organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o879-o880

Betulin 3,28-di-O-tosyl­ate

aDepartment of Material Science and Applied Chemistry, Riga Technical University, 3 P. Valdena Str., Riga LV-1007, Latvia, bOgre State Gymnasium, 14 Meza prosp., LV-5001, Ogre, Latvia, and cLatvian Institute of Organic Synthesis, 21 Aizkraukles Str., Riga LV-1006, Latvia
*Correspondence e-mail: maris_turks@ktf.rtu.lv

Edited by L. Fabian, University of East Anglia, England (Received 17 June 2014; accepted 17 July 2014; online 23 July 2014)

The title compound, C44H62O6S2 {systematic name: (1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-5a,5b,8,8,11a-penta­methyl-1-(prop-1-en-2-yl)-3a-[(tos­yloxy)meth­yl]icosa­hydro-1H-cyclo­penta­[a]chrysen-9-yl 4-methyl­benzene­sulfonate}, was obtained by tosyl­ation of naturally occurring betulin. All the cyclo­hexane rings adopt chair conformations and the cyclo­pentane ring adopts a twisted envelope conformation, with the C atom bearing the tosyl­methyl substituent forming the flap. In the crystal, mol­ecules form a three-dimensional network through multiple weak C—H⋯O hydrogen bonds.

Related literature

For the first synthesis of betulin 3,28-di-O-tosyl­ate, see: Anjaneyulu et al. (1980[Anjaneyulu, A. S. R., Rao, M. N., Sree, A. & Murty, V. S. (1980). Indian J. Chem. Sect. B, 19, 735-738.]). For natural occurrence and isolation of betulin and related terpenoides, see: Krasutsky (2006[Krasutsky, P. A. (2006). Nat. Prod. Rep. 23, 919-942.]). For the biological activity of natural and semisynthetic lupane terpenoides including betulin derivatives, see: Tolstikova et al. (2006a[Tolstikova, T. G., Sorokina, I. V., Tolstikov, G. A., Tolstikov, A. G. & Flekhter, O. B. (2006a). Russ. J. Bioorg. Chem. 32, 261-276.],b[Tolstikova, T. G., Sorokina, I. V., Tolstikov, G. A., Tolstikov, A. G. & Flekhter, O. B. (2006b). Russ. J. Bioorg. Chem. 32, 37-49.]); Tundis et al. (2014[Tundis, R., Menichini, F. & Loizzo, M. R. (2014). Stud. Nat. Prod. Chem. 41, 1-32.]). For some of the first crystal data for the betulin series, see: 3β-lup-20 (29)-ene-3,28-diol di­acetate (betulin 3,28-di-O-acetate; Abbot et al., 1958[Abbot, M. T. J., Grove, J. F. & McCloskey, P. (1958). J. Chem. Soc. pp. 1699-1701.]). For other crystal structures of related betulin derivatives with substituents on the O atoms at C3 and C28, see: Kommera et al. (2010[Kommera, H., Kaluderovic, G. N., Bette, M., Kalbitz, J., Fuchs, P., Fulda, S., Mier, W. & Paschke, R. (2010). Chem.-Biol. Interact. 185, 128-136.]); Trishin et al. (2010[Trishin, Yu. G., Chernyavskii, G. G., Shafeeva, M. V. & Nelyubina, Yu. V. (2010). Russ. J. Org. Chem. 46, 1490-1492.]); Boryczka et al. (2013[Boryczka, S., Bębenek, E., Wietrzyk, J., Kempińska, K., Jastrzębska, M., Kusz, J. & Nowak, M. (2013). Molecules, 18, 4526-4543.]). For recent crystal structures of betulin and its solvates, see: Drebushchak et al. (2013[Drebushchak, V. A., Mikhailenko, M. A., Shakhtshneider, T. P. & Kuznetsova, S. A. (2013). J. Therm. Anal. Calorim. 111, 2005-2008.]); Drebushchak et al. (2010[Drebushchak, T. N., Mikhailenko, M. A., Brezgunova, M. E., Shakhtshneider, T. P. & Kuznetsova, S. A. (2010). J. Struct. Chem. 51, 798-801.]); Boryczka et al. (2012[Boryczka, S., Michalik, E., Jastrzębska, M., Kusz, J., Zubko, M. & Bębenek, E. (2012). J. Chem. Crystallogr. 42, 345-351.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The nature of hydrogen bonding is described by Gilli (2002[Gilli, G. (2002). Fundamentals of Crystallography, edited by C. Giacovazzo, pp. 585-666. Oxford Univercity Press.]).

[Scheme 1]

Experimental

Crystal data
  • C44H62O6S2

  • Mr = 751.08

  • Orthorhombic, P 21 21 21

  • a = 6.9824 (1) Å

  • b = 18.2035 (4) Å

  • c = 31.4449 (9) Å

  • V = 3996.78 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 173 K

  • 0.11 × 0.03 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 9235 measured reflections

  • 9235 independent reflections

  • 4887 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.142

  • S = 1.01

  • 9235 reflections

  • 477 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3968 Friedel pairs

  • Absolute structure parameter: 0.07 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯O43i 0.97 2.60 3.428 (5) 143
C26—H26A⋯O32ii 0.96 2.56 3.473 (5) 159
C28—H28A⋯O43i 0.97 2.39 3.244 (5) 147
C48—H48⋯O44iii 0.93 2.49 3.142 (5) 128
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinovski & Minor, 1997[Otwinovski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinovski & Minor, 1997[Otwinovski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal and molecular structure of the betulin has not been previously reported, however, Drebushchak et al. (2013) have indexed X-ray powder diffraction pattern and calculated lattice parameters. Structures of the ethanol (Drebushchak et al., 2010) and di­methyl sulfoxide (Boryczka et al., 2012) solvates of betulin are known from single crystal X-ray diffraction data. Crystal structures of related betulin derivatives with substituents on oxygen atoms at C3 and C28 have been reported in literature, namely, 28-O-acetyl­betulin-3-yl-β-D-(2',3',4',6'-tetra-O-acetyl)­gluco­pyran­oside (Kommera et al., 2010), betulin 3,28-di-O-tri­fluoro­acetate (Trishin et al., 2010) and 28-O-propynoylbetulin di­methyl sulfoxide solvate (Boryczka et al., 2013).

The bond lengths (Allen et al., 1987) and angles in the molecule are close to standard values. All the cyclo­hexane rings adopt chair conformations and the cyclo­pentane ring adopts a twisted envelope conformation with the isopropenyl group equatorially attached to C19. The torsion angle C21—C19—C20—C29, which describs the conformation of the isopropenyl group, is equal to -102.1 (5)°. This conformation is variable among the structures disscused in this section. An O-tosyl group is attached to atom C3 in an equatorial orientation. The corresponding torsion angles C1—C2—C3—O31 and C1—C2—C3—O31 are -178.8 (3) and -179.2 (3)°, respectively. The O-tosyl­methyl group is is attached to the atom C17 in an axial orientation, with the corresponding torsion angles C13—C18—C17—C28 and C15—C16—C17—C28 being -57.9 (4) and 62.2 (4)°, respectively. All ring junctions in the structure are trans-fused. A similar conformation was observed in all structures mentioned in this section.

Experimental top

Single crystals of betulin 3,28-di-O-tosyl­ate were grown from a hexanes/di­chloro­methane (15/1) solution by slow evaporation at ambient temperature. 1H-NMR and 13C-NMR spectra were recorded at 400 MHz and at 100.6 MHz, respectively. The proton signals for residual non-deuterated solvents (δ 7.26 for CDCl3) and carbon signals (δ 77.1 for CDCl3) were used as an inter­nal references for 1H-NMR and 13C-NMR spectra, respectively. Coupling constants are reported in Hz. Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates precoated with a 0.25 mm thickness of silica gel. Preparative flash chromatography was performed on silica gel (60 Å, 40-63 µm, ROCC). Melting points were recorded with a Fisher Digital Melting Point Analyzer Model 355 apparatus. IR spectra were recorded in KBr with FT—IR Perkin Elmer Spectrum BX. Optical rotations were measured at 20 °C on a Anton Paar MCP 500 polarimeter using a sodium lamp as the light source (589 nm). Dry pyridine was obtained by distillation over CaH2. Commercially available reagents were used as received.

Betulin 3,28-di-O-tosyl­ate. Tosyl chloride (1.08 g, 5.67 mmol, 2.50 equiv.) was added to a stirred solution of betulin (1.00 g, 2.26 mmol, 1.00 equiv.) and 4-di­methyl­amino­pyridine (DMAP; 25 mg, 0.2 mmol, 0.09 equiv.) in pyridine (10 mL) at ambient temperature. The resulting reaction mixture was stirred at ambient temperature for 72 h. Then pyridine was evaporated under reduced pressure keeping the water bath temperature below 35 °C. Toluene (10 mL) was added to the residue and the resulting mixture was evaporated under reduced pressure. Additional amount of toluene (2 × 10 mL) was added and the evaporation was repeated. This process removes the residual pyridine via azeotrope distillation. The resulting residue was directly transferred to silica gel column and chromatographed with EtOAc/hexanes (3/97). The fraction corresponding to Rf =0.40 (EtOAc/hexanes 1:5) was collected and the obtained colorless powder (0.25 g, 15%) was crystallized from the hexanes/di­chloro­methane (15/1) solution by slow evaporation at ambient temperature to provide single crystals of betulin 3,28-di-O-tosyl­ate. Other fractions (1.10 g) contained the title product together with its mono-tosyl congeners.

Data for betulin 3,28-di-O-tosyl­ate: M.p. 130 °C (decomp.); [α]D20 = 24.2 (c = 0.40, CHCl3). IR (KBr), ν, cm-1: 2940, 2875, 1460, 1365, 1190, 1175, 1100, 960; 1H NMR (400 MHz, CDCl3), δ (ppm): 7.80 (d, 2H, 3J=7.8 Hz, H—C(Ar)), 7.78 (d, 2H, 3J=7.8 Hz, H—C(Ar)), 7.35 (d, 2H, 3J=7.8 Hz, H—C(Ar)), 7.31 (d, 2H, 3J=8.2 Hz, H—C(Ar)), 4.63 (bd, 1H, 2J=1.8 Hz, Ha—C(29)), 4.57-4.56 (m, 1H, Hb—C(29)), 4.19 (dd, 1H, 3J=11.7 Hz, 3J=5.1 Hz, H—C(3)), 4.05, 3.73 (2d, AB syst., 2H, 2J=9.4 Hz, H—C(28)), 2.45, 2.43 (2s, 6H, H3C-(Ts)), 2.27 (dt, 1H, 3J=11.0 Hz, 3J=5.6 Hz, H—C(19)), 1.85-0.64 (m, 42H; including: 1.63, 0.88 (2s, 6H); 0.781, 0.777, 0.773 (3s, 9H), 0.75 (s, 3H)); 13C NMR (100.6 MHz, CDCl3), δ (ppm): 149.6, 144.7, 144.2, 134.9, 132.8, 129.8 129.6, 128.0, 127.6, 110.1, 90.9, 69.2, 55.5, 50.0, 48.6, 47.6, 46.7, 42.5, 40.6, 38.6, 38.5, 37.6, 36.8, 34.1, 33.9, 29.2, 29.1, 27.8, 26.5, 24.9, 24.8, 21.6 (2C), 20.7, 19.0, 18.2, 16.2, 16.0, 15.7, 14.6.

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 Å to 0.98 Å and refined as riding on their parent atoms with Uiso (H) = 1.5Ueq (C) for methyl groups and Uiso (H) = 1.2Ueq (C) for others.

There are 21 reflections with intensities affected by the beamstop; these were removed from the final refinement since they are in systematic error.

Related literature top

For the first synthesis of betulin 3,28-di-O-tosylate, see: Anjaneyulu et al. (1980). For natural occurrence and isolation of betulin and related terpenoides, see: Krasutsky (2006). For the biological activity of natural and semisynthetic lupane terpenoides including betulin derivatives, see: Tolstikova et al. (2006a,b);Tundis et al. (2014). For some of the first crystal data for the betulin series, see: 3β-lup-20 (29)-ene-3,28-diol diacetate (betulin 3,28-di-O-acetate; Abbot et al.,1958). For other crystal structures of related betulin derivatives with substituents on the O atoms at C3 and C28, see: Kommera et al. (2010); Trishin et al. (2010); Boryczka et al. (2013). For recent crystal structures of betulin and its solvates, see: Drebushchak et al. (2013); Drebushchak et al. (2010); Boryczka et al. (2012). For standard bond lengths, see: Allen et al. (1987). The nature of hydrogen bonding is described by Gilli (2002).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: SCALEPACK (Otwinovski & Minor, 1997); data reduction: DENZO (Otwinovski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 50% probability displacement ellipsoids and the atom-numbering. Hydrogen atoms are shown as small spheres of arbitrary radii.
(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-5a,5b,8,8,11a-Pentamethyl-1-(prop-1-en-2-yl)-3a-[(tosyloxy)methyl]icosahydro-1H-cyclopenta[a]chrysen-9-yl 4-methylbenzenesulfonate top
Crystal data top
C44H62O6S2Dx = 1.248 Mg m3
Mr = 751.08Melting point: 403 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 35297 reflections
a = 6.9824 (1) Åθ = 1.0–27.9°
b = 18.2035 (4) ŵ = 0.18 mm1
c = 31.4449 (9) ÅT = 173 K
V = 3996.78 (16) Å3Needle, colorless
Z = 40.11 × 0.03 × 0.03 mm
F(000) = 1624
Data collection top
Nonius KappaCCD
diffractometer
4887 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeθmax = 27.8°, θmin = 2.3°
Graphite monochromatorh = 99
CCD scansk = 2323
9235 measured reflectionsl = 4041
9235 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0406P)2 + 1.1649P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
9235 reflectionsΔρmax = 0.26 e Å3
477 parametersΔρmin = 0.33 e Å3
0 restraintsAbsolute structure: Flack (1983), 3968 Friedel pairs
0 constraintsAbsolute structure parameter: 0.07 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
C44H62O6S2V = 3996.78 (16) Å3
Mr = 751.08Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9824 (1) ŵ = 0.18 mm1
b = 18.2035 (4) ÅT = 173 K
c = 31.4449 (9) Å0.11 × 0.03 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
9235 independent reflections
9235 measured reflections4887 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.142Δρmax = 0.26 e Å3
S = 1.01Δρmin = 0.33 e Å3
9235 reflectionsAbsolute structure: Flack (1983), 3968 Friedel pairs
477 parametersAbsolute structure parameter: 0.07 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2440 (5)0.7646 (2)0.13908 (14)0.0270 (10)
H1A1.37580.75960.12970.032*
H1B1.17240.78680.11600.032*
C21.2389 (5)0.8165 (2)0.17714 (14)0.0299 (11)
H2B1.28160.86500.16860.036*
H2A1.32460.79860.19910.036*
C31.0351 (5)0.8208 (2)0.19443 (13)0.0262 (10)
H30.95150.84040.17210.031*
C40.9545 (5)0.7472 (2)0.20942 (12)0.0211 (9)
C50.9623 (5)0.6960 (2)0.16969 (13)0.0203 (9)
H50.88180.72040.14840.024*
C60.8693 (5)0.6208 (2)0.17625 (13)0.0204 (10)
H6A0.95490.58960.19250.024*
H6B0.75160.62650.19230.024*
C70.8261 (5)0.5848 (2)0.13390 (13)0.0248 (11)
H7B0.72910.61350.11940.030*
H7A0.77300.53630.13910.030*
C81.0016 (5)0.5769 (2)0.10437 (13)0.0206 (9)
C91.1168 (5)0.6507 (2)0.10316 (13)0.0213 (10)
H91.03150.68570.08890.026*
C101.1617 (5)0.6869 (2)0.14760 (13)0.0214 (10)
C111.2908 (5)0.6442 (2)0.07366 (14)0.0286 (11)
H11A1.35050.69210.07110.034*
H11B1.38330.61130.08660.034*
C121.2429 (5)0.6157 (2)0.02906 (14)0.0277 (11)
H12A1.36110.60540.01400.033*
H12B1.17530.65370.01350.033*
C131.1188 (5)0.5455 (2)0.02990 (13)0.0222 (10)
H131.19390.50780.04460.027*
C140.9334 (5)0.5586 (2)0.05728 (13)0.0227 (10)
C150.8006 (5)0.4902 (2)0.05702 (14)0.0262 (11)
H15A0.85430.45370.07600.031*
H15B0.67690.50440.06840.031*
C160.7695 (5)0.4547 (2)0.01360 (13)0.0259 (10)
H16A0.69000.48660.00370.031*
H16B0.70180.40860.01730.031*
C170.9584 (5)0.4402 (2)0.00960 (13)0.0249 (10)
C181.0655 (5)0.5138 (2)0.01344 (13)0.0259 (10)
H180.97580.54860.02640.031*
C191.2249 (6)0.4991 (2)0.04710 (14)0.0289 (11)
H191.33440.47680.03250.035*
C201.2967 (6)0.5640 (2)0.07193 (14)0.0341 (12)
C211.1336 (5)0.4397 (3)0.07636 (14)0.0327 (11)
H21A1.11220.45960.10460.039*
H21B1.21830.39760.07880.039*
C220.9419 (5)0.4165 (2)0.05622 (13)0.0296 (11)
H22A0.83540.44100.07000.036*
H22B0.92380.36380.05840.036*
C230.7438 (5)0.7597 (2)0.22178 (14)0.0341 (11)
H23A0.73570.79930.24190.051*
H23B0.69320.71570.23430.051*
H23C0.67110.77190.19690.051*
C241.0565 (6)0.7175 (2)0.24903 (15)0.0355 (12)
H24A1.19230.71700.24420.053*
H24B1.01310.66840.25470.053*
H24C1.02810.74830.27300.053*
C251.3102 (5)0.6440 (2)0.17375 (14)0.0272 (11)
H25A1.40780.62530.15520.041*
H25B1.24830.60380.18800.041*
H25C1.36710.67600.19440.041*
C261.1239 (5)0.5136 (2)0.12257 (13)0.0259 (10)
H26A1.11910.51490.15310.039*
H26B1.25410.51920.11330.039*
H26C1.07440.46750.11270.039*
C270.8145 (5)0.6219 (2)0.03740 (14)0.0260 (11)
H27A0.76120.60590.01080.039*
H27B0.89590.66360.03260.039*
H27C0.71290.63530.05640.039*
C281.0801 (5)0.3841 (2)0.01470 (14)0.0288 (11)
H28A1.20770.38190.00260.035*
H28B1.09120.39860.04430.035*
C291.4816 (7)0.5723 (3)0.08026 (15)0.0550 (15)
H29A1.56940.53760.07070.066*
H19B1.52350.61280.09570.066*
C301.1497 (7)0.6159 (3)0.09078 (17)0.0626 (17)
H30A1.21270.65050.10910.094*
H30B1.08580.64190.06830.094*
H30C1.05760.58840.10690.094*
O311.0355 (4)0.87278 (14)0.23064 (9)0.0304 (7)
O320.8911 (4)0.96763 (17)0.27028 (11)0.0481 (9)
O330.7673 (4)0.94160 (18)0.19878 (11)0.0491 (9)
S340.92414 (15)0.94805 (6)0.22731 (4)0.0342 (3)
C351.0920 (6)1.0093 (2)0.20621 (15)0.0318 (11)
C361.0496 (7)1.0516 (3)0.17126 (15)0.0446 (13)
H360.93531.04410.15670.054*
C371.1759 (9)1.1051 (3)0.15772 (18)0.0576 (16)
H371.14451.13430.13450.069*
C381.3481 (9)1.1156 (3)0.17832 (19)0.0520 (15)
C391.3917 (7)1.0712 (3)0.21182 (18)0.0509 (15)
H391.50961.07670.22520.061*
C401.2667 (6)1.0181 (3)0.22667 (16)0.0406 (12)
H401.29900.98890.24990.049*
C411.4852 (10)1.1756 (3)0.16420 (19)0.087 (2)
H41A1.47381.21700.18290.131*
H41B1.45431.19040.13570.131*
H41C1.61411.15730.16500.131*
O420.9875 (4)0.31153 (15)0.01169 (9)0.0296 (7)
O430.9399 (4)0.18894 (16)0.03501 (10)0.0404 (8)
O441.2059 (3)0.26027 (16)0.06542 (9)0.0358 (8)
S451.01383 (14)0.25713 (6)0.04993 (4)0.0301 (3)
C460.8623 (6)0.2946 (2)0.08920 (14)0.0289 (11)
C470.6685 (6)0.3034 (2)0.08074 (15)0.0317 (12)
H470.61670.28660.05530.038*
C480.5538 (6)0.3373 (2)0.11046 (15)0.0355 (12)
H480.42430.34410.10470.043*
C490.6285 (6)0.3617 (2)0.14898 (15)0.0324 (12)
C500.8201 (6)0.3507 (3)0.15726 (14)0.0326 (11)
H500.87050.36560.18320.039*
C510.9387 (6)0.3177 (2)0.12759 (14)0.0323 (11)
H511.06820.31120.13340.039*
C520.5011 (7)0.3981 (3)0.18128 (15)0.0469 (13)
H52A0.37030.38470.17600.070*
H52B0.51460.45040.17920.070*
H52C0.53720.38240.20930.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (2)0.028 (3)0.030 (3)0.0074 (19)0.0076 (19)0.001 (2)
C20.025 (2)0.026 (3)0.039 (3)0.0111 (19)0.002 (2)0.007 (2)
C30.032 (2)0.024 (2)0.023 (3)0.0012 (19)0.003 (2)0.009 (2)
C40.020 (2)0.024 (2)0.019 (2)0.0028 (17)0.0033 (16)0.004 (2)
C50.017 (2)0.025 (2)0.019 (2)0.0004 (17)0.0033 (17)0.001 (2)
C60.021 (2)0.019 (2)0.021 (3)0.0012 (17)0.0040 (18)0.002 (2)
C70.022 (2)0.023 (2)0.030 (3)0.0030 (17)0.001 (2)0.001 (2)
C80.018 (2)0.020 (2)0.023 (2)0.0004 (17)0.0017 (19)0.0057 (19)
C90.017 (2)0.019 (2)0.028 (3)0.0028 (17)0.0007 (18)0.002 (2)
C100.017 (2)0.022 (2)0.025 (3)0.0034 (17)0.0021 (18)0.002 (2)
C110.021 (2)0.031 (3)0.034 (3)0.0059 (18)0.004 (2)0.006 (2)
C120.022 (2)0.032 (3)0.029 (3)0.001 (2)0.002 (2)0.000 (2)
C130.023 (2)0.024 (2)0.020 (2)0.0036 (18)0.0018 (18)0.000 (2)
C140.018 (2)0.028 (2)0.022 (2)0.0002 (17)0.0049 (18)0.001 (2)
C150.018 (2)0.031 (3)0.030 (3)0.0002 (17)0.0038 (19)0.008 (2)
C160.028 (2)0.025 (2)0.025 (3)0.0002 (19)0.0016 (19)0.003 (2)
C170.021 (2)0.032 (3)0.022 (3)0.0029 (18)0.0023 (18)0.008 (2)
C180.028 (2)0.027 (3)0.023 (3)0.0101 (18)0.000 (2)0.000 (2)
C190.029 (2)0.035 (3)0.023 (3)0.0067 (19)0.002 (2)0.001 (2)
C200.046 (3)0.034 (3)0.022 (3)0.004 (2)0.007 (2)0.002 (2)
C210.034 (2)0.041 (3)0.023 (3)0.006 (2)0.001 (2)0.003 (2)
C220.026 (2)0.037 (3)0.026 (3)0.0029 (18)0.004 (2)0.004 (2)
C230.034 (2)0.032 (3)0.036 (3)0.004 (2)0.013 (2)0.011 (2)
C240.043 (3)0.028 (3)0.035 (3)0.006 (2)0.002 (2)0.001 (2)
C250.023 (2)0.030 (3)0.028 (3)0.0003 (18)0.002 (2)0.002 (2)
C260.034 (2)0.021 (2)0.023 (3)0.0017 (19)0.002 (2)0.002 (2)
C270.020 (2)0.031 (3)0.027 (3)0.0007 (18)0.0012 (19)0.000 (2)
C280.030 (2)0.029 (3)0.027 (3)0.010 (2)0.004 (2)0.003 (2)
C290.058 (3)0.069 (4)0.038 (3)0.014 (3)0.005 (3)0.014 (3)
C300.087 (4)0.057 (4)0.044 (4)0.026 (3)0.024 (3)0.025 (3)
O310.0409 (17)0.0240 (16)0.0263 (18)0.0003 (13)0.0001 (14)0.0059 (15)
O320.060 (2)0.043 (2)0.041 (2)0.0113 (16)0.0168 (18)0.0135 (19)
O330.0344 (17)0.048 (2)0.065 (3)0.0101 (16)0.0103 (17)0.015 (2)
S340.0377 (7)0.0292 (7)0.0358 (8)0.0009 (5)0.0062 (6)0.0095 (6)
C350.038 (3)0.026 (3)0.032 (3)0.002 (2)0.007 (2)0.004 (2)
C360.068 (3)0.038 (3)0.028 (3)0.003 (3)0.001 (3)0.003 (3)
C370.107 (5)0.036 (4)0.029 (3)0.003 (3)0.003 (3)0.005 (3)
C380.086 (4)0.027 (3)0.043 (4)0.003 (3)0.031 (3)0.004 (3)
C390.047 (3)0.044 (3)0.062 (4)0.009 (3)0.016 (3)0.008 (3)
C400.044 (3)0.034 (3)0.043 (3)0.001 (2)0.004 (3)0.006 (3)
C410.146 (6)0.043 (3)0.072 (5)0.037 (4)0.054 (5)0.014 (3)
O420.0373 (15)0.0265 (16)0.0249 (17)0.0048 (13)0.0001 (14)0.0024 (15)
O430.0462 (18)0.0261 (18)0.049 (2)0.0067 (14)0.0029 (16)0.0075 (17)
O440.0289 (16)0.0369 (19)0.042 (2)0.0036 (13)0.0039 (14)0.0044 (18)
S450.0314 (6)0.0268 (6)0.0321 (7)0.0035 (5)0.0012 (5)0.0027 (6)
C460.033 (3)0.027 (3)0.027 (3)0.0076 (19)0.004 (2)0.002 (2)
C470.029 (2)0.038 (3)0.029 (3)0.009 (2)0.000 (2)0.006 (2)
C480.024 (2)0.042 (3)0.041 (3)0.007 (2)0.000 (2)0.005 (3)
C490.035 (3)0.033 (3)0.030 (3)0.006 (2)0.007 (2)0.003 (2)
C500.043 (3)0.037 (3)0.018 (3)0.006 (2)0.003 (2)0.001 (2)
C510.037 (3)0.032 (3)0.028 (3)0.006 (2)0.006 (2)0.006 (2)
C520.048 (3)0.056 (3)0.037 (3)0.007 (3)0.005 (3)0.004 (3)
Geometric parameters (Å, º) top
C1—C21.525 (6)C22—H22B0.9700
C1—C101.550 (5)C23—H23A0.9600
C1—H1A0.9700C23—H23B0.9600
C1—H1B0.9700C23—H23C0.9600
C2—C31.526 (5)C24—H24A0.9600
C2—H2B0.9700C24—H24B0.9600
C2—H2A0.9700C24—H24C0.9600
C3—O311.481 (4)C25—H25A0.9600
C3—C41.527 (5)C25—H25B0.9600
C3—H30.9800C25—H25C0.9600
C4—C241.534 (5)C26—H26A0.9600
C4—C231.538 (5)C26—H26B0.9600
C4—C51.560 (5)C26—H26C0.9600
C5—C61.530 (5)C27—H27A0.9600
C5—C101.565 (5)C27—H27B0.9600
C5—H50.9800C27—H27C0.9600
C6—C71.515 (5)C28—O421.474 (5)
C6—H6A0.9700C28—H28A0.9700
C6—H6B0.9700C28—H28B0.9700
C7—C81.544 (5)C29—H29A0.9300
C7—H7B0.9700C29—H19B0.9300
C7—H7A0.9700C30—H30A0.9600
C8—C261.543 (5)C30—H30B0.9600
C8—C91.567 (5)C30—H30C0.9600
C8—C141.591 (5)O31—S341.579 (3)
C9—C111.533 (5)O32—S341.416 (3)
C9—C101.577 (6)O33—S341.421 (3)
C9—H90.9800S34—C351.748 (4)
C10—C251.537 (5)C35—C361.374 (6)
C11—C121.532 (6)C35—C401.388 (6)
C11—H11A0.9700C36—C371.381 (7)
C11—H11B0.9700C36—H360.9300
C12—C131.544 (5)C37—C381.379 (7)
C12—H12A0.9700C37—H370.9300
C12—H12B0.9700C38—C391.363 (7)
C13—C181.526 (5)C38—C411.519 (7)
C13—C141.573 (5)C39—C401.383 (6)
C13—H130.9800C39—H390.9300
C14—C271.551 (5)C40—H400.9300
C14—C151.552 (5)C41—H41A0.9600
C15—C161.527 (5)C41—H41B0.9600
C15—H15A0.9700C41—H41C0.9600
C15—H15B0.9700O42—S451.569 (3)
C16—C171.530 (5)O43—S451.424 (3)
C16—H16A0.9700O44—S451.428 (3)
C16—H16B0.9700S45—C461.763 (4)
C17—C221.533 (5)C46—C511.386 (6)
C17—C281.533 (6)C46—C471.388 (6)
C17—C181.539 (5)C47—C481.377 (6)
C18—C191.559 (5)C47—H470.9300
C18—H180.9800C48—C491.391 (6)
C19—C201.502 (6)C48—H480.9300
C19—C211.557 (6)C49—C501.377 (5)
C19—H190.9800C49—C521.504 (6)
C20—C291.326 (6)C50—C511.384 (6)
C20—C301.516 (6)C50—H500.9300
C21—C221.540 (5)C51—H510.9300
C21—H21A0.9700C52—H52A0.9600
C21—H21B0.9700C52—H52B0.9600
C22—H22A0.9700C52—H52C0.9600
C2—C1—C10114.9 (3)C22—C21—H21A110.2
C2—C1—H1A108.6C19—C21—H21A110.2
C10—C1—H1A108.6C22—C21—H21B110.2
C2—C1—H1B108.6C19—C21—H21B110.2
C10—C1—H1B108.6H21A—C21—H21B108.5
H1A—C1—H1B107.5C17—C22—C21104.5 (3)
C1—C2—C3109.5 (3)C17—C22—H22A110.8
C1—C2—H2B109.8C21—C22—H22A110.8
C3—C2—H2B109.8C17—C22—H22B110.8
C1—C2—H2A109.8C21—C22—H22B110.8
C3—C2—H2A109.8H22A—C22—H22B108.9
H2B—C2—H2A108.2C4—C23—H23A109.5
O31—C3—C2107.8 (3)C4—C23—H23B109.5
O31—C3—C4108.9 (3)H23A—C23—H23B109.5
C2—C3—C4114.1 (3)C4—C23—H23C109.5
O31—C3—H3108.6H23A—C23—H23C109.5
C2—C3—H3108.6H23B—C23—H23C109.5
C4—C3—H3108.6C4—C24—H24A109.5
C3—C4—C24112.9 (3)C4—C24—H24B109.5
C3—C4—C23107.5 (3)H24A—C24—H24B109.5
C24—C4—C23106.9 (3)C4—C24—H24C109.5
C3—C4—C5105.3 (3)H24A—C24—H24C109.5
C24—C4—C5115.0 (3)H24B—C24—H24C109.5
C23—C4—C5108.9 (3)C10—C25—H25A109.5
C6—C5—C4114.4 (3)C10—C25—H25B109.5
C6—C5—C10110.0 (3)H25A—C25—H25B109.5
C4—C5—C10116.7 (3)C10—C25—H25C109.5
C6—C5—H5104.8H25A—C25—H25C109.5
C4—C5—H5104.8H25B—C25—H25C109.5
C10—C5—H5104.8C8—C26—H26A109.5
C7—C6—C5110.7 (3)C8—C26—H26B109.5
C7—C6—H6A109.5H26A—C26—H26B109.5
C5—C6—H6A109.5C8—C26—H26C109.5
C7—C6—H6B109.5H26A—C26—H26C109.5
C5—C6—H6B109.5H26B—C26—H26C109.5
H6A—C6—H6B108.1C14—C27—H27A109.5
C6—C7—C8114.2 (3)C14—C27—H27B109.5
C6—C7—H7B108.7H27A—C27—H27B109.5
C8—C7—H7B108.7C14—C27—H27C109.5
C6—C7—H7A108.7H27A—C27—H27C109.5
C8—C7—H7A108.7H27B—C27—H27C109.5
H7B—C7—H7A107.6O42—C28—C17108.8 (3)
C26—C8—C7106.6 (3)O42—C28—H28A109.9
C26—C8—C9111.4 (3)C17—C28—H28A109.9
C7—C8—C9110.0 (3)O42—C28—H28B109.9
C26—C8—C14110.8 (3)C17—C28—H28B109.9
C7—C8—C14110.0 (3)H28A—C28—H28B108.3
C9—C8—C14108.1 (3)C20—C29—H29A120.0
C11—C9—C8110.8 (3)C20—C29—H19B120.0
C11—C9—C10114.3 (3)H29A—C29—H19B120.0
C8—C9—C10116.0 (3)C20—C30—H30A109.5
C11—C9—H9104.8C20—C30—H30B109.5
C8—C9—H9104.8H30A—C30—H30B109.5
C10—C9—H9104.8C20—C30—H30C109.5
C25—C10—C1107.8 (3)H30A—C30—H30C109.5
C25—C10—C5114.6 (3)H30B—C30—H30C109.5
C1—C10—C5108.1 (3)C3—O31—S34120.2 (2)
C25—C10—C9113.3 (3)O32—S34—O33119.9 (2)
C1—C10—C9107.6 (3)O32—S34—O31103.60 (18)
C5—C10—C9105.1 (3)O33—S34—O31110.48 (17)
C12—C11—C9114.0 (3)O32—S34—C35108.1 (2)
C12—C11—H11A108.7O33—S34—C35109.3 (2)
C9—C11—H11A108.7O31—S34—C35104.37 (18)
C12—C11—H11B108.7C36—C35—C40119.7 (4)
C9—C11—H11B108.7C36—C35—S34121.1 (4)
H11A—C11—H11B107.6C40—C35—S34119.1 (4)
C11—C12—C13112.8 (3)C35—C36—C37120.2 (5)
C11—C12—H12A109.0C35—C36—H36119.9
C13—C12—H12A109.0C37—C36—H36119.9
C11—C12—H12B109.0C38—C37—C36120.7 (5)
C13—C12—H12B109.0C38—C37—H37119.7
H12A—C12—H12B107.8C36—C37—H37119.7
C18—C13—C12115.7 (3)C39—C38—C37118.3 (5)
C18—C13—C14110.2 (3)C39—C38—C41120.8 (6)
C12—C13—C14110.2 (3)C37—C38—C41120.8 (6)
C18—C13—H13106.7C38—C39—C40122.3 (5)
C12—C13—H13106.7C38—C39—H39118.8
C14—C13—H13106.7C40—C39—H39118.8
C27—C14—C15105.9 (3)C39—C40—C35118.6 (5)
C27—C14—C13109.4 (3)C39—C40—H40120.7
C15—C14—C13111.6 (3)C35—C40—H40120.7
C27—C14—C8112.3 (3)C38—C41—H41A109.5
C15—C14—C8110.6 (3)C38—C41—H41B109.5
C13—C14—C8107.1 (3)H41A—C41—H41B109.5
C16—C15—C14115.5 (3)C38—C41—H41C109.5
C16—C15—H15A108.4H41A—C41—H41C109.5
C14—C15—H15A108.4H41B—C41—H41C109.5
C16—C15—H15B108.4C28—O42—S45117.7 (2)
C14—C15—H15B108.4O43—S45—O44119.19 (18)
H15A—C15—H15B107.5O43—S45—O42104.79 (17)
C15—C16—C17112.1 (3)O44—S45—O42110.26 (17)
C15—C16—H16A109.2O43—S45—C46110.50 (19)
C17—C16—H16A109.2O44—S45—C46108.02 (19)
C15—C16—H16B109.2O42—S45—C46102.85 (18)
C17—C16—H16B109.2C51—C46—C47120.5 (4)
H16A—C16—H16B107.9C51—C46—S45119.8 (3)
C16—C17—C22116.1 (3)C47—C46—S45119.7 (4)
C16—C17—C28110.8 (3)C48—C47—C46119.3 (4)
C22—C17—C28109.3 (3)C48—C47—H47120.4
C16—C17—C18107.9 (3)C46—C47—H47120.4
C22—C17—C18102.0 (3)C47—C48—C49121.0 (4)
C28—C17—C18110.5 (3)C47—C48—H48119.5
C13—C18—C17112.2 (3)C49—C48—H48119.5
C13—C18—C19119.8 (3)C50—C49—C48118.9 (4)
C17—C18—C19104.6 (3)C50—C49—C52120.7 (4)
C13—C18—H18106.5C48—C49—C52120.4 (4)
C17—C18—H18106.5C49—C50—C51121.1 (4)
C19—C18—H18106.5C49—C50—H50119.4
C20—C19—C21112.1 (4)C51—C50—H50119.4
C20—C19—C18117.2 (3)C50—C51—C46119.2 (4)
C21—C19—C18103.2 (3)C50—C51—H51120.4
C20—C19—H19108.0C46—C51—H51120.4
C21—C19—H19108.0C49—C52—H52A109.5
C18—C19—H19108.0C49—C52—H52B109.5
C29—C20—C19121.2 (4)H52A—C52—H52B109.5
C29—C20—C30120.7 (4)C49—C52—H52C109.5
C19—C20—C30117.9 (4)H52A—C52—H52C109.5
C22—C21—C19107.7 (3)H52B—C52—H52C109.5
C10—C1—C2—C354.2 (5)C12—C13—C18—C17174.6 (3)
C1—C2—C3—O31178.8 (3)C14—C13—C18—C1759.4 (4)
C1—C2—C3—C460.2 (5)C12—C13—C18—C1951.5 (5)
O31—C3—C4—C2452.9 (4)C14—C13—C18—C19177.4 (3)
C2—C3—C4—C2467.5 (5)C16—C17—C18—C1363.3 (4)
O31—C3—C4—C2364.8 (4)C22—C17—C18—C13174.0 (3)
C2—C3—C4—C23174.8 (3)C28—C17—C18—C1358.0 (4)
O31—C3—C4—C5179.2 (3)C16—C17—C18—C19165.4 (3)
C2—C3—C4—C558.7 (4)C22—C17—C18—C1942.7 (4)
C3—C4—C5—C6174.3 (3)C28—C17—C18—C1973.4 (4)
C24—C4—C5—C660.8 (4)C13—C18—C19—C2079.4 (5)
C23—C4—C5—C659.2 (4)C17—C18—C19—C20153.8 (4)
C3—C4—C5—C1055.2 (4)C13—C18—C19—C21156.9 (4)
C24—C4—C5—C1069.7 (4)C17—C18—C19—C2130.2 (4)
C23—C4—C5—C10170.3 (3)C21—C19—C20—C29102.1 (5)
C4—C5—C6—C7161.9 (3)C18—C19—C20—C29138.9 (4)
C10—C5—C6—C764.4 (4)C21—C19—C20—C3072.2 (5)
C5—C6—C7—C855.8 (4)C18—C19—C20—C3046.8 (6)
C6—C7—C8—C2674.7 (4)C20—C19—C21—C22133.3 (4)
C6—C7—C8—C946.2 (4)C18—C19—C21—C226.4 (4)
C6—C7—C8—C14165.2 (3)C16—C17—C22—C21155.0 (4)
C26—C8—C9—C1162.5 (4)C28—C17—C22—C2178.9 (4)
C7—C8—C9—C11179.5 (3)C18—C17—C22—C2138.0 (4)
C14—C8—C9—C1159.4 (4)C19—C21—C22—C1719.7 (4)
C26—C8—C9—C1069.9 (4)C16—C17—C28—O4269.6 (4)
C7—C8—C9—C1048.0 (4)C22—C17—C28—O4259.5 (4)
C14—C8—C9—C10168.2 (3)C18—C17—C28—O42170.9 (3)
C2—C1—C10—C2575.4 (4)C2—C3—O31—S34113.4 (3)
C2—C1—C10—C549.1 (4)C4—C3—O31—S34122.3 (3)
C2—C1—C10—C9162.1 (3)C3—O31—S34—O32157.5 (3)
C6—C5—C10—C2563.3 (4)C3—O31—S34—O3327.9 (3)
C4—C5—C10—C2569.2 (5)C3—O31—S34—C3589.5 (3)
C6—C5—C10—C1176.5 (3)O32—S34—C35—C36121.6 (4)
C4—C5—C10—C151.1 (4)O33—S34—C35—C3610.4 (4)
C6—C5—C10—C961.8 (4)O31—S34—C35—C36128.6 (4)
C4—C5—C10—C9165.7 (3)O32—S34—C35—C4054.7 (4)
C11—C9—C10—C2560.4 (4)O33—S34—C35—C40173.3 (3)
C8—C9—C10—C2570.4 (4)O31—S34—C35—C4055.1 (4)
C11—C9—C10—C158.7 (4)C40—C35—C36—C373.1 (7)
C8—C9—C10—C1170.5 (3)S34—C35—C36—C37173.2 (4)
C11—C9—C10—C5173.7 (3)C35—C36—C37—C381.6 (8)
C8—C9—C10—C555.5 (4)C36—C37—C38—C391.1 (8)
C8—C9—C11—C1252.1 (5)C36—C37—C38—C41178.5 (5)
C10—C9—C11—C12174.6 (3)C37—C38—C39—C402.4 (8)
C9—C11—C12—C1349.4 (5)C41—C38—C39—C40177.2 (5)
C11—C12—C13—C18179.9 (3)C38—C39—C40—C351.0 (7)
C11—C12—C13—C1454.2 (4)C36—C35—C40—C391.9 (7)
C18—C13—C14—C2768.5 (4)S34—C35—C40—C39174.5 (3)
C12—C13—C14—C2760.5 (4)C17—C28—O42—S45149.0 (3)
C18—C13—C14—C1548.3 (4)C28—O42—S45—O43170.0 (3)
C12—C13—C14—C15177.3 (3)C28—O42—S45—O4440.6 (3)
C18—C13—C14—C8169.5 (3)C28—O42—S45—C4674.4 (3)
C12—C13—C14—C861.5 (4)O43—S45—C46—C51129.6 (4)
C26—C8—C14—C27178.4 (3)O44—S45—C46—C512.4 (4)
C7—C8—C14—C2764.0 (4)O42—S45—C46—C51119.0 (4)
C9—C8—C14—C2756.1 (4)O43—S45—C46—C4753.1 (4)
C26—C8—C14—C1563.5 (4)O44—S45—C46—C47174.9 (3)
C7—C8—C14—C1554.0 (4)O42—S45—C46—C4758.3 (4)
C9—C8—C14—C15174.2 (3)C51—C46—C47—C481.8 (7)
C26—C8—C14—C1358.3 (4)S45—C46—C47—C48175.6 (3)
C7—C8—C14—C13175.8 (3)C46—C47—C48—C491.1 (7)
C9—C8—C14—C1364.0 (4)C47—C48—C49—C500.6 (7)
C27—C14—C15—C1674.0 (4)C47—C48—C49—C52179.5 (4)
C13—C14—C15—C1645.0 (4)C48—C49—C50—C511.6 (7)
C8—C14—C15—C16164.1 (3)C52—C49—C50—C51179.5 (4)
C14—C15—C16—C1750.1 (5)C49—C50—C51—C460.9 (7)
C15—C16—C17—C22170.3 (4)C47—C46—C51—C500.8 (7)
C15—C16—C17—C2864.3 (5)S45—C46—C51—C50176.5 (3)
C15—C16—C17—C1856.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···O43i0.972.603.428 (5)143
C26—H26A···O32ii0.962.563.473 (5)159
C28—H28A···O43i0.972.393.244 (5)147
C48—H48···O44iii0.932.493.142 (5)128
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+2, y1/2, z+1/2; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···O43i0.972.603.428 (5)143
C26—H26A···O32ii0.962.563.473 (5)159
C28—H28A···O43i0.972.393.244 (5)147
C48—H48···O44iii0.932.493.142 (5)128
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+2, y1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the Latvian-Belarus joint project 11-13/IZM14-18-L8027. The authors thank Syntagon Baltic for analytical support.

References

First citationAbbot, M. T. J., Grove, J. F. & McCloskey, P. (1958). J. Chem. Soc. pp. 1699–1701.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnjaneyulu, A. S. R., Rao, M. N., Sree, A. & Murty, V. S. (1980). Indian J. Chem. Sect. B, 19, 735–738.  Google Scholar
First citationBoryczka, S., Bębenek, E., Wietrzyk, J., Kempińska, K., Jastrzębska, M., Kusz, J. & Nowak, M. (2013). Molecules, 18, 4526–4543.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoryczka, S., Michalik, E., Jastrzębska, M., Kusz, J., Zubko, M. & Bębenek, E. (2012). J. Chem. Crystallogr. 42, 345–351.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrebushchak, T. N., Mikhailenko, M. A., Brezgunova, M. E., Shakhtshneider, T. P. & Kuznetsova, S. A. (2010). J. Struct. Chem. 51, 798–801.  Web of Science CrossRef CAS Google Scholar
First citationDrebushchak, V. A., Mikhailenko, M. A., Shakhtshneider, T. P. & Kuznetsova, S. A. (2013). J. Therm. Anal. Calorim. 111, 2005–2008.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilli, G. (2002). Fundamentals of Crystallography, edited by C. Giacovazzo, pp. 585–666. Oxford Univercity Press.  Google Scholar
First citationKommera, H., Kaluderovic, G. N., Bette, M., Kalbitz, J., Fuchs, P., Fulda, S., Mier, W. & Paschke, R. (2010). Chem.-Biol. Interact. 185, 128–136.  Web of Science CrossRef CAS Google Scholar
First citationKrasutsky, P. A. (2006). Nat. Prod. Rep. 23, 919–942.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinovski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolstikova, T. G., Sorokina, I. V., Tolstikov, G. A., Tolstikov, A. G. & Flekhter, O. B. (2006a). Russ. J. Bioorg. Chem. 32, 261–276.  Web of Science CrossRef CAS Google Scholar
First citationTolstikova, T. G., Sorokina, I. V., Tolstikov, G. A., Tolstikov, A. G. & Flekhter, O. B. (2006b). Russ. J. Bioorg. Chem. 32, 37–49.  Web of Science CrossRef CAS Google Scholar
First citationTrishin, Yu. G., Chernyavskii, G. G., Shafeeva, M. V. & Nelyubina, Yu. V. (2010). Russ. J. Org. Chem. 46, 1490–1492.  Web of Science CrossRef CAS Google Scholar
First citationTundis, R., Menichini, F. & Loizzo, M. R. (2014). Stud. Nat. Prod. Chem. 41, 1–32.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o879-o880
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds