedireddi et al. (1992). For short aromatic inteactions, see: Warad et al. (2013).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010), PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms showing π-π stacking interactions.
[Figure 2] Fig. 2. The packing diagram of the title compound showing short intermolecular halogen bond Cl···O interactions.
[Figure 3] Fig. 3. Structure of the title compound showing Cl···Cl, O···Cl, C—H···Cl and C—H···O interactions.
(Z)-2,3-Dichloro-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione top
Crystal data top
C16H8Cl4O2Dx = 1.530 Mg m3
Mr = 374.02Melting point: 383 K
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 5754 reflections
a = 19.065 (2) Åθ = 3.2–26.1°
b = 28.668 (4) ŵ = 0.73 mm1
c = 11.8800 (14) ÅT = 273 K
V = 6493.1 (14) Å3Block, colourless
Z = 160.37 × 0.28 × 0.20 mm
F(000) = 3008
Data collection top
Bruker SMART APEX CCD detector
diffractometer
6044 independent reflections
Radiation source: fine-focus sealed tube5194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 25.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2323
Tmin = 0.782, Tmax = 0.863k = 3434
31827 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0741P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
6044 reflectionsΔρmax = 0.31 e Å3
397 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1939 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (7)
Crystal data top
C16H8Cl4O2V = 6493.1 (14) Å3
Mr = 374.02Z = 16
Orthorhombic, Aba2Mo Kα radiation
a = 19.065 (2) ŵ = 0.73 mm1
b = 28.668 (4) ÅT = 273 K
c = 11.8800 (14) Å0.37 × 0.28 × 0.20 mm
Data collection top
Bruker SMART APEX CCD detector
diffractometer
6044 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5194 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.863Rint = 0.068
31827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.145Δρmax = 0.31 e Å3
S = 1.13Δρmin = 0.22 e Å3
6044 reflectionsAbsolute structure: Flack (1983), 1939 Friedel pairs
397 parametersAbsolute structure parameter: 0.08 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1802 (2)0.18216 (14)0.0202 (4)0.0441 (10)
C20.2138 (3)0.18813 (16)0.0820 (4)0.0560 (12)
H20.22570.21800.10560.067*
C30.2296 (2)0.15075 (16)0.1490 (4)0.0553 (12)
H30.25400.15490.21600.066*
C40.2091 (2)0.10726 (15)0.1158 (4)0.0479 (11)
C50.1760 (2)0.09998 (15)0.0130 (4)0.0491 (11)
H50.16310.07010.00940.059*
C60.1627 (2)0.13761 (17)0.0547 (4)0.0493 (11)
H60.14180.13320.12460.059*
C70.1635 (2)0.22072 (15)0.0995 (4)0.0458 (10)
C80.1486 (3)0.26865 (17)0.0565 (4)0.0520 (12)
C90.1600 (3)0.30479 (17)0.1200 (5)0.0584 (13)
C100.1935 (3)0.30333 (16)0.2379 (5)0.0543 (12)
C110.1455 (2)0.30832 (14)0.3351 (4)0.0471 (11)
C120.1746 (3)0.31256 (18)0.4422 (5)0.0612 (14)
H120.22310.31410.44990.073*
C130.1333 (3)0.3145 (2)0.5364 (5)0.0653 (15)
H130.15310.31720.60770.078*
C140.0618 (3)0.31252 (17)0.5223 (4)0.0595 (14)
C150.0316 (3)0.30947 (19)0.4183 (5)0.0645 (14)
H150.01690.30920.41130.077*
C160.0730 (3)0.30681 (17)0.3243 (5)0.0586 (13)
H160.05260.30400.25350.070*
C170.1304 (3)0.45602 (16)0.5455 (4)0.0494 (11)
C180.1596 (3)0.4566 (2)0.4390 (5)0.0661 (15)
H180.20720.46310.43130.079*
C190.1208 (3)0.4480 (2)0.3454 (5)0.0743 (16)
H190.14160.44840.27460.089*
C200.0506 (3)0.43870 (19)0.3565 (5)0.0653 (14)
C210.0195 (3)0.43733 (19)0.4611 (5)0.0681 (15)
H210.02800.43060.46820.082*
C220.0595 (3)0.44599 (18)0.5550 (5)0.0604 (13)
H220.03880.44510.62590.072*
C230.1738 (3)0.46744 (16)0.6438 (4)0.0543 (12)
C240.1466 (3)0.45532 (16)0.7593 (4)0.0552 (12)
C250.1170 (2)0.48387 (16)0.8325 (4)0.0514 (12)
C260.1019 (2)0.53398 (15)0.8002 (4)0.0462 (10)
C270.0991 (2)0.57237 (16)0.8868 (4)0.0459 (11)
C280.1346 (2)0.57170 (15)0.9873 (4)0.0466 (11)
H280.15940.54511.00850.056*
C290.1339 (3)0.60992 (17)1.0567 (4)0.0584 (13)
H290.15950.60971.12340.070*
C300.0961 (3)0.64784 (18)1.0281 (5)0.0671 (15)
C310.0593 (3)0.64972 (18)0.9285 (6)0.0768 (17)
H310.03350.67610.90970.092*
C320.0614 (3)0.61211 (17)0.8578 (4)0.0597 (13)
H320.03730.61310.78970.072*
Cl10.09338 (14)0.69524 (6)1.11846 (19)0.1247 (8)
Cl20.08763 (8)0.46534 (4)0.96328 (11)0.0696 (4)
Cl30.16115 (10)0.39746 (4)0.79049 (14)0.0897 (5)
Cl40.00090 (11)0.42888 (7)0.23804 (16)0.1048 (6)
Cl50.00905 (9)0.31287 (6)0.64225 (14)0.0877 (5)
Cl60.14301 (12)0.36143 (5)0.08012 (14)0.0981 (6)
Cl70.11250 (8)0.27538 (5)0.07659 (12)0.0712 (4)
Cl80.22478 (7)0.05907 (4)0.20286 (12)0.0635 (3)
O10.1630 (2)0.21511 (12)0.1997 (3)0.0657 (10)
O20.2555 (2)0.30041 (15)0.2467 (4)0.0835 (12)
O30.0931 (2)0.54208 (12)0.7004 (3)0.0653 (9)
O40.2329 (2)0.48314 (14)0.6368 (4)0.0807 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.040 (2)0.053 (3)0.0054 (18)0.001 (2)0.005 (2)
C20.072 (3)0.038 (2)0.059 (3)0.005 (2)0.006 (3)0.009 (2)
C30.063 (3)0.051 (3)0.052 (3)0.005 (2)0.010 (2)0.005 (2)
C40.039 (2)0.049 (3)0.056 (3)0.007 (2)0.009 (2)0.004 (2)
C50.048 (3)0.039 (2)0.061 (3)0.0011 (19)0.002 (2)0.007 (2)
C60.048 (3)0.054 (3)0.045 (3)0.004 (2)0.000 (2)0.003 (2)
C70.050 (3)0.043 (2)0.044 (3)0.003 (2)0.003 (2)0.005 (2)
C80.065 (3)0.044 (3)0.047 (3)0.011 (2)0.003 (2)0.004 (2)
C90.066 (3)0.044 (3)0.065 (3)0.014 (2)0.016 (3)0.014 (2)
C100.062 (3)0.037 (2)0.063 (3)0.009 (2)0.012 (3)0.004 (2)
C110.050 (3)0.037 (2)0.055 (3)0.0023 (19)0.000 (2)0.006 (2)
C120.047 (3)0.068 (3)0.069 (4)0.000 (2)0.008 (3)0.016 (3)
C130.066 (4)0.075 (4)0.054 (3)0.025 (3)0.012 (3)0.020 (3)
C140.070 (3)0.052 (3)0.056 (3)0.018 (2)0.005 (3)0.009 (2)
C150.051 (3)0.082 (4)0.061 (3)0.002 (3)0.004 (3)0.011 (3)
C160.056 (3)0.067 (3)0.053 (3)0.004 (2)0.008 (2)0.008 (2)
C170.054 (3)0.041 (3)0.052 (3)0.002 (2)0.003 (2)0.012 (2)
C180.056 (3)0.075 (4)0.067 (4)0.015 (3)0.005 (3)0.012 (3)
C190.087 (4)0.085 (4)0.051 (3)0.006 (3)0.005 (3)0.010 (3)
C200.076 (4)0.062 (3)0.058 (3)0.001 (3)0.008 (3)0.011 (3)
C210.053 (3)0.069 (3)0.082 (4)0.012 (3)0.001 (3)0.010 (3)
C220.065 (3)0.064 (3)0.053 (3)0.009 (3)0.006 (3)0.004 (3)
C230.063 (3)0.043 (3)0.058 (3)0.004 (2)0.001 (3)0.008 (2)
C240.071 (3)0.039 (3)0.055 (3)0.004 (2)0.012 (2)0.009 (2)
C250.060 (3)0.048 (3)0.047 (3)0.004 (2)0.007 (2)0.012 (2)
C260.043 (2)0.048 (3)0.047 (3)0.0041 (19)0.009 (2)0.009 (2)
C270.051 (3)0.049 (3)0.038 (2)0.006 (2)0.009 (2)0.005 (2)
C280.053 (3)0.045 (2)0.041 (2)0.009 (2)0.001 (2)0.006 (2)
C290.079 (3)0.053 (3)0.043 (3)0.003 (3)0.003 (3)0.002 (2)
C300.099 (4)0.046 (3)0.057 (3)0.014 (3)0.024 (3)0.001 (2)
C310.096 (4)0.048 (3)0.086 (4)0.036 (3)0.004 (3)0.006 (3)
C320.064 (3)0.051 (3)0.064 (3)0.016 (2)0.008 (2)0.004 (3)
Cl10.204 (2)0.0658 (10)0.1046 (15)0.0227 (12)0.0211 (15)0.0310 (10)
Cl20.1076 (11)0.0476 (6)0.0537 (8)0.0028 (7)0.0051 (7)0.0125 (6)
Cl30.1506 (14)0.0439 (7)0.0746 (10)0.0210 (8)0.0108 (11)0.0020 (7)
Cl40.1133 (14)0.1214 (15)0.0795 (11)0.0006 (11)0.0345 (10)0.0287 (10)
Cl50.0900 (10)0.1093 (13)0.0638 (9)0.0236 (9)0.0217 (8)0.0129 (9)
Cl60.1784 (18)0.0426 (7)0.0734 (10)0.0264 (9)0.0176 (11)0.0112 (7)
Cl70.0909 (10)0.0691 (8)0.0534 (7)0.0193 (7)0.0084 (7)0.0110 (6)
Cl80.0727 (8)0.0537 (7)0.0641 (8)0.0115 (6)0.0026 (7)0.0138 (6)
O10.101 (3)0.052 (2)0.044 (2)0.0158 (18)0.0010 (19)0.0062 (16)
O20.056 (2)0.114 (3)0.080 (3)0.010 (2)0.011 (2)0.006 (2)
O30.095 (3)0.055 (2)0.046 (2)0.0059 (18)0.0172 (19)0.0064 (16)
O40.063 (2)0.097 (3)0.082 (3)0.016 (2)0.002 (2)0.028 (2)
Geometric parameters (Å, º) top
C1—C61.382 (6)C17—C181.382 (7)
C1—C21.383 (7)C17—C221.386 (7)
C1—C71.487 (6)C17—C231.468 (7)
C2—C31.368 (7)C18—C191.359 (8)
C2—H20.9300C18—H180.9300
C3—C41.365 (6)C19—C201.372 (8)
C3—H30.9300C19—H190.9300
C4—C51.390 (7)C20—C211.377 (8)
C4—Cl81.751 (5)C20—Cl41.738 (6)
C5—C61.369 (7)C21—C221.374 (8)
C5—H50.9300C21—H210.9300
C6—H60.9300C22—H220.9300
C7—O11.201 (5)C23—O41.216 (6)
C7—C81.493 (6)C23—C241.508 (7)
C8—C91.299 (7)C24—C251.322 (7)
C8—Cl71.736 (5)C24—Cl31.722 (5)
C9—C101.541 (8)C25—C261.514 (6)
C9—Cl61.722 (5)C25—Cl21.735 (5)
C10—O21.190 (6)C26—O31.220 (6)
C10—C111.479 (7)C26—C271.507 (7)
C11—C161.389 (7)C27—C281.373 (7)
C11—C121.393 (7)C27—C321.390 (6)
C12—C131.369 (8)C28—C291.371 (7)
C12—H120.9300C28—H280.9300
C13—C141.375 (7)C29—C301.348 (7)
C13—H130.9300C29—H290.9300
C14—C151.366 (8)C30—C311.377 (9)
C14—Cl51.744 (6)C30—Cl11.733 (6)
C15—C161.369 (8)C31—C321.367 (8)
C15—H150.9300C31—H310.9300
C16—H160.9300C32—H320.9300
C6—C1—C2119.1 (4)C18—C17—C22118.0 (5)
C6—C1—C7116.6 (4)C18—C17—C23119.9 (5)
C2—C1—C7124.3 (4)C22—C17—C23122.1 (5)
C3—C2—C1121.0 (4)C19—C18—C17121.9 (5)
C3—C2—H2119.5C19—C18—H18119.1
C1—C2—H2119.5C17—C18—H18119.1
C4—C3—C2119.0 (5)C18—C19—C20119.2 (6)
C4—C3—H3120.5C18—C19—H19120.4
C2—C3—H3120.5C20—C19—H19120.4
C3—C4—C5121.4 (4)C19—C20—C21120.8 (5)
C3—C4—Cl8120.1 (4)C19—C20—Cl4120.3 (5)
C5—C4—Cl8118.5 (4)C21—C20—Cl4118.9 (5)
C6—C5—C4118.8 (4)C22—C21—C20119.3 (5)
C6—C5—H5120.6C22—C21—H21120.4
C4—C5—H5120.6C20—C21—H21120.4
C5—C6—C1120.6 (4)C21—C22—C17120.8 (5)
C5—C6—H6119.7C21—C22—H22119.6
C1—C6—H6119.7C17—C22—H22119.6
O1—C7—C1122.0 (4)O4—C23—C17123.4 (5)
O1—C7—C8117.4 (4)O4—C23—C24117.8 (5)
C1—C7—C8120.6 (4)C17—C23—C24118.6 (4)
C9—C8—C7120.3 (4)C25—C24—C23127.1 (4)
C9—C8—Cl7120.4 (4)C25—C24—Cl3121.6 (4)
C7—C8—Cl7119.3 (4)C23—C24—Cl3111.3 (3)
C8—C9—C10125.1 (4)C24—C25—C26120.1 (4)
C8—C9—Cl6124.1 (4)C24—C25—Cl2122.5 (4)
C10—C9—Cl6110.7 (4)C26—C25—Cl2117.1 (4)
O2—C10—C11123.6 (5)O3—C26—C27121.3 (4)
O2—C10—C9119.5 (5)O3—C26—C25116.9 (4)
C11—C10—C9116.8 (4)C27—C26—C25121.8 (4)
C16—C11—C12118.9 (5)C28—C27—C32118.8 (5)
C16—C11—C10122.7 (5)C28—C27—C26124.4 (4)
C12—C11—C10118.4 (4)C32—C27—C26116.6 (4)
C13—C12—C11121.4 (5)C29—C28—C27120.4 (4)
C13—C12—H12119.3C29—C28—H28119.8
C11—C12—H12119.3C27—C28—H28119.8
C12—C13—C14118.0 (5)C30—C29—C28119.9 (5)
C12—C13—H13121.0C30—C29—H29120.1
C14—C13—H13121.0C28—C29—H29120.1
C15—C14—C13122.0 (5)C29—C30—C31121.4 (5)
C15—C14—Cl5119.8 (4)C29—C30—Cl1119.5 (5)
C13—C14—Cl5118.2 (4)C31—C30—Cl1119.1 (4)
C14—C15—C16119.9 (5)C32—C31—C30118.8 (5)
C14—C15—H15120.0C32—C31—H31120.6
C16—C15—H15120.0C30—C31—H31120.6
C15—C16—C11119.8 (5)C31—C32—C27120.6 (5)
C15—C16—H16120.1C31—C32—H32119.7
C11—C16—H16120.1C27—C32—H32119.7
C6—C1—C2—C30.1 (7)C22—C17—C18—C190.4 (9)
C7—C1—C2—C3177.8 (4)C23—C17—C18—C19177.5 (5)
C1—C2—C3—C42.8 (8)C17—C18—C19—C200.4 (9)
C2—C3—C4—C53.6 (7)C18—C19—C20—C211.0 (9)
C2—C3—C4—Cl8176.9 (4)C18—C19—C20—Cl4178.5 (5)
C3—C4—C5—C61.3 (7)C19—C20—C21—C220.8 (9)
Cl8—C4—C5—C6179.2 (3)Cl4—C20—C21—C22178.7 (4)
C4—C5—C6—C11.7 (7)C20—C21—C22—C170.0 (8)
C2—C1—C6—C52.4 (7)C18—C17—C22—C210.6 (8)
C7—C1—C6—C5179.8 (4)C23—C17—C22—C21177.3 (5)
C6—C1—C7—O130.1 (7)C18—C17—C23—O49.3 (8)
C2—C1—C7—O1147.6 (5)C22—C17—C23—O4168.5 (5)
C6—C1—C7—C8151.7 (4)C18—C17—C23—C24165.2 (5)
C2—C1—C7—C830.5 (7)C22—C17—C23—C2417.0 (7)
O1—C7—C8—C924.3 (7)O4—C23—C24—C2584.3 (7)
C1—C7—C8—C9153.9 (5)C17—C23—C24—C25100.9 (6)
O1—C7—C8—Cl7153.0 (4)O4—C23—C24—Cl393.7 (5)
C1—C7—C8—Cl728.8 (6)C17—C23—C24—Cl381.1 (5)
C7—C8—C9—C104.4 (8)C23—C24—C25—C265.1 (8)
Cl7—C8—C9—C10178.3 (4)Cl3—C24—C25—C26177.1 (3)
C7—C8—C9—Cl6178.6 (4)C23—C24—C25—Cl2179.9 (4)
Cl7—C8—C9—Cl61.3 (7)Cl3—C24—C25—Cl22.3 (6)
C8—C9—C10—O280.1 (7)C24—C25—C26—O326.5 (7)
Cl6—C9—C10—O297.3 (5)Cl2—C25—C26—O3148.6 (4)
C8—C9—C10—C11103.2 (6)C24—C25—C26—C27152.6 (5)
Cl6—C9—C10—C1179.5 (5)Cl2—C25—C26—C2732.3 (5)
O2—C10—C11—C16173.1 (5)O3—C26—C27—C28152.0 (5)
C9—C10—C11—C1610.3 (6)C25—C26—C27—C2827.0 (7)
O2—C10—C11—C123.9 (7)O3—C26—C27—C3223.5 (7)
C9—C10—C11—C12172.7 (4)C25—C26—C27—C32157.5 (4)
C16—C11—C12—C131.0 (7)C32—C27—C28—C291.2 (7)
C10—C11—C12—C13176.1 (5)C26—C27—C28—C29174.2 (4)
C11—C12—C13—C140.4 (8)C27—C28—C29—C302.3 (8)
C12—C13—C14—C151.2 (8)C28—C29—C30—C311.7 (9)
C12—C13—C14—Cl5177.7 (4)C28—C29—C30—Cl1178.0 (4)
C13—C14—C15—C162.2 (9)C29—C30—C31—C320.1 (9)
Cl5—C14—C15—C16176.7 (4)Cl1—C30—C31—C32179.6 (5)
C14—C15—C16—C111.5 (8)C30—C31—C32—C271.0 (9)
C12—C11—C16—C150.0 (7)C28—C27—C32—C310.5 (8)
C10—C11—C16—C15177.0 (5)C26—C27—C32—C31176.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl70.932.743.160 (5)109
C28—H28···Cl20.932.723.191 (5)112
C3—H3···O1i0.932.553.290 (6)137
C5—H5···O3ii0.932.753.418 (6)129
C6—H6···O3ii0.932.913.502 (6)122
C13—H13···O2iii0.932.453.302 (7)152
C29—H29···Cl8iv0.932.813.645 (5)149
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y1/2, z1/2; (iii) x+1/2, y, z+1/2; (iv) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl70.932.743.160 (5)109
C28—H28···Cl20.932.723.191 (5)112
C3—H3···O1i0.932.553.290 (6)137
C5—H5···O3ii0.932.753.418 (6)129
C6—H6···O3ii0.932.913.502 (6)122
C13—H13···O2iii0.932.453.302 (7)152
C29—H29···Cl8iv0.932.813.645 (5)149
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y1/2, z1/2; (iii) x+1/2, y, z+1/2; (iv) x, y+1/2, z+3/2.
 

Footnotes

Present Address: Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana 136 119, India.

Acknowledgements

The authors are thankful to Shailesh Upreti for providing assistance in solving the crystal structure.

References

First citationAgarwal, P., Mishra, P., Gupta, N., Neelam, , Sahoo, P. & Kumar, S. (2014). Acta Cryst. E70, o418.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, A. J. (2002). Chem. Soc. Rev. 31, 1–11.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGonnade, R. G., Bhadbhade, M. M. & Shashidhar, M. S. (2008). CrystEngComm, 10, 288–296.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartin, P., Steiner, E., Streith, J., Winkler, T. & Bellus, D. (1985). Tetrahedron, 41, 4057–4078.  CSD CrossRef CAS Web of Science Google Scholar
First citationMatyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921–2990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPedireddi, V. R., Sarma, J. A. R. P. & Desiraju, G. R. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 311–320.  CSD CrossRef Web of Science Google Scholar
First citationRam, R. N. & Charles, I. (1999). Chem. Commun. pp. 2267–2268.  Web of Science CrossRef Google Scholar
First citationRam, R. N. & Kumar, N. (2008). Tetrahedron Lett. 49, 799–802.  Web of Science CSD CrossRef CAS Google Scholar
First citationRam, R. N. & Manoj, T. P. (2008). J. Org. Chem. 73, 5633–5635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRam, R. N. & Meher, N. K. (2003). Org. Lett. 5, 145–147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRam, R. N. & Tittal, R. K. (2014a). Tetrahedron Lett. Submitted. http://dx.doi.org/10.1016/j.tetlet.2014.06.008  Google Scholar
First citationRam, R. N. & Tittal, R. K. (2014b). Tetrahedron Lett. Submitted. http://dx.doi.org/10.1016/j.tetlet.2014.05.097  Google Scholar
First citationRam, R. N., Tittal, R. K. & Upreti, S. (2007). Tetrahedron Lett. 48, 7994–7997.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomislav, P. T. & Matyjaszewski, K. (2008). Chem. Soc. Rev. 37, 1087–1097.  Web of Science PubMed Google Scholar
First citationWarad, I., Al-Noaimi, M., Haddad, S. F., Al-Demeri, Y. & Hammouti, B. (2013). Acta Cryst. E69, o1075.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o861-o862
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds