organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­phenyl-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, bPennsylvania State University, Brandywine Campus, 312 M Main Building, 25 Yearsley Mill Rd, Media, PA 19063, USA, and cPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

(Received 5 March 2014; accepted 26 June 2014; online 2 July 2014)

The title compound, C15H13NOS, is a chiral mol­ecule crystallized as a racemate, with two molecules in the asymmetric unit. In each of the mol­ecules, the five-membered thia­zine ring has an envelope conformation, with the S atom forming the flap. In one mol­ecule, the angle between the two phenyl-ring planes is 82.77 (7)°, while in the other it is 89.12 (6)°. In the crystal, mol­ecules are linked into chains along the b-axis direction by C—H⋯O hydrogen bonds.

Keywords: crystal structure.

Related literature

For the preparation of the title compound, see: Tierney (1989[Tierney, J. (1989). J. Heterocycl. Chem. 26, 997-1001.]). For the crystal structure of a tin complex of the title compound, see: Smith et al. (1995[Smith, F. E., Hynes, R. C., Tierney, J., Zhang, Y. Z. & Eng, G. (1995). Can. J. Chem. 73, 95-99.]). For the synthesis and crystal structures of related compounds, see: Yennawar & Silverberg (2013[Yennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.], 2014[Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.]); Fun et al. (2011[Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.]). For reviews on 1,3-thia­zolidin-4-ones, see: Brown (1961[Brown, F. C. (1961). Chem. Rev. 61, 463-521.]); Singh et al. (1981[Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175-203.]); Metally et al. (2006[Metally, M. A., Etman, H. A., Keshk, E. M. & Fekry, A. (2006). Phosphorus, Sulfur Silicon Relat. Elem. 181, 1039-1058.]); Abhishek et al. (2012[Abhishek, K. J., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378-3395.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NOS

  • Mr = 255.32

  • Monoclinic, C 2/c

  • a = 32.413 (13) Å

  • b = 6.196 (3) Å

  • c = 25.964 (11) Å

  • β = 100.258 (7)°

  • V = 5131 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.14 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT, XSHELL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.807, Tmax = 0.981

  • 23146 measured reflections

  • 6334 independent reflections

  • 5015 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.147

  • S = 1.01

  • 6334 reflections

  • 325 parameters

  • H-atom parameters not refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.58 3.470 (2) 160
C1—H1⋯O1i 0.98 2.49 3.466 (2) 172
C16—H16⋯O2ii 0.98 2.34 3.301 (3) 168
C17—H17B⋯O2iii 0.97 2.41 3.313 (3) 155
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT, XSHELL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT, XSHELL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XSHELL (Bruker, 2001[Bruker (2001). SMART, SAINT, XSHELL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We have recently reported the syntheses and crystal structures of 6,7-diphenyl-5-thia-7-azaspiro[2.6]nonan-8-one, a seven-membered heterocycle (Yennawar and Silverberg, 2013), and 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one, a similar six-membered heterocycle (Yennawar and Silverberg, 2014). We report here the crystal structure of 2,3-diphenyl-1,3-thiazolidin-4-one (Tierney, 1989), the analogous five-membered heterocycle. The crystal structure of a tin complex of the title compound has been previously reported (Smith et al., 1995), but the structure of the title compound has not. The crystal structure of similar compound 3-benzyl-2-phenyl-1,3-thiazolidin-4-one has been reported (Fun et al., 2011). The 1,3-thiazolidin-4-ones are an important class of compounds with a wide range of biological activity (Brown, 1961; Singh, et al., 1981; Metally et al., 2006; Abhishek et al., 2012).

Related literature top

For the preparation of the title compound, see: Tierney (1989). For the crystal structure of a tin complex of the title compound, see: Smith et al. (1995). For the synthesis and crystal structures of related compounds, see: Yennawar & Silverberg (2013, 2014); Fun et al. (2011). For reviews on 1,3-thiazolidin-4-ones, see: Brown (1961); Singh et al. (1981); Metally et al. (2006); Abhishek et al. (2012).

Experimental top

A sample of the title compound, prepared according to Tierney (1989), was recrystallized from ethanol. Rf = 0.54 (50% EtOAc/hexanes). m.p.: 131–133°C (lit. 131–132°C). Crystals for X-ray crystallography were grown by slow evaporation from toluene.

Refinement top

The C-bound H atoms were geometrically placed with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2001) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title comound. Thermal ellipsoids are drawn at 50% probability.
[Figure 2] Fig. 2. View of b-c plane with C—H···O interactions shown as dashed lines.
[Figure 3] Fig. 3. Unit-cell contents.
2,3-Diphenyl-1,3-thiazolidin-4-one top
Crystal data top
C15H13NOSF(000) = 2144
Mr = 255.32Dx = 1.322 Mg m3
Monoclinic, C2/cMelting point: 405(1) K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 32.413 (13) ÅCell parameters from 7831 reflections
b = 6.196 (3) Åθ = 2.2–28.3°
c = 25.964 (11) ŵ = 0.24 mm1
β = 100.258 (7)°T = 298 K
V = 5131 (4) Å3Block, colorless
Z = 160.14 × 0.12 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6334 independent reflections
Radiation source: fine-focus sealed tube5015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.34 pixels mm-1θmax = 28.3°, θmin = 1.6°
phi and ω scansh = 4242
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 88
Tmin = 0.807, Tmax = 0.981l = 3430
23146 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters not refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0897P)2 + 1.5154P]
where P = (Fo2 + 2Fc2)/3
6334 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H13NOSV = 5131 (4) Å3
Mr = 255.32Z = 16
Monoclinic, C2/cMo Kα radiation
a = 32.413 (13) ŵ = 0.24 mm1
b = 6.196 (3) ÅT = 298 K
c = 25.964 (11) Å0.14 × 0.12 × 0.08 mm
β = 100.258 (7)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6334 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5015 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.981Rint = 0.028
23146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.147H-atom parameters not refined
S = 1.01Δρmax = 0.33 e Å3
6334 reflectionsΔρmin = 0.22 e Å3
325 parameters
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different ϕ and/or 2θ angles and each scan (30 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16111 (4)0.4561 (2)0.38426 (6)0.0375 (3)
H10.17300.59600.37710.045*
C20.18453 (7)0.1206 (3)0.44221 (7)0.0596 (5)
H2A0.20830.06760.46710.072*
H2B0.16010.03480.44550.072*
C30.19346 (5)0.1053 (3)0.38717 (6)0.0426 (3)
C40.11402 (4)0.4644 (2)0.36653 (6)0.0384 (3)
C50.09284 (6)0.6505 (3)0.37624 (7)0.0524 (4)
H50.10780.76930.39130.063*
C60.04944 (6)0.6605 (4)0.36362 (8)0.0656 (5)
H60.03550.78560.37060.079*
C70.02702 (6)0.4875 (4)0.34099 (8)0.0682 (6)
H70.00210.49510.33240.082*
C80.04765 (6)0.3011 (4)0.33086 (8)0.0651 (5)
H80.03250.18340.31540.078*
C90.09108 (5)0.2897 (3)0.34371 (7)0.0514 (4)
H90.10480.16390.33700.062*
C100.18622 (4)0.3123 (3)0.30503 (5)0.0373 (3)
C110.17313 (5)0.1509 (3)0.26884 (7)0.0511 (4)
H110.16130.02460.27900.061*
C120.17791 (7)0.1806 (4)0.21694 (8)0.0693 (6)
H120.16900.07360.19230.083*
C130.19558 (7)0.3659 (4)0.20187 (8)0.0704 (6)
H130.19890.38360.16730.084*
C140.20842 (6)0.5253 (4)0.23787 (7)0.0629 (5)
H140.22030.65100.22750.075*
C150.20371 (5)0.4996 (3)0.28963 (6)0.0471 (4)
H150.21230.60830.31390.057*
C160.08432 (5)0.0210 (3)0.54421 (6)0.0402 (3)
H160.07160.11270.55410.048*
C170.05773 (6)0.3511 (3)0.48483 (7)0.0577 (5)
H17A0.08090.43480.47640.069*
H17B0.03210.39980.46280.069*
C180.05479 (5)0.3792 (3)0.54178 (6)0.0426 (3)
C190.13159 (4)0.0004 (2)0.55810 (5)0.0371 (3)
C200.14969 (5)0.1974 (3)0.55010 (6)0.0455 (4)
H200.13270.31280.53700.055*
C210.19270 (5)0.2246 (3)0.56134 (7)0.0513 (4)
H210.20440.35730.55540.062*
C220.21819 (5)0.0559 (3)0.58124 (7)0.0521 (4)
H220.24710.07460.58900.063*
C230.20071 (5)0.1409 (3)0.58958 (7)0.0536 (4)
H230.21790.25520.60310.064*
C240.15749 (5)0.1688 (3)0.57782 (7)0.0469 (4)
H240.14590.30240.58330.056*
C250.07029 (4)0.1912 (3)0.62627 (6)0.0406 (3)
C260.08743 (5)0.3596 (3)0.65831 (7)0.0531 (4)
H260.09750.48180.64390.064*
C270.08940 (6)0.3447 (4)0.71192 (8)0.0694 (6)
H270.10070.45750.73360.083*
C280.07459 (7)0.1627 (5)0.73317 (8)0.0745 (6)
H280.07580.15350.76920.089*
C290.05807 (7)0.0052 (4)0.70153 (8)0.0704 (6)
H290.04850.12830.71620.084*
C300.05565 (5)0.0088 (3)0.64786 (7)0.0537 (4)
H300.04420.10420.62640.064*
N10.18173 (3)0.28663 (19)0.35879 (4)0.0351 (3)
N20.06799 (4)0.2018 (2)0.57083 (5)0.0397 (3)
O10.20931 (4)0.0527 (2)0.37092 (5)0.0597 (3)
O20.04255 (4)0.54461 (19)0.55954 (5)0.0579 (3)
S10.175220 (14)0.39920 (8)0.454463 (16)0.05330 (15)
S20.065806 (16)0.06983 (9)0.474346 (18)0.06317 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0426 (7)0.0352 (7)0.0370 (7)0.0009 (6)0.0132 (6)0.0069 (6)
C20.0781 (12)0.0579 (11)0.0449 (9)0.0001 (9)0.0168 (9)0.0069 (8)
C30.0441 (8)0.0392 (8)0.0443 (8)0.0014 (6)0.0074 (6)0.0008 (6)
C40.0418 (7)0.0411 (8)0.0348 (7)0.0036 (6)0.0132 (6)0.0014 (6)
C50.0591 (10)0.0454 (9)0.0545 (10)0.0119 (8)0.0146 (8)0.0003 (8)
C60.0604 (11)0.0722 (13)0.0668 (12)0.0306 (10)0.0180 (9)0.0060 (10)
C70.0427 (9)0.1013 (17)0.0607 (11)0.0169 (10)0.0097 (8)0.0031 (11)
C80.0455 (9)0.0795 (14)0.0704 (13)0.0051 (9)0.0104 (8)0.0143 (11)
C90.0426 (8)0.0533 (10)0.0592 (10)0.0017 (7)0.0114 (7)0.0104 (8)
C100.0342 (6)0.0433 (8)0.0352 (7)0.0057 (6)0.0079 (5)0.0031 (6)
C110.0538 (9)0.0532 (10)0.0463 (9)0.0014 (7)0.0085 (7)0.0137 (8)
C120.0784 (13)0.0829 (15)0.0450 (10)0.0099 (11)0.0065 (9)0.0251 (10)
C130.0863 (14)0.0896 (16)0.0386 (9)0.0114 (12)0.0202 (9)0.0010 (10)
C140.0737 (12)0.0718 (13)0.0473 (10)0.0001 (10)0.0222 (9)0.0105 (9)
C150.0515 (9)0.0504 (9)0.0408 (8)0.0016 (7)0.0122 (7)0.0012 (7)
C160.0413 (7)0.0379 (8)0.0423 (8)0.0002 (6)0.0096 (6)0.0062 (6)
C170.0537 (9)0.0693 (12)0.0489 (10)0.0055 (9)0.0055 (8)0.0070 (9)
C180.0365 (7)0.0410 (8)0.0500 (9)0.0020 (6)0.0067 (6)0.0005 (7)
C190.0411 (7)0.0376 (8)0.0336 (7)0.0021 (6)0.0093 (5)0.0006 (6)
C200.0508 (8)0.0392 (8)0.0456 (8)0.0029 (6)0.0065 (7)0.0051 (7)
C210.0535 (9)0.0496 (10)0.0504 (9)0.0174 (7)0.0079 (7)0.0010 (8)
C220.0414 (8)0.0668 (11)0.0474 (9)0.0074 (8)0.0057 (7)0.0061 (8)
C230.0443 (8)0.0546 (10)0.0611 (11)0.0075 (7)0.0073 (7)0.0021 (8)
C240.0471 (8)0.0391 (8)0.0553 (10)0.0004 (6)0.0116 (7)0.0029 (7)
C250.0351 (6)0.0466 (9)0.0405 (8)0.0064 (6)0.0079 (6)0.0038 (6)
C260.0509 (9)0.0543 (10)0.0531 (10)0.0032 (7)0.0069 (7)0.0110 (8)
C270.0635 (11)0.0880 (15)0.0518 (11)0.0155 (11)0.0033 (9)0.0251 (11)
C280.0700 (12)0.1132 (19)0.0399 (10)0.0204 (13)0.0089 (9)0.0033 (11)
C290.0716 (13)0.0898 (16)0.0521 (11)0.0036 (11)0.0171 (9)0.0159 (11)
C300.0528 (9)0.0592 (11)0.0500 (10)0.0004 (8)0.0114 (7)0.0029 (8)
N10.0375 (6)0.0343 (6)0.0348 (6)0.0018 (5)0.0099 (5)0.0036 (5)
N20.0405 (6)0.0379 (7)0.0413 (7)0.0023 (5)0.0094 (5)0.0027 (5)
O10.0756 (8)0.0412 (7)0.0634 (8)0.0151 (6)0.0151 (6)0.0017 (6)
O20.0582 (7)0.0416 (7)0.0725 (9)0.0086 (5)0.0076 (6)0.0006 (6)
S10.0549 (2)0.0697 (3)0.0357 (2)0.0024 (2)0.00903 (17)0.01146 (19)
S20.0619 (3)0.0795 (4)0.0439 (3)0.0126 (2)0.0019 (2)0.0167 (2)
Geometric parameters (Å, º) top
C1—N11.4641 (18)C16—N21.4638 (19)
C1—C41.515 (2)C16—C191.516 (2)
C1—S11.8328 (17)C16—S21.8315 (17)
C1—H10.9800C16—H160.9800
C2—C31.511 (2)C17—C181.509 (2)
C2—S11.791 (2)C17—S21.790 (2)
C2—H2A0.9700C17—H17A0.9700
C2—H2B0.9700C17—H17B0.9700
C3—O11.216 (2)C18—O21.219 (2)
C3—N11.360 (2)C18—N21.359 (2)
C4—C51.387 (2)C19—C241.383 (2)
C4—C91.386 (2)C19—C201.386 (2)
C5—C61.388 (3)C20—C211.383 (2)
C5—H50.9300C20—H200.9300
C6—C71.368 (3)C21—C221.375 (3)
C6—H60.9300C21—H210.9300
C7—C81.383 (3)C22—C231.378 (3)
C7—H70.9300C22—H220.9300
C8—C91.389 (2)C23—C241.391 (2)
C8—H80.9300C23—H230.9300
C9—H90.9300C24—H240.9300
C10—C111.386 (2)C25—C301.382 (2)
C10—C151.382 (2)C25—C261.387 (2)
C10—N11.4378 (18)C25—N21.430 (2)
C11—C121.396 (3)C26—C271.385 (3)
C11—H110.9300C26—H260.9300
C12—C131.371 (3)C27—C281.379 (4)
C12—H120.9300C27—H270.9300
C13—C141.373 (3)C28—C291.374 (4)
C13—H130.9300C28—H280.9300
C14—C151.389 (2)C29—C301.384 (3)
C14—H140.9300C29—H290.9300
C15—H150.9300C30—H300.9300
N1—C1—C4113.81 (12)C19—C16—H16108.6
N1—C1—S1104.96 (10)S2—C16—H16108.6
C4—C1—S1111.61 (10)C18—C17—S2107.33 (13)
N1—C1—H1108.8C18—C17—H17A110.2
C4—C1—H1108.8S2—C17—H17A110.2
S1—C1—H1108.8C18—C17—H17B110.2
C3—C2—S1107.19 (12)S2—C17—H17B110.2
C3—C2—H2A110.3H17A—C17—H17B108.5
S1—C2—H2A110.3O2—C18—N2124.19 (16)
C3—C2—H2B110.3O2—C18—C17123.34 (16)
S1—C2—H2B110.3N2—C18—C17112.46 (14)
H2A—C2—H2B108.5C24—C19—C20118.54 (14)
O1—C3—N1124.89 (15)C24—C19—C16122.89 (14)
O1—C3—C2122.89 (15)C20—C19—C16118.57 (14)
N1—C3—C2112.22 (14)C21—C20—C19120.90 (15)
C5—C4—C9118.82 (15)C21—C20—H20119.5
C5—C4—C1118.53 (14)C19—C20—H20119.5
C9—C4—C1122.56 (13)C20—C21—C22120.17 (15)
C4—C5—C6120.52 (18)C20—C21—H21119.9
C4—C5—H5119.7C22—C21—H21119.9
C6—C5—H5119.7C23—C22—C21119.70 (15)
C7—C6—C5120.33 (18)C23—C22—H22120.2
C7—C6—H6119.8C21—C22—H22120.2
C5—C6—H6119.8C22—C23—C24120.14 (16)
C6—C7—C8119.88 (17)C22—C23—H23119.9
C6—C7—H7120.1C24—C23—H23119.9
C8—C7—H7120.1C19—C24—C23120.55 (15)
C7—C8—C9120.04 (19)C19—C24—H24119.7
C7—C8—H8120.0C23—C24—H24119.7
C9—C8—H8120.0C30—C25—C26120.09 (16)
C4—C9—C8120.41 (17)C30—C25—N2119.07 (14)
C4—C9—H9119.8C26—C25—N2120.84 (15)
C8—C9—H9119.8C27—C26—C25119.63 (19)
C11—C10—C15120.12 (15)C27—C26—H26120.2
C11—C10—N1120.44 (15)C25—C26—H26120.2
C15—C10—N1119.43 (13)C28—C27—C26120.0 (2)
C10—C11—C12119.10 (18)C28—C27—H27120.0
C10—C11—H11120.5C26—C27—H27120.0
C12—C11—H11120.5C29—C28—C27120.43 (19)
C13—C12—C11120.64 (18)C29—C28—H28119.8
C13—C12—H12119.7C27—C28—H28119.8
C11—C12—H12119.7C28—C29—C30120.0 (2)
C12—C13—C14119.99 (18)C28—C29—H29120.0
C12—C13—H13120.0C30—C29—H29120.0
C14—C13—H13120.0C25—C30—C29119.84 (19)
C13—C14—C15120.30 (19)C25—C30—H30120.1
C13—C14—H14119.9C29—C30—H30120.1
C15—C14—H14119.9C3—N1—C10123.39 (12)
C10—C15—C14119.85 (16)C3—N1—C1116.99 (12)
C10—C15—H15120.1C10—N1—C1119.50 (12)
C14—C15—H15120.1C18—N2—C25123.43 (13)
N2—C16—C19112.93 (12)C18—N2—C16117.51 (13)
N2—C16—S2105.00 (10)C25—N2—C16118.80 (12)
C19—C16—S2112.89 (10)C2—S1—C191.65 (8)
N2—C16—H16108.6C17—S2—C1692.37 (8)
S1—C2—C3—O1164.39 (14)N2—C25—C26—C27179.78 (15)
S1—C2—C3—N115.65 (18)C25—C26—C27—C280.4 (3)
N1—C1—C4—C5162.23 (14)C26—C27—C28—C290.4 (3)
S1—C1—C4—C579.20 (16)C27—C28—C29—C300.9 (3)
N1—C1—C4—C921.5 (2)C26—C25—C30—C290.1 (3)
S1—C1—C4—C997.08 (15)N2—C25—C30—C29179.28 (16)
C9—C4—C5—C60.4 (3)C28—C29—C30—C250.7 (3)
C1—C4—C5—C6176.01 (16)O1—C3—N1—C100.9 (2)
C4—C5—C6—C70.6 (3)C2—C3—N1—C10179.02 (14)
C5—C6—C7—C80.3 (3)O1—C3—N1—C1176.89 (15)
C6—C7—C8—C90.1 (3)C2—C3—N1—C13.07 (19)
C5—C4—C9—C80.0 (3)C11—C10—N1—C347.6 (2)
C1—C4—C9—C8176.27 (17)C15—C10—N1—C3132.45 (15)
C7—C8—C9—C40.3 (3)C11—C10—N1—C1128.26 (15)
C15—C10—C11—C120.1 (2)C15—C10—N1—C151.69 (18)
N1—C10—C11—C12179.99 (15)C4—C1—N1—C3102.68 (15)
C10—C11—C12—C130.5 (3)S1—C1—N1—C319.64 (15)
C11—C12—C13—C140.6 (3)C4—C1—N1—C1073.44 (16)
C12—C13—C14—C150.2 (3)S1—C1—N1—C10164.24 (10)
C11—C10—C15—C140.5 (2)O2—C18—N2—C252.1 (2)
N1—C10—C15—C14179.58 (15)C17—C18—N2—C25176.81 (13)
C13—C14—C15—C100.4 (3)O2—C18—N2—C16176.11 (14)
S2—C17—C18—O2167.49 (13)C17—C18—N2—C162.75 (19)
S2—C17—C18—N213.64 (17)C30—C25—N2—C18135.69 (16)
N2—C16—C19—C2421.5 (2)C26—C25—N2—C1845.1 (2)
S2—C16—C19—C2497.45 (16)C30—C25—N2—C1650.32 (19)
N2—C16—C19—C20159.33 (14)C26—C25—N2—C16128.84 (15)
S2—C16—C19—C2081.74 (16)C19—C16—N2—C18106.20 (15)
C24—C19—C20—C210.2 (2)S2—C16—N2—C1817.21 (15)
C16—C19—C20—C21178.98 (15)C19—C16—N2—C2568.14 (17)
C19—C20—C21—C220.7 (3)S2—C16—N2—C25168.44 (10)
C20—C21—C22—C230.5 (3)C3—C2—S1—C122.65 (14)
C21—C22—C23—C240.1 (3)N1—C1—S1—C223.76 (11)
C20—C19—C24—C230.4 (2)C4—C1—S1—C299.98 (12)
C16—C19—C24—C23179.55 (15)C18—C17—S2—C1619.83 (12)
C22—C23—C24—C190.5 (3)N2—C16—S2—C1720.77 (11)
C30—C25—C26—C270.6 (2)C19—C16—S2—C17102.66 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.583.470 (2)160
C1—H1···O1i0.982.493.466 (2)172
C16—H16···O2ii0.982.343.301 (3)168
C17—H17B···O2iii0.972.413.313 (3)155
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.583.470 (2)160
C1—H1···O1i0.982.493.466 (2)172
C16—H16···O2ii0.982.343.301 (3)168
C17—H17B···O2iii0.972.413.313 (3)155
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1, z+1.
 

Acknowledgements

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer.

References

First citationAbhishek, K. J., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–3395.  Web of Science PubMed Google Scholar
First citationBrown, F. C. (1961). Chem. Rev. 61, 463–521.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT, XSHELL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMetally, M. A., Etman, H. A., Keshk, E. M. & Fekry, A. (2006). Phosphorus, Sulfur Silicon Relat. Elem. 181, 1039–1058.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.  CrossRef CAS Web of Science Google Scholar
First citationSmith, F. E., Hynes, R. C., Tierney, J., Zhang, Y. Z. & Eng, G. (1995). Can. J. Chem. 73, 95–99.  CrossRef CAS Web of Science Google Scholar
First citationTierney, J. (1989). J. Heterocycl. Chem. 26, 997–1001.  CrossRef CAS Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds