inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diterbium hepta­nickel: a crystal structure redetermination

aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla & Mefodiya street 6, 79005 Lviv, Ukraine, and b344 Spedding Hall, Ames Laboratory, Ames, IA 50011-3020, USA
*Correspondence e-mail: v.levyckyy@gmail.com

Edited by L. Farrugia, University of Glasgow, Scotland (Received 13 June 2014; accepted 1 July 2014; online 5 July 2014)

The crystal structure of the title compound, Tb2Ni7, was redetermined from single-crystal X-ray diffraction data. In comparison with previous studies based on powder X-ray diffraction data [Lemaire et al. (1967). C. R. Acad. Sci. Ser. B, 265, 1280–1282; Lemaire & Paccard (1969). Bull. Soc. Fr. Mineral. Cristallogr. 92, 9–16; Buschow & van der Goot (1970). J. Less-Common Met. 22, 419–428], the present redetermination affords refined coordinates and anisotropic displacement parameters for all atoms. A partial occupation for one Tb atom results in the non-stoichiometric composition Tb1.962 (4)Ni7. The title compound adopts the Ce2Ni7 structure type and can also be derived from the CaCu5 structure type as an inter­growth structure. The asymmetric unit contains two Tb sites (both site symmetries 3m.) and five Ni sites (.m., mm2, 3m., 3m., -3m.). The two different coordination polyhedra of Tb are a Frank–Kasper polyhedron formed by four Tb and 12 Ni atoms and a pseudo Frank–Kasper polyhedron formed by two Tb and 18 Ni atoms. The four different coordination polyhedra of Ni are Frank–Kasper icosa­hedra formed by five Tb and seven Ni atoms, four Tb and eight Ni atoms, three Tb and nine Ni atoms, and six Tb and six Ni atoms, respectively.

Keywords: crystal structure.

Related literature

For the Ce2Ni7 structure type, see: Cromer & Larson (1959[Cromer, D. T. & Larson, A. C. (1959). Acta Cryst. 12, 855-859.]). For previous X-ray powder studies of the title compound, see: Lemaire et al. (1967[Lemaire, R., Paccard, D. & Pauthenet, R. (1967). C. R. Acad. Sci. Ser. B. 265, 1280-1282.]); Lemaire & Paccard (1969[Lemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Mineral. Cristallogr. 92, 9-16.]); Buschow & van der Goot (1970[Buschow, K. H. J. & van der Goot, A. S. (1970). J. Less-Common Met. 22, 419-428.]). For related compounds, see: Bertaut et al. (1965[Bertaut, E. F., Lemaire, R. & Schweizer, J. (1965). Bull. Soc. Fr. Mineral. Cristallogr. 88, 580-585.]); Virkar & Raman (1969[Virkar, A. V. & Raman, A. (1969). J. Less-Common Met. 18, 59-66.]); Buschow & van der Goot (1970[Buschow, K. H. J. & van der Goot, A. S. (1970). J. Less-Common Met. 22, 419-428.]); Paul-Boncour et al. (2006[Paul-Boncour, V., Lindbaum, A., Latroche, M. & Heathman, S. (2006). Intermetallics, 14, 483-490.]); Levytskyy et al. (2012[Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012). Acta Cryst. E68, i20.]). For inter­growth structures, see: Parthé et al. (1985[Parthé, E., Chabot, B. A. & Censual, K. (1985). Chimia, 39, 164-174.]); Grin (1992[Grin, Yu. (1992). Modern Perspectives in Inorganic Crystal Chemistry, edited by E. Parthé, pp. 77-95. Dordrecht: Kluwer Academic Publishers.]). For standardization of crystal structure data, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Experimental

Crystal data
  • Tb1.96Ni7

  • Mr = 722.72

  • Hexagonal, P 63 /m m c

  • a = 4.944 (1) Å

  • c = 24.129 (6) Å

  • V = 510.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 51.78 mm−1

  • T = 293 K

  • 0.05 × 0.04 × 0.04 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.50, Tmax = 0.74

  • 7652 measured reflections

  • 422 independent reflections

  • 313 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.041

  • S = 1.07

  • 422 reflections

  • 27 parameters

  • Δρmax = 1.51 e Å−3

  • Δρmin = −1.76 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A lot of works have been published about R2Ni7 stoichiometry compounds (R = rare earth element) (see, Lemaire et al., 1967; Lemaire & Paccard, 1969; Virkar & Raman, 1969; Buschow & van der Goot, 1970) with either β-Gd2Co7 (Bertaut et al., 1965) or Ce2Ni7 (Cromer & Larson, 1959) structure types. According to Virkar & Raman (1969) the high-temperature modifications adopt the rhombohedral β-Gd2Co7 type structure whereas the low-temperature phases are isomorphic with Ce2Ni7. On the other hand, Lemaire et al. (1967) observed the coexistence of both modifications even in annealed at 1373 K samples for Pr2Ni7, Nd2Ni7, Gd2Ni7, Tb2Ni7, and Dy2Ni7. Buschow & van der Goot (1970) investigated series of R2Ni7 compounds and concluded the crystal structures of the R2Ni7 compounds are dependent on the R atom size. The transformation between these two polymorphic forms is of a martensitic type.

Our research work mainly deals with the heavy rare earth – transition metal (RT) systems. And the crystal structures of the compounds forming in such systems are of the most interest. Investigation of the Tb–Ni system at 1070 K resulted in good agreement with the literature data for unit cell parameters for all compounds obtained from powder X-ray diffraction using starting coordinates of appropriate structure types. It was noted there is no any information in literature about crystal structure refinement of heavy rare earth R2Ni7 compounds. Our recent work was devoted to the refinement of the Dy2Ni7 compound, which crystal stucture is isomorphous with β-Gd2Co7 (see, Levytskyy et al., 2012). In present study the crystal structure of Tb2Ni7 was redetermined with high accurracy using single-crystal X-ray method.

The structure is characterized by two independent terbium atom sites (both 4f Wyckoff positions) and five nickel atom sites (12k, 6h, 4f, 4e and 2a). The unit cell of diterbium heptanickel is shown in Fig. 1. The structure may be viewed as staking of RT5 blocks corresponding to the CaCu5-type and R2T4 blocks corresponding to the MgCu2-type structures. The presence of the same Kagome net in the structure types of CaCu5 and the Laves phase MgCu2 allows a combination of both structural motifs along the 63 screw axis giving an intergrowth structure: 4RT5 + 2R2T4 = 4R2T7 (Parthé et al., 1985; Grin, 1992).

In Fig. 2 the ab projection of the unit cell and the coordination polyhedra for all atom types are shown. The coordination number for all Ni atoms is 12. The coordination polyhedra are Frank–Kasper icosahedra. The Ni1 atom (Wyckoff site 12k, site symmetry. m.) is surrounded by 5 Tb atoms and 7 Ni atoms. The Ni2 atom (Wyckoff site 6h, site symmetry mm2) is surrounded by 4 Tb atoms and 8 Ni atoms. The Ni3 and Ni4 atoms (Wyckof sites 4f and 4e, site symmetries 3m.) are surrounded by 3 Tb atoms and 9 Ni atoms. The Ni5 (Wyckoff site 2a, site symmetry 3m.) is surrounded by 6 Tb and 6 Ni atoms. The coordination polyhedra for Tb1 and Tb2 atoms (Wyckoff sites 4f, site symmetries 3m.) are a Frank–Kasper polyhedron (coordination number 16) and a pseudo Frank–Kasper polyhedron (coordination number 20), respectively. The Tb1 atom is surrounded by 4 Tb atoms and 12 Ni atoms. The Tb2 atom is surrounded by 2 Tb atoms and 18 Ni atoms.

Related literature top

For the Ce2Ni7 structure type, see: Cromer & Larson (1959). For previous X-ray powder studies of the title compound, see: Lemaire et al. (1967); Lemaire & Paccard (1969); Buschow & van der Goot (1970). For related compounds, see: Bertaut et al. (1965); Virkar & Raman (1969); Buschow & van der Goot (1970); Paul-Boncour et al. (2006); Levytskyy et al. (2012). For intergrowth structures, see: Parthé et al. (1985); Grin (1992). For standardization of crystal structure data, see: Gelato & Parthé (1987).

Experimental top

The sample was prepared from powdered commercially available pure elements: sublimed bulk pieces of terbium metal with a claimed purity of 99.9 at.% (Strem Chemicals) and 99.99% pure nickel powder (Aldrich Chem. Inc.). A mixture of the powders was compacted into a pellet. It was arc-melted under an argon atmosphere on a water-cooled copper hearth. The alloy button (~1 g) was turned over and remelted three times to improve homogeneity. Subsequently, the sample was annealed in an evacuated silica tube for four weeks at 1070 K. Shiny metallic gray prysmatic shaped crystals were isolated mechanically from crushed sample with a help of microscope.

Refinement top

The atomic positions found from the direct methods structure solution were in good agreement with those from the Ce2Ni7 structure type (Cromer & Larson, 1959) and were used as starting point for the structure refinement. An increased value of isotropic thermal parameter for Tb1 atom was observed. Refined occupation of the site is 96.2 (4)% resulting in composition Tb1.962 (4)Ni7. Interatomic distances Tb1–Tb1 (in R2T4 blocks) are slightly decreased (3.173 (1) Å) and correlate with those observed in Tb1 - xNi2 (3.11 Å) (Paul-Boncour et al., 2006). Atomic positions were standardized using program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest Fourier difference peak of 1.51 e·Å-3 is at (1/3 2/3 0.041) and 1.68 Å away from Tb1 atom. The deepest hole (-1.76 e·Å-3) is at (2/3 1/3 0.199) and 0.62 Å away from Tb2 atom.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the crystal structure of Tb2Ni7. The unit cell and the blocks of RT5 and R2T4 are emphasized. Atoms are represented by their anisotropic displacement ellipsoids at the 99.99% probability level
[Figure 2] Fig. 2. The ab projection of the unit cell and coordination polyhedra for all types of atoms in the Tb2Ni7 structure
Diterbium heptanickel top
Crystal data top
Tb1.96Ni7Dx = 9.398 Mg m3
Mr = 722.72Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 7652 reflections
a = 4.944 (1) Åθ = 1.7–32.8°
c = 24.129 (6) ŵ = 51.78 mm1
V = 510.8 (2) Å3T = 293 K
Z = 4Irregular, fragment, metallic gray
F(000) = 12940.05 × 0.04 × 0.04 mm
Data collection top
Bruker SMART CCD
diffractometer
313 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
ω scansθmax = 32.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 77
Tmin = 0.50, Tmax = 0.74k = 77
7652 measured reflectionsl = 3635
422 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0109P)2 + 2.7514P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.001
wR(F2) = 0.041Δρmax = 1.51 e Å3
S = 1.07Δρmin = 1.76 e Å3
422 reflectionsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
27 parametersExtinction coefficient: 0.00061 (6)
Crystal data top
Tb1.96Ni7Z = 4
Mr = 722.72Mo Kα radiation
Hexagonal, P63/mmcµ = 51.78 mm1
a = 4.944 (1) ÅT = 293 K
c = 24.129 (6) Å0.05 × 0.04 × 0.04 mm
V = 510.8 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
313 reflections with I > 2σ(I)
Tmin = 0.50, Tmax = 0.74Rint = 0.073
7652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02527 parameters
wR(F2) = 0.0410 restraints
S = 1.07Δρmax = 1.51 e Å3
422 reflectionsΔρmin = 1.76 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.16717 (13)0.3343 (3)0.08560 (3)0.0076 (2)
Ni20.1665 (2)0.3330 (4)0.25000.0076 (3)
Ni30.33330.66670.16728 (6)0.0088 (3)
Tb10.33330.66670.52871 (2)0.0108 (2)0.962 (4)
Tb20.33330.66670.67352 (2)0.00849 (16)
Ni40.00000.00000.16750 (6)0.0089 (3)
Ni50.00000.00000.00000.0081 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0082 (4)0.0065 (4)0.0073 (4)0.0033 (2)0.0001 (2)0.0002 (4)
Ni20.0096 (5)0.0067 (6)0.0055 (5)0.0033 (3)0.0000.000
Ni30.0111 (5)0.0111 (5)0.0044 (7)0.0055 (2)0.0000.000
Tb10.0114 (3)0.0114 (3)0.0098 (3)0.00568 (13)0.0000.000
Tb20.0083 (2)0.0083 (2)0.0090 (3)0.00413 (10)0.0000.000
Ni40.0103 (5)0.0103 (5)0.0060 (7)0.0052 (3)0.0000.000
Ni50.0100 (8)0.0100 (8)0.0043 (9)0.0050 (4)0.0000.000
Geometric parameters (Å, º) top
Ni1—Ni32.4309 (15)Tb1—Ni1xviii2.8274 (7)
Ni1—Ni42.4403 (15)Tb1—Ni5xv2.9373 (6)
Ni1—Ni1i2.465 (2)Tb1—Ni5xix2.9373 (6)
Ni1—Ni1ii2.465 (2)Tb1—Ni5xvii2.9373 (6)
Ni1—Ni1iii2.479 (2)Tb1—Ni1xx3.1036 (12)
Ni1—Ni1iv2.479 (2)Tb1—Ni1vii3.1036 (12)
Ni1—Ni52.5129 (10)Tb1—Ni1xxi3.1036 (12)
Ni1—Tb1v2.8274 (7)Tb2—Ni4xv2.8581 (6)
Ni1—Tb1vi2.8275 (7)Tb2—Ni4xix2.8581 (6)
Ni1—Tb1vii3.1036 (12)Tb2—Ni4xvii2.8581 (6)
Ni1—Tb2v3.2576 (8)Tb2—Ni3xvii2.8584 (6)
Ni1—Tb2vi3.2576 (8)Tb2—Ni3xv2.8584 (6)
Ni2—Ni4vii2.4485 (16)Tb2—Ni3xxii2.8584 (6)
Ni2—Ni42.4486 (16)Tb2—Ni2xxiii3.0848 (6)
Ni2—Ni3vii2.4545 (16)Tb2—Ni2xxiv3.0848 (6)
Ni2—Ni32.4545 (16)Tb2—Ni2viii3.0848 (6)
Ni2—Ni2iii2.470 (3)Tb2—Ni2xxv3.0849 (6)
Ni2—Ni2iv2.470 (3)Tb2—Ni2ix3.0849 (6)
Ni2—Ni2i2.474 (3)Tb2—Ni2xxvi3.0849 (6)
Ni2—Ni2ii2.474 (3)Ni4—Ni1iii2.4403 (15)
Ni2—Tb2viii3.0848 (6)Ni4—Ni1iv2.4403 (15)
Ni2—Tb2v3.0848 (6)Ni4—Ni2iv2.4486 (16)
Ni2—Tb2vi3.0848 (6)Ni4—Ni2iii2.4486 (16)
Ni2—Tb2ix3.0848 (6)Ni4—Ni3xxvii2.8544 (6)
Ni3—Ni1i2.4310 (15)Ni4—Ni3xxviii2.8544 (6)
Ni3—Ni1ii2.4310 (15)Ni4—Tb2v2.8581 (6)
Ni3—Ni2i2.4545 (16)Ni4—Tb2xxix2.8581 (6)
Ni3—Ni2ii2.4545 (16)Ni4—Tb2vi2.8581 (6)
Ni3—Ni4x2.8544 (6)Ni5—Ni1xxx2.5129 (10)
Ni3—Ni4xi2.8544 (6)Ni5—Ni1xxxi2.5129 (10)
Ni3—Ni42.8544 (6)Ni5—Ni1iv2.5129 (10)
Ni3—Tb2v2.8584 (6)Ni5—Ni1iii2.5129 (10)
Ni3—Tb2xii2.8584 (6)Ni5—Ni1xxxii2.5129 (10)
Ni3—Tb2vi2.8584 (6)Ni5—Tb1xxxiii2.9373 (6)
Tb1—Ni1xiii2.8274 (7)Ni5—Tb1v2.9373 (6)
Tb1—Ni1xiv2.8274 (7)Ni5—Tb1vii2.9373 (6)
Tb1—Ni1xv2.8274 (7)Ni5—Tb1xxix2.9373 (6)
Tb1—Ni1xvi2.8274 (7)Ni5—Tb1vi2.9373 (6)
Tb1—Ni1xvii2.8274 (7)Ni5—Tb1xxxiv2.9373 (6)
Ni3—Ni1—Ni471.74 (4)Ni1xviii—Tb1—Ni5xvii96.49 (2)
Ni3—Ni1—Ni1i59.54 (3)Ni5xv—Tb1—Ni5xvii114.616 (9)
Ni4—Ni1—Ni1i120.53 (3)Ni5xix—Tb1—Ni5xvii114.617 (9)
Ni3—Ni1—Ni1ii59.54 (3)Ni1xiii—Tb1—Ni1xx115.511 (19)
Ni4—Ni1—Ni1ii120.53 (3)Ni1xiv—Tb1—Ni1xx94.85 (3)
Ni1i—Ni1—Ni1ii60.0Ni1xv—Tb1—Ni1xx94.85 (3)
Ni3—Ni1—Ni1iii120.46 (3)Ni1xvi—Tb1—Ni1xx115.511 (19)
Ni4—Ni1—Ni1iii59.47 (3)Ni1xvii—Tb1—Ni1xx141.157 (16)
Ni1i—Ni1—Ni1iii120.0Ni1xviii—Tb1—Ni1xx141.157 (16)
Ni1ii—Ni1—Ni1iii180.0Ni5xv—Tb1—Ni1xx49.07 (2)
Ni3—Ni1—Ni1iv120.46 (3)Ni5xix—Tb1—Ni1xx90.753 (19)
Ni4—Ni1—Ni1iv59.47 (3)Ni5xvii—Tb1—Ni1xx90.753 (19)
Ni1i—Ni1—Ni1iv180.0Ni1xiii—Tb1—Ni1vii141.157 (16)
Ni1ii—Ni1—Ni1iv120.0Ni1xiv—Tb1—Ni1vii141.157 (16)
Ni1iii—Ni1—Ni1iv60.0Ni1xv—Tb1—Ni1vii115.511 (19)
Ni3—Ni1—Ni5178.90 (5)Ni1xvi—Tb1—Ni1vii94.85 (3)
Ni4—Ni1—Ni5109.36 (5)Ni1xvii—Tb1—Ni1vii115.511 (19)
Ni1i—Ni1—Ni5119.56 (2)Ni1xviii—Tb1—Ni1vii94.85 (3)
Ni1ii—Ni1—Ni5119.56 (2)Ni5xv—Tb1—Ni1vii90.753 (18)
Ni1iii—Ni1—Ni560.44 (2)Ni5xix—Tb1—Ni1vii49.07 (2)
Ni1iv—Ni1—Ni560.44 (2)Ni5xvii—Tb1—Ni1vii90.753 (19)
Ni3—Ni1—Tb1v113.23 (3)Ni1xx—Tb1—Ni1vii46.79 (4)
Ni4—Ni1—Tb1v113.09 (3)Ni1xiii—Tb1—Ni1xxi94.85 (3)
Ni1i—Ni1—Tb1v116.01 (2)Ni1xiv—Tb1—Ni1xxi115.511 (19)
Ni1ii—Ni1—Tb1v64.16 (2)Ni1xv—Tb1—Ni1xxi141.157 (16)
Ni1iii—Ni1—Tb1v115.84 (2)Ni1xvi—Tb1—Ni1xxi141.157 (16)
Ni1iv—Ni1—Tb1v63.99 (2)Ni1xvii—Tb1—Ni1xxi94.85 (3)
Ni5—Ni1—Tb1v66.43 (2)Ni1xviii—Tb1—Ni1xxi115.511 (19)
Ni3—Ni1—Tb1vi113.23 (3)Ni5xv—Tb1—Ni1xxi90.753 (19)
Ni4—Ni1—Tb1vi113.09 (3)Ni5xix—Tb1—Ni1xxi90.753 (18)
Ni1i—Ni1—Tb1vi64.16 (2)Ni5xvii—Tb1—Ni1xxi49.07 (2)
Ni1ii—Ni1—Tb1vi116.01 (2)Ni1xx—Tb1—Ni1xxi46.79 (4)
Ni1iii—Ni1—Tb1vi63.99 (2)Ni1vii—Tb1—Ni1xxi46.79 (4)
Ni1iv—Ni1—Tb1vi115.84 (2)Ni4xv—Tb2—Ni4xix119.744 (6)
Ni5—Ni1—Tb1vi66.43 (2)Ni4xv—Tb2—Ni4xvii119.744 (6)
Tb1v—Ni1—Tb1vi121.92 (4)Ni4xix—Tb2—Ni4xvii119.744 (6)
Ni3—Ni1—Tb1vii116.89 (5)Ni4xv—Tb2—Ni3xvii174.07 (5)
Ni4—Ni1—Tb1vii171.37 (5)Ni4xix—Tb2—Ni3xvii59.912 (1)
Ni1i—Ni1—Tb1vii66.606 (18)Ni4xvii—Tb2—Ni3xvii59.912 (1)
Ni1ii—Ni1—Tb1vii66.606 (18)Ni4xv—Tb2—Ni3xv59.911 (2)
Ni1iii—Ni1—Tb1vii113.392 (18)Ni4xix—Tb2—Ni3xv59.912 (2)
Ni1iv—Ni1—Tb1vii113.392 (18)Ni4xvii—Tb2—Ni3xv174.07 (5)
Ni5—Ni1—Tb1vii62.01 (2)Ni3xvii—Tb2—Ni3xv119.726 (6)
Tb1v—Ni1—Tb1vii64.488 (19)Ni4xv—Tb2—Ni3xxii59.911 (2)
Tb1vi—Ni1—Tb1vii64.490 (19)Ni4xix—Tb2—Ni3xxii174.07 (5)
Ni3—Ni1—Tb2v58.178 (19)Ni4xvii—Tb2—Ni3xxii59.912 (1)
Ni4—Ni1—Tb2v58.115 (19)Ni3xvii—Tb2—Ni3xxii119.726 (6)
Ni1i—Ni1—Tb2v112.369 (19)Ni3xv—Tb2—Ni3xxii119.725 (6)
Ni1ii—Ni1—Tb2v67.774 (19)Ni4xv—Tb2—Ni2xxiii48.48 (3)
Ni1iii—Ni1—Tb2v112.228 (19)Ni4xix—Tb2—Ni2xxiii136.32 (4)
Ni1iv—Ni1—Tb2v67.632 (19)Ni4xvii—Tb2—Ni2xxiii91.77 (4)
Ni5—Ni1—Tb2v122.31 (3)Ni3xvii—Tb2—Ni2xxiii136.45 (4)
Tb1v—Ni1—Tb2v69.68 (2)Ni3xv—Tb2—Ni2xxiii91.78 (4)
Tb1vi—Ni1—Tb2v168.40 (3)Ni3xxii—Tb2—Ni2xxiii48.60 (3)
Tb1vii—Ni1—Tb2v125.41 (2)Ni4xv—Tb2—Ni2xxiv91.77 (4)
Ni3—Ni1—Tb2vi58.179 (19)Ni4xix—Tb2—Ni2xxiv48.48 (3)
Ni4—Ni1—Tb2vi58.115 (19)Ni4xvii—Tb2—Ni2xxiv136.32 (4)
Ni1i—Ni1—Tb2vi67.773 (19)Ni3xvii—Tb2—Ni2xxiv91.78 (4)
Ni1ii—Ni1—Tb2vi112.370 (19)Ni3xv—Tb2—Ni2xxiv48.60 (3)
Ni1iii—Ni1—Tb2vi67.632 (19)Ni3xxii—Tb2—Ni2xxiv136.45 (4)
Ni1iv—Ni1—Tb2vi112.228 (19)Ni2xxiii—Tb2—Ni2xxiv87.891 (17)
Ni5—Ni1—Tb2vi122.31 (3)Ni4xv—Tb2—Ni2viii136.32 (4)
Tb1v—Ni1—Tb2vi168.40 (3)Ni4xix—Tb2—Ni2viii91.77 (4)
Tb1vi—Ni1—Tb2vi69.68 (2)Ni4xvii—Tb2—Ni2viii48.48 (3)
Tb1vii—Ni1—Tb2vi125.41 (2)Ni3xvii—Tb2—Ni2viii48.60 (3)
Tb2v—Ni1—Tb2vi98.72 (3)Ni3xv—Tb2—Ni2viii136.45 (4)
Ni4vii—Ni2—Ni4108.77 (8)Ni3xxii—Tb2—Ni2viii91.78 (4)
Ni4vii—Ni2—Ni3vii71.21 (3)Ni2xxiii—Tb2—Ni2viii87.891 (17)
Ni4—Ni2—Ni3vii179.98 (5)Ni2xxiv—Tb2—Ni2viii87.891 (17)
Ni4vii—Ni2—Ni3179.98 (11)Ni4xv—Tb2—Ni2xxv91.77 (4)
Ni4—Ni2—Ni371.21 (3)Ni4xix—Tb2—Ni2xxv136.32 (4)
Ni3vii—Ni2—Ni3108.81 (8)Ni4xvii—Tb2—Ni2xxv48.48 (3)
Ni4vii—Ni2—Ni2iii59.71 (3)Ni3xvii—Tb2—Ni2xxv91.78 (4)
Ni4—Ni2—Ni2iii59.72 (3)Ni3xv—Tb2—Ni2xxv136.45 (4)
Ni3vii—Ni2—Ni2iii120.27 (3)Ni3xxii—Tb2—Ni2xxv48.60 (3)
Ni3—Ni2—Ni2iii120.27 (3)Ni2xxiii—Tb2—Ni2xxv47.29 (6)
Ni4vii—Ni2—Ni2iv59.71 (3)Ni2xxiv—Tb2—Ni2xxv106.52 (2)
Ni4—Ni2—Ni2iv59.72 (3)Ni2viii—Tb2—Ni2xxv47.19 (6)
Ni3vii—Ni2—Ni2iv120.27 (3)Ni4xv—Tb2—Ni2ix48.48 (3)
Ni3—Ni2—Ni2iv120.27 (3)Ni4xix—Tb2—Ni2ix91.77 (4)
Ni2iii—Ni2—Ni2iv60.0Ni4xvii—Tb2—Ni2ix136.32 (4)
Ni4vii—Ni2—Ni2i120.29 (3)Ni3xvii—Tb2—Ni2ix136.45 (4)
Ni4—Ni2—Ni2i120.28 (3)Ni3xv—Tb2—Ni2ix48.60 (3)
Ni3vii—Ni2—Ni2i59.73 (3)Ni3xxii—Tb2—Ni2ix91.78 (4)
Ni3—Ni2—Ni2i59.73 (3)Ni2xxiii—Tb2—Ni2ix47.19 (6)
Ni2iii—Ni2—Ni2i120.0Ni2xxiv—Tb2—Ni2ix47.29 (6)
Ni2iv—Ni2—Ni2i180.0Ni2viii—Tb2—Ni2ix106.52 (2)
Ni4vii—Ni2—Ni2ii120.29 (3)Ni2xxv—Tb2—Ni2ix87.891 (17)
Ni4—Ni2—Ni2ii120.28 (3)Ni4xv—Tb2—Ni2xxvi136.32 (4)
Ni3vii—Ni2—Ni2ii59.73 (3)Ni4xix—Tb2—Ni2xxvi48.48 (3)
Ni3—Ni2—Ni2ii59.73 (3)Ni4xvii—Tb2—Ni2xxvi91.77 (4)
Ni2iii—Ni2—Ni2ii180.0Ni3xvii—Tb2—Ni2xxvi48.60 (3)
Ni2iv—Ni2—Ni2ii120.001 (1)Ni3xv—Tb2—Ni2xxvi91.78 (4)
Ni2i—Ni2—Ni2ii60.0Ni3xxii—Tb2—Ni2xxvi136.45 (4)
Ni4vii—Ni2—Tb2viii60.919 (16)Ni2xxiii—Tb2—Ni2xxvi106.52 (2)
Ni4—Ni2—Tb2viii119.12 (4)Ni2xxiv—Tb2—Ni2xxvi47.19 (6)
Ni3vii—Ni2—Tb2viii60.876 (16)Ni2viii—Tb2—Ni2xxvi47.29 (6)
Ni3—Ni2—Tb2viii119.09 (4)Ni2xxv—Tb2—Ni2xxvi87.891 (17)
Ni2iii—Ni2—Tb2viii113.64 (3)Ni2ix—Tb2—Ni2xxvi87.891 (17)
Ni2iv—Ni2—Tb2viii66.40 (3)Ni1—Ni4—Ni1iii61.06 (5)
Ni2i—Ni2—Tb2viii113.60 (3)Ni1—Ni4—Ni1iv61.06 (5)
Ni2ii—Ni2—Tb2viii66.36 (3)Ni1iii—Ni4—Ni1iv61.06 (5)
Ni4vii—Ni2—Tb2v119.12 (4)Ni1—Ni4—Ni2108.47 (4)
Ni4—Ni2—Tb2v60.918 (16)Ni1iii—Ni4—Ni2146.016 (17)
Ni3vii—Ni2—Tb2v119.09 (4)Ni1iv—Ni4—Ni2146.016 (17)
Ni3—Ni2—Tb2v60.876 (16)Ni1—Ni4—Ni2iv146.016 (17)
Ni2iii—Ni2—Tb2v113.64 (3)Ni1iii—Ni4—Ni2iv146.015 (17)
Ni2iv—Ni2—Tb2v66.40 (3)Ni1iv—Ni4—Ni2iv108.47 (4)
Ni2i—Ni2—Tb2v113.60 (3)Ni2—Ni4—Ni2iv60.57 (6)
Ni2ii—Ni2—Tb2v66.36 (3)Ni1—Ni4—Ni2iii146.015 (17)
Tb2viii—Ni2—Tb2v73.48 (2)Ni1iii—Ni4—Ni2iii108.47 (4)
Ni4vii—Ni2—Tb2vi119.12 (4)Ni1iv—Ni4—Ni2iii146.016 (17)
Ni4—Ni2—Tb2vi60.919 (16)Ni2—Ni4—Ni2iii60.57 (6)
Ni3vii—Ni2—Tb2vi119.09 (4)Ni2iv—Ni4—Ni2iii60.57 (6)
Ni3—Ni2—Tb2vi60.876 (16)Ni1—Ni4—Ni3xxvii106.97 (4)
Ni2iii—Ni2—Tb2vi66.40 (3)Ni1iii—Ni4—Ni3xxvii53.98 (4)
Ni2iv—Ni2—Tb2vi113.64 (3)Ni1iv—Ni4—Ni3xxvii106.97 (4)
Ni2i—Ni2—Tb2vi66.36 (3)Ni2—Ni4—Ni3xxvii107.02 (4)
Ni2ii—Ni2—Tb2vi113.60 (3)Ni2iv—Ni4—Ni3xxvii107.02 (4)
Tb2viii—Ni2—Tb2vi179.95 (6)Ni2iii—Ni4—Ni3xxvii54.49 (5)
Tb2v—Ni2—Tb2vi106.52 (2)Ni1—Ni4—Ni353.98 (4)
Ni4vii—Ni2—Tb2ix60.919 (16)Ni1iii—Ni4—Ni3106.97 (4)
Ni4—Ni2—Tb2ix119.12 (4)Ni1iv—Ni4—Ni3106.97 (4)
Ni3vii—Ni2—Tb2ix60.877 (16)Ni2—Ni4—Ni354.49 (5)
Ni3—Ni2—Tb2ix119.09 (4)Ni2iv—Ni4—Ni3107.02 (4)
Ni2iii—Ni2—Tb2ix66.40 (3)Ni2iii—Ni4—Ni3107.02 (4)
Ni2iv—Ni2—Tb2ix113.64 (3)Ni3xxvii—Ni4—Ni3120.0
Ni2i—Ni2—Tb2ix66.36 (3)Ni1—Ni4—Ni3xxviii106.97 (4)
Ni2ii—Ni2—Tb2ix113.60 (3)Ni1iii—Ni4—Ni3xxviii106.97 (4)
Tb2viii—Ni2—Tb2ix106.52 (2)Ni1iv—Ni4—Ni3xxviii53.98 (4)
Tb2v—Ni2—Tb2ix179.95 (6)Ni2—Ni4—Ni3xxviii107.02 (4)
Tb2vi—Ni2—Tb2ix73.48 (2)Ni2iv—Ni4—Ni3xxviii54.49 (5)
Ni1—Ni3—Ni1i60.92 (5)Ni2iii—Ni4—Ni3xxviii107.02 (4)
Ni1—Ni3—Ni1ii60.92 (5)Ni3xxvii—Ni4—Ni3xxviii120.0
Ni1i—Ni3—Ni1ii60.92 (5)Ni3—Ni4—Ni3xxviii120.0
Ni1—Ni3—Ni2i146.063 (17)Ni1—Ni4—Tb2v75.42 (2)
Ni1i—Ni3—Ni2i108.58 (4)Ni1iii—Ni4—Tb2v128.83 (6)
Ni1ii—Ni3—Ni2i146.064 (17)Ni1iv—Ni4—Tb2v75.42 (2)
Ni1—Ni3—Ni2ii146.063 (17)Ni2—Ni4—Tb2v70.60 (2)
Ni1i—Ni3—Ni2ii146.063 (17)Ni2iv—Ni4—Tb2v70.60 (2)
Ni1ii—Ni3—Ni2ii108.58 (4)Ni2iii—Ni4—Tb2v122.70 (6)
Ni2i—Ni3—Ni2ii60.54 (6)Ni3xxvii—Ni4—Tb2v177.19 (7)
Ni1—Ni3—Ni2108.58 (4)Ni3—Ni4—Tb2v60.049 (2)
Ni1i—Ni3—Ni2146.063 (17)Ni3xxviii—Ni4—Tb2v60.049 (2)
Ni1ii—Ni3—Ni2146.063 (17)Ni1—Ni4—Tb2xxix128.83 (6)
Ni2i—Ni3—Ni260.54 (6)Ni1iii—Ni4—Tb2xxix75.42 (2)
Ni2ii—Ni3—Ni260.54 (6)Ni1iv—Ni4—Tb2xxix75.42 (2)
Ni1—Ni3—Ni4x107.11 (4)Ni2—Ni4—Tb2xxix122.70 (6)
Ni1i—Ni3—Ni4x54.28 (4)Ni2iv—Ni4—Tb2xxix70.60 (2)
Ni1ii—Ni3—Ni4x107.11 (4)Ni2iii—Ni4—Tb2xxix70.60 (2)
Ni2i—Ni3—Ni4x54.30 (5)Ni3xxvii—Ni4—Tb2xxix60.048 (2)
Ni2ii—Ni3—Ni4x106.83 (4)Ni3—Ni4—Tb2xxix177.19 (7)
Ni2—Ni3—Ni4x106.83 (4)Ni3xxviii—Ni4—Tb2xxix60.049 (2)
Ni1—Ni3—Ni4xi107.11 (4)Tb2v—Ni4—Tb2xxix119.745 (6)
Ni1i—Ni3—Ni4xi107.11 (4)Ni1—Ni4—Tb2vi75.42 (2)
Ni1ii—Ni3—Ni4xi54.28 (4)Ni1iii—Ni4—Tb2vi75.42 (2)
Ni2i—Ni3—Ni4xi106.83 (4)Ni1iv—Ni4—Tb2vi128.83 (6)
Ni2ii—Ni3—Ni4xi54.30 (5)Ni2—Ni4—Tb2vi70.60 (2)
Ni2—Ni3—Ni4xi106.83 (4)Ni2iv—Ni4—Tb2vi122.70 (6)
Ni4x—Ni3—Ni4xi120.0Ni2iii—Ni4—Tb2vi70.60 (2)
Ni1—Ni3—Ni454.28 (4)Ni3xxvii—Ni4—Tb2vi60.049 (2)
Ni1i—Ni3—Ni4107.11 (4)Ni3—Ni4—Tb2vi60.049 (2)
Ni1ii—Ni3—Ni4107.11 (4)Ni3xxviii—Ni4—Tb2vi177.19 (7)
Ni2i—Ni3—Ni4106.83 (4)Tb2v—Ni4—Tb2vi119.743 (6)
Ni2ii—Ni3—Ni4106.83 (4)Tb2xxix—Ni4—Tb2vi119.743 (6)
Ni2—Ni3—Ni454.30 (5)Ni1xxx—Ni5—Ni1xxxi59.12 (4)
Ni4x—Ni3—Ni4120.0Ni1xxx—Ni5—Ni1iv120.88 (4)
Ni4xi—Ni3—Ni4120.0Ni1xxxi—Ni5—Ni1iv180.00 (2)
Ni1—Ni3—Tb2v75.55 (2)Ni1xxx—Ni5—Ni1iii120.88 (4)
Ni1i—Ni3—Tb2v128.85 (6)Ni1xxxi—Ni5—Ni1iii120.88 (4)
Ni1ii—Ni3—Tb2v75.55 (2)Ni1iv—Ni5—Ni1iii59.12 (4)
Ni2i—Ni3—Tb2v122.57 (6)Ni1xxx—Ni5—Ni1xxxii59.12 (4)
Ni2ii—Ni3—Tb2v70.52 (2)Ni1xxxi—Ni5—Ni1xxxii59.12 (4)
Ni2—Ni3—Tb2v70.52 (2)Ni1iv—Ni5—Ni1xxxii120.88 (4)
Ni4x—Ni3—Tb2v176.87 (7)Ni1iii—Ni5—Ni1xxxii180.00 (2)
Ni4xi—Ni3—Tb2v60.039 (2)Ni1xxx—Ni5—Ni1180.0
Ni4—Ni3—Tb2v60.040 (2)Ni1xxxi—Ni5—Ni1120.88 (4)
Ni1—Ni3—Tb2xii128.85 (6)Ni1iv—Ni5—Ni159.12 (4)
Ni1i—Ni3—Tb2xii75.55 (2)Ni1iii—Ni5—Ni159.12 (4)
Ni1ii—Ni3—Tb2xii75.55 (2)Ni1xxxii—Ni5—Ni1120.88 (4)
Ni2i—Ni3—Tb2xii70.52 (2)Ni1xxx—Ni5—Tb1xxxiii61.922 (12)
Ni2ii—Ni3—Tb2xii70.52 (2)Ni1xxxi—Ni5—Tb1xxxiii61.922 (12)
Ni2—Ni3—Tb2xii122.57 (6)Ni1iv—Ni5—Tb1xxxiii118.078 (12)
Ni4x—Ni3—Tb2xii60.039 (2)Ni1iii—Ni5—Tb1xxxiii68.92 (3)
Ni4xi—Ni3—Tb2xii60.040 (2)Ni1xxxii—Ni5—Tb1xxxiii111.08 (3)
Ni4—Ni3—Tb2xii176.87 (7)Ni1—Ni5—Tb1xxxiii118.078 (12)
Tb2v—Ni3—Tb2xii119.725 (6)Ni1xxx—Ni5—Tb1v118.078 (12)
Ni1—Ni3—Tb2vi75.55 (2)Ni1xxxi—Ni5—Tb1v118.078 (12)
Ni1i—Ni3—Tb2vi75.55 (2)Ni1iv—Ni5—Tb1v61.922 (12)
Ni1ii—Ni3—Tb2vi128.85 (6)Ni1iii—Ni5—Tb1v111.08 (3)
Ni2i—Ni3—Tb2vi70.52 (2)Ni1xxxii—Ni5—Tb1v68.92 (3)
Ni2ii—Ni3—Tb2vi122.57 (6)Ni1—Ni5—Tb1v61.922 (12)
Ni2—Ni3—Tb2vi70.52 (2)Tb1xxxiii—Ni5—Tb1v180.00 (2)
Ni4x—Ni3—Tb2vi60.039 (2)Ni1xxx—Ni5—Tb1vii111.08 (3)
Ni4xi—Ni3—Tb2vi176.87 (7)Ni1xxxi—Ni5—Tb1vii61.922 (12)
Ni4—Ni3—Tb2vi60.040 (2)Ni1iv—Ni5—Tb1vii118.078 (12)
Tb2v—Ni3—Tb2vi119.725 (6)Ni1iii—Ni5—Tb1vii118.078 (12)
Tb2xii—Ni3—Tb2vi119.724 (6)Ni1xxxii—Ni5—Tb1vii61.922 (12)
Ni1xiii—Tb1—Ni1xiv51.68 (5)Ni1—Ni5—Tb1vii68.92 (3)
Ni1xiii—Tb1—Ni1xv98.43 (2)Tb1xxxiii—Ni5—Tb1vii114.616 (9)
Ni1xiv—Tb1—Ni1xv52.01 (5)Tb1v—Ni5—Tb1vii65.384 (9)
Ni1xiii—Tb1—Ni1xvi121.92 (4)Ni1xxx—Ni5—Tb1xxix68.92 (3)
Ni1xiv—Tb1—Ni1xvi98.43 (2)Ni1xxxi—Ni5—Tb1xxix118.078 (12)
Ni1xv—Tb1—Ni1xvi51.68 (5)Ni1iv—Ni5—Tb1xxix61.922 (12)
Ni1xiii—Tb1—Ni1xvii52.01 (5)Ni1iii—Ni5—Tb1xxix61.922 (12)
Ni1xiv—Tb1—Ni1xvii98.43 (2)Ni1xxxii—Ni5—Tb1xxix118.078 (12)
Ni1xv—Tb1—Ni1xvii121.92 (4)Ni1—Ni5—Tb1xxix111.08 (3)
Ni1xvi—Tb1—Ni1xvii98.43 (2)Tb1xxxiii—Ni5—Tb1xxix65.384 (9)
Ni1xiii—Tb1—Ni1xviii98.43 (2)Tb1v—Ni5—Tb1xxix114.616 (9)
Ni1xiv—Tb1—Ni1xviii121.92 (4)Tb1vii—Ni5—Tb1xxix180.00 (2)
Ni1xv—Tb1—Ni1xviii98.43 (2)Ni1xxx—Ni5—Tb1vi118.078 (12)
Ni1xvi—Tb1—Ni1xviii52.01 (5)Ni1xxxi—Ni5—Tb1vi68.92 (3)
Ni1xvii—Tb1—Ni1xviii51.68 (5)Ni1iv—Ni5—Tb1vi111.08 (3)
Ni1xiii—Tb1—Ni5xv96.49 (2)Ni1iii—Ni5—Tb1vi61.922 (12)
Ni1xiv—Tb1—Ni5xv51.64 (2)Ni1xxxii—Ni5—Tb1vi118.078 (12)
Ni1xv—Tb1—Ni5xv51.64 (2)Ni1—Ni5—Tb1vi61.922 (12)
Ni1xvi—Tb1—Ni5xv96.49 (2)Tb1xxxiii—Ni5—Tb1vi65.385 (9)
Ni1xvii—Tb1—Ni5xv148.32 (2)Tb1v—Ni5—Tb1vi114.615 (9)
Ni1xviii—Tb1—Ni5xv148.32 (2)Tb1vii—Ni5—Tb1vi65.385 (9)
Ni1xiii—Tb1—Ni5xix148.32 (2)Tb1xxix—Ni5—Tb1vi114.615 (9)
Ni1xiv—Tb1—Ni5xix148.32 (2)Ni1xxx—Ni5—Tb1xxxiv61.922 (12)
Ni1xv—Tb1—Ni5xix96.49 (2)Ni1xxxi—Ni5—Tb1xxxiv111.08 (3)
Ni1xvi—Tb1—Ni5xix51.64 (2)Ni1iv—Ni5—Tb1xxxiv68.92 (3)
Ni1xvii—Tb1—Ni5xix96.49 (2)Ni1iii—Ni5—Tb1xxxiv118.078 (12)
Ni1xviii—Tb1—Ni5xix51.64 (2)Ni1xxxii—Ni5—Tb1xxxiv61.922 (12)
Ni5xv—Tb1—Ni5xix114.616 (9)Ni1—Ni5—Tb1xxxiv118.078 (12)
Ni1xiii—Tb1—Ni5xvii51.64 (2)Tb1xxxiii—Ni5—Tb1xxxiv114.615 (9)
Ni1xiv—Tb1—Ni5xvii96.49 (2)Tb1v—Ni5—Tb1xxxiv65.385 (9)
Ni1xv—Tb1—Ni5xvii148.32 (2)Tb1vii—Ni5—Tb1xxxiv114.615 (9)
Ni1xvi—Tb1—Ni5xvii148.32 (2)Tb1xxix—Ni5—Tb1xxxiv65.385 (9)
Ni1xvii—Tb1—Ni5xvii51.64 (2)Tb1vi—Ni5—Tb1xxxiv180.00 (2)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z; (iii) y, xy, z; (iv) x+y, x, z; (v) x+1, y+1, z1/2; (vi) x, y+1, z1/2; (vii) x, y, z+1/2; (viii) x+1, y+1, z+1; (ix) x, y+1, z+1; (x) x, y+1, z; (xi) x+1, y+1, z; (xii) x+1, y+2, z1/2; (xiii) xy+1, x+1, z+1/2; (xiv) y, x+y+1, z+1/2; (xv) x, y+1, z+1/2; (xvi) xy, x, z+1/2; (xvii) x+1, y+1, z+1/2; (xviii) y, x+y, z+1/2; (xix) x, y, z+1/2; (xx) x+y, x+1, z+1/2; (xxi) y+1, xy+1, z+1/2; (xxii) x+1, y+2, z+1/2; (xxiii) y, x+y+1, z+1; (xxiv) xy, x, z+1; (xxv) xy+1, x+1, z+1; (xxvi) y, x+y, z+1; (xxvii) x1, y1, z; (xxviii) x, y1, z; (xxix) x, y, z1/2; (xxx) x, y, z; (xxxi) xy, x, z; (xxxii) y, x+y, z; (xxxiii) x1, y1, z+1/2; (xxxiv) x, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaTb1.96Ni7
Mr722.72
Crystal system, space groupHexagonal, P63/mmc
Temperature (K)293
a, c (Å)4.944 (1), 24.129 (6)
V3)510.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)51.78
Crystal size (mm)0.05 × 0.04 × 0.04
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.50, 0.74
No. of measured, independent and
observed [I > 2σ(I)] reflections
7652, 422, 313
Rint0.073
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.041, 1.07
No. of reflections422
No. of parameters27
Δρmax, Δρmin (e Å3)1.51, 1.76

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SIR2011 (Burla et al., 2012), SHELXL2013 (Sheldrick, 2008) and WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

References

First citationBertaut, E. F., Lemaire, R. & Schweizer, J. (1965). Bull. Soc. Fr. Mineral. Cristallogr. 88, 580–585.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBuschow, K. H. J. & van der Goot, A. S. (1970). J. Less-Common Met. 22, 419–428.  CrossRef CAS Google Scholar
First citationCromer, D. T. & Larson, A. C. (1959). Acta Cryst. 12, 855–859.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGrin, Yu. (1992). Modern Perspectives in Inorganic Crystal Chemistry, edited by E. Parthé, pp. 77–95. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationLemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Mineral. Cristallogr. 92, 9–16.  CAS Google Scholar
First citationLemaire, R., Paccard, D. & Pauthenet, R. (1967). C. R. Acad. Sci. Ser. B. 265, 1280–1282.  Google Scholar
First citationLevytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012). Acta Cryst. E68, i20.  CrossRef IUCr Journals Google Scholar
First citationParthé, E., Chabot, B. A. & Censual, K. (1985). Chimia, 39, 164–174.  Google Scholar
First citationPaul-Boncour, V., Lindbaum, A., Latroche, M. & Heathman, S. (2006). Intermetallics, 14, 483–490.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVirkar, A. V. & Raman, A. (1969). J. Less-Common Met. 18, 59–66.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds