research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 9-(3-bromo-5-chloro-2-hy­droxy­phen­yl)-10-(2-hy­dr­oxy­eth­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione

aChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, and cDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 March 2014; accepted 28 April 2014; online 19 July 2014)

The title compound C25H29BrClNO4, comprises a 3,3,6,6-tetra­methyl­tetra­hydro­acridine-1,8-dione ring system that carries a hy­droxy­ethyl substituent on the acridine N atom and a 3-bromo-5-chloro-2-hy­droxy­phenyl ring on the central methine C atom of the di­hydro­pyridine ring. The benzene ring is inclined to the acridine ring system at an angle of 89.84 (6)° and this conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond between the hy­droxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit. In the crystal, O—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds combine to stack mol­ecules in inter­connected columns propagating along the a-axis direction.

1. Chemical context

Acridine derivatives occupy an important position in medicinal chemistry due to their wide range of biological applications. They exhibit fungicidal (Misra & Bahel, 1984[Misra, V. K. & Bahel, S. C. (1984). J. Indian Chem. Soc. 61, 916-918.]; Srivastava et al., 1985[Srivastava, A., Pathak, R. B. & Bahel, S. C. (1985). J. Indian Chem. Soc. 62, 486-487.]), anti-cancer (Sondhi et al., 2004[Sondhi, S. M., Bhattacharjee, G., Jameel, R. K., Shukla, R., Raghubir, R., Lozach, O. & Meijer, L. (2004). Cent. Eur. J. Chem. 2, 1-15.]; Sugaya et al., 1994[Sugaya, T., Mimura, Y., Shida, Y., Osawa, Y. & Matsukuma, I. (1994). J. Med. Chem. 37, 1028-1032.]; Kimura et al., 1993[Kimura, M., Okabayashi, I. & Kato, A. (1993). J. Heterocycl. Chem. 30, 1101-1104.]), anti-parasitic (Ngadi et al., 1993[Ngadi, L., Bisri, N. G., Mahamoud, A., Galy, A. M., Galy, J. P., Soyfer, J. C., Barbe, J. & Placidi, M. (1993). Arzneim. Forsch. 43, 480-483.]), anti-inflammatory and anti-microbial (Shul'ga et al., 1974[Shul'ga, I. S., Sukhomlinov, A. K., Goncharov, I. A. & Dikaya, E. M. (1974). Farm. Zh. 29, 27-29.]; Gaiukevich et al., 1973[Gaiukevich, N. A., Bashura, G. S., Pestsev, I. M., Pimenov, O. A. & Pyatkop, A. I. (1973). Farm. Zh. 28, 50-54.]) activity. They are also components of effective analgesics (Taraporewala & Kauffman, 1990[Taraporewala, I. B. & Kauffman, J. M. (1990). J. Pharm. Sci. 79, 173-178.]; Gaidukevich et al., 1987[Gaidukevich, A. N., Kazakov, G. P., Kravchenko, A. A., Porokhnyak, L. A. & Dinchuk, V. V. (1987). Khim. Farm. Zh. 21, 1067-1070.]). Other pharmaceutically active acridine derivatives (e.g. Mepacrine, Aza­crine, Proflavine, and Aminacrine) also demonstrate anti­malarial and anti­bacterial activity (Denny et al., 1983[Denny, W. A., Baguley, B. C., Cain, B. F. & Waring, M. J. (1983). Antitumor acridines in molecular aspects of anticancer drug action, edited by S. Neidle & M. J. Waring, pp. 1-34. London: Macmillan.]).

[Scheme 1]
Recently hydro­acridine derivatives were found to have significant anti­microbial activity and to act as potassium channel blockers (Shaikh et al., 2010[Shaikh, B. M., Konda, S. G., Mehare, A. V., Mandawad, G. G., Chobe, S. S. & Dawane, B. S. (2010). Pharma Chem. 2, 25-29.]; Miyase et al., 2009[Miyase, G. G., Ali, E., Dogan, R. S., Kevser, E. & Cihat, S. (2009). Med. Chem. Res. 18, 317-325.]). A recent investigation has also shown hydro­acridines to act as inhibitors of sirtuins (class III NAD-dependent de­acetyl­ases) that are considered to be important targets for cancer thera­peutics (Nakhi et al., 2013[Nakhi, A., Srinivas, P. T. V. A., Rahman, M. S., Kishore, R., Seerapu, G. P. K., Kumar, K. L., Haldar, D., Rao, M. V. B. & Pal, M. (2013). Bioorg. Med. Chem. Lett. 23, 1828-1833.]). In light of this inter­est and as part of our on-going studies of the synthesis and biological assessment of new hydro­acridinone deriv­atives, we report here the synthesis and crystal structure of the title compound, (1).

2. Structural commentary

The structure of (1) is shown in Fig. 1[link]. The 3,3,6,6-tetra­methyl-tetra­hydro­acridine-1,8-dione ring system is substituted at the central methine C9 atom by a 3-bromo-5-chloro-2-hy­droxy­phenyl ring and carries a hy­droxy­ethyl substituent on the acridine N atom. The acridinedione ring system deviates significantly from planarity with an r.m.s. deviation of 0.336 Å for the 13 C atoms and one N atom of the acridine unit. This plane is almost orthogonal to the benzene ring plane [dihedral angle = 89.84 (6)°], a conformation that is stabilized by a strong intra­molecular O92—H92⋯O8 hydrogen bond between the two systems (Table 1[link]). Both the 3-bromo-5-chloro-2-hy­droxy­phenyl and hy­droxy­ethyl substituents point in the same direction with respect to the acridine plane. Furthermore, one methyl group is axial and the other equatorial with respect to the two outer cyclo­hexenone rings of the acridinedione and again, the axial methyl substituents are found on the same face of the acridinedione ring system. Overall this ring system is V-shaped with the substituents mentioned above on the convex surface of the shallow V. The outer cyclo­hexenone rings both adopt flattened chair configurations with the C3 and C6 atoms each 0.646 (4) Å, in the same direction, from the best-fit planes through the remaining five C atoms. In contrast, the central C9/N10/C11–C14 ring can best be described as a flattened boat with C9 and N10 0.423 (4) and 0.154 (4) Å, respectively, from the best-fit plane through the remaining four C atoms. The bond lengths and angles in the mol­ecule of (1) agree reasonably well with those found in closely related mol­ecules (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Khalilov et al., 2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O92—H92⋯O8 0.82 (4) 1.81 (4) 2.613 (3) 166 (4)
O102—H102⋯O1i 0.81 (5) 2.01 (5) 2.808 (3) 167 (5)
C61—H61B⋯Br93ii 0.98 2.87 3.720 (3) 146
C31—H31B⋯O92iii 0.98 2.65 3.532 (4) 150
C5—H5B⋯O92iv 0.99 2.71 3.479 (4) 135
C7—H7A⋯O92iv 0.99 2.44 3.346 (4) 151
C4—H4A⋯Cl95iv 0.99 2.88 3.868 (3) 173
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The structure of (1) with ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure of (1) features O102—H102⋯O1 hydrogen bonds, which link the mol­ecules into zigzag chains parallel to the b axis (Fig. 2[link]). Weak C4—H4A⋯Cl95 together with C5—H5B⋯O92 and C7—H7A⋯O92 hydrogen bonds to the same acceptor oxygen atom form R22(15), R22(13) and R21(6) rings. These, combined with weaker inversion-related C61—H61B⋯Br93 contacts [which in turn generate R22(22) motifs], generate sheets of mol­ecules lying parallel to the ([\overline{4}]21) plane, as shown in Fig. 3[link]. C31—H31B⋯O92 hydrogen bonds form additional chains of mol­ecules along the ac diagonal (Fig. 4[link]). Overall, these inter­actions stack the mol­ecules into inter­connected columns along the a-axis direction (Fig. 5[link]).

[Figure 2]
Figure 2
Zigzag chains of (1) parallel to the b axis with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 1[link]. For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.
[Figure 3]
Figure 3
Sheets of mol­ecules of (1) parallel to ([\overline{4}]21) with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 1[link]. For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.
[Figure 4]
Figure 4
Chains of mol­ecules of (1) along the diagonal of the ac plane with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 1[link]. For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.
[Figure 5]
Figure 5
Overall packing for (1) viewed along the a axis with hydrogen bonds drawn as dashed lines.

4. Database survey

Numerous structures of acridine and its derivatives have been reported previously, with 373 entries in the current database (Version 5.35, November 2013 with 1 update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). However, far fewer structures of derivatives of the seminal hydro­acridine, 3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro-1,8(2H,5H)-acridinedione (Natarajan & Mathews, 2011[Natarajan, S. & Mathews, R. (2011). J. Chem. Crystallogr. 41, 678-683.]) are found with only 25 unique structures of derivatives with an aryl substituent on the methine C atom and an alkyl or aryl substituent on the N atom. Of these, aromatic substituents on the N atom predominate with 15 entries (see, for example, Nakhi et al. 2013[Nakhi, A., Srinivas, P. T. V. A., Rahman, M. S., Kishore, R., Seerapu, G. P. K., Kumar, K. L., Haldar, D., Rao, M. V. B. & Pal, M. (2013). Bioorg. Med. Chem. Lett. 23, 1828-1833.]; Shi et al. 2008[Shi, D.-Q., Ni, S.-N., Fang-Yang, Shi, J.-W., Dou, G.-L., Li, X.-Y. & Wang, X.-S. (2008). J. Heterocycl. Chem. 45, 653-660.]; Wang et al. 2003[Wang, X., Shi, D. & Tu, S. (2003). Acta Cryst. E59, o1139-o1140.]). Two structures, 10-(2-hy­droxy­eth­yl)-9-(2-hy­droxy­phen­yl)-3,3,6,6-tetra­methyl-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]) and 9-(5-bromo-2-hy­droxy­phen­yl)-10-(2-hy­droxy­prop­yl)-3,3,6,6-tetra­methyl-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione (Khalilov et al., 2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.]) closely resemble (1), each with 2-hy­droxy substituents on the aromatic rings that form intra­molecular hydrogen bonds to one of the two keto O atoms in each mol­ecule. In the first instance, the 2-hy­droxy­ethyl substituent on the N atom is identical to that for (1), while the 2-hy­droxy­propyl substituent in the second analogue is closely related.

5. Synthesis and crystallization

A mixture of 1 mmol (235.5 mg) 3-bromo-5-chloro-2-hy­droxy­benzaldehyde, 2 mmol (280 mg) 5,5-di­methyl­cyclo­hexane-1,3-dione and 1 mmol (61 mg) amino-ethanol in 30 ml of ethanol was refluxed for 12 h. The reaction was monitored by TLC until completion. Excess solvent was evaporated under vacuum and the resulting solid product was recrystallized from a mixture of ethanol/acetone (10:1 v:v) to afford yellow needles of the title compound. M.p. 513 K, 82% yield.

IR cm−1: OH phenolic 3400, OH alcoholic 3335, Ar 3001, CH-aliphatic 2882, CO 1694, C=C 1591, C—Br 605, C—Cl 738; 1H NMR: δ 10.01 (s, 1H, OH phenolic), 7.3 (d, 2H, Ar), 6.7 (d, 1H, C9), 5.00 (s, 1H, OH alcoholic), 4.02 (t, 2H, C2), 3.75 (t, 2H, C7), 2.95 (d, 2H, C4), 2.7(d, 2H, C5), 2.2 (m, 4H, ethyl group), 1–1.2 (m, 12H, 4 methyl groups); 13C NMR: δ 199, 200 (C=O, C1, C8), 145, 132 and 130 (C=C Ar), 110, 112 (C=C, in acridine fused rings), 122 (C—N), 62 (C—Br), 73 (C—Cl), 50 (C—OH), 20, 28, 30 and 32 (C—C of CH2CH2 and 4CH3); MS: m/z 522 (100), 523 (30), 524 (100), 525 (30), 443 (56), 363 (39), 271 (42), 175 (29), 94 (74). Analysis calculated for C25H29BrClNO4 (522.85): C 57.43, H 5.59, Br 15.28, Cl 6.78, N 2.68%; found: C 57.41, H 5.60, Br 15.31, Cl 6.81, N 2.71.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms of the two hy­droxy substituents were located in an electron density map and their coordinates were freely refined with Uiso = 1.5Ueq (O). All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å Uiso = 1.2Ueq (C) for aromatic, 0.99 Å, Uiso = 1.2Ueq (C) for methyl­ene, 1.00 Å, Uiso = 1.2Ueq (C) for methine, and 0.98 Å, Uiso = 1.5Ueq (C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C25H29BrClNO4
Mr 522.85
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.5373 (3), 17.1597 (3), 13.7278 (4)
β (°) 107.908 (3)
V3) 2361.96 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.67
Crystal size (mm) 0.19 × 0.07 × 0.06
 
Data collection
Diffractometer Agilent SuperNova (Dual, Cu at zero, Atlas)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.733, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20233, 4922, 4128
Rint 0.076
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.03
No. of reflections 4922
No. of parameters 299
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.57
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Acridine derivatives occupy an important position in medicinal chemistry due to their wide range of biological applications. They exhibit fungicidal (Misra & Bahel, 1984; Srivastava et al., 1985), anti-cancer (Sondhi et al., 2004; Sugaya et al., 1994; Kimura et al., 1993), anti-parasitic (Ngadi et al., 1993), anti-inflammatory and anti-microbial (Shul'ga et al., 1974; Gaiukevich et al., 1973) activity. They are also components of effective analgesics (Taraporewala & Kauffman, 1990; Gaidukevich et al., 1987). Other pharmaceutically active acridine derivatives (e.g. Mepacrine, Aza­crine, Proflavine, and Aminacrine) also demonstrate anti­malarial and anti­bacterial activity (Denny et al., 1983). Recently hydro­acridine derivatives were found to have significant anti­microbial activity and to act as potassium channel blockers (Shaikh et al., 2010; Miyase et al., 2009). A recent investigation has also shown hydro­acridines to act as inhibitors of sirtuins (class III NAD-dependent de­acetyl­ases) that are considered to be important targets for cancer therapeutics (Nakhi et al., 2013). In light of this inter­est and as part of our on-going studies of the synthesis and biological assessment of new hydro­acridinone derivatives, we report here the synthesis and crystal structure of the title compound, (1).

Structural commentary top

The structure of (1) is shown in Fig. 1. The 3,3,6,6-tetra­methyl-tetra­hydro­acridine-1,8-dione ring system is substituted at the central methine C9 atom by a 3-bromo-5-chloro-2-hy­droxy­phenyl ring and carries a hy­droxy­ethyl substituent on the acridine N atom. The acridinedione ring system deviates significantly from planarity with an r.m.s. deviation of 0.336 Å for the 13 C atoms and one N atom of the acridine unit. This plane is almost orthogonal to the benzene ring plane [dihedral angle = 89.84 (6)°], a conformation that is stabilized by a strong intra­molecular O92—H92···O8 hydrogen bond between the two systems (Table 2). Both the 3-bromo-5-chloro-2-hy­droxy­phenyl and hy­droxy­ethyl substituents point in the same direction with respect to the acridine plane. Furthermore, one methyl group is axial and the other equatorial with respect to the two outer cyclo­hexenone rings of the acridinedione and again, the axial methyl substituents are found on the same face of the acridinedione ring system. Overall this ring system is V-shaped with the substituents mentioned above on the convex surface of the shallow V. The outer cyclo­hexenone rings both adopt flattened chair configurations with the C3 and C6 atoms each 0.646 (4) Å, in the same direction, from the best-fit planes through the remaining five C atoms. In contrast, the central C9/N10/C11–C14 ring can best be described as a flattened boat with C9 and N10 0.423 (4) and 0.154 (4) Å, respectively, from the best-fit plane through the remaining four C atoms. The bond lengths and angles in the molecule of (1) agree reasonably well with those found in closely related molecules (Abdelhamid et al., 2011; Khalilov et al., 2011).

Supra­molecular features top

The crystal structure of (1) features O102—H102···O1 hydrogen bonds, which link the molecules into zigzag chains parallel to the c axis (Fig. 2). Weak C4—H4A···Cl95 together with C5—H5B···O92 and C7—H7A···O92 hydrogen bonds to the same acceptor oxygen atom form R22(15), R22(13) and R12(6) rings. These, combined with weaker inversion-related C61—H61B···Br93 contacts [which in turn generate R22(22) motifs], generate sheets of molecules lying parallel to the (421) plane, as shown in Fig. 3. C31—H31B···O92 hydrogen bonds form additional chains of molecules along the ac diagonal (Fig. 4). Overall, these inter­actions stack the molecules into inter­connected columns along the a-axis direction (Fig. 5).

Database survey top

Numerous structures of acridine and its derivatives have been reported previously, with 373 entries in the current database (version 5.35, November 2013 with 1 update; Allen, 2002). However, far fewer structures of derivatives of the seminal hydro­acridine, 3,3,6,6-tetra­methyl-3,4,6,7,9,10- hexa­hydro-1,8(2H,5H)-acridinedione (Natarajan & Mathews, 2011) are found with only 25 unique structures of derivatives with an aryl substituent on the methine C atom and an alkyl or aryl substituent on the N atom. Of these, aromatic substituents on the N atom predominate with 15 entries (see, for example, Nakhi et al. 2013; Shi et al. 2008; Wang et al. 2003). Two structures, 10-(2-hy­droxy­ethyl)-9-(2-hy­droxy­phenyl)-3,3,6,6-tetra­methyl-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione (Abdelhamid et al., 2011) and 9-(5-bromo-2-hy­droxy­phenyl)-10-(2-hy­droxy­propyl)-3,3,6,6-tetra­methyl-1,2,3,4,5,6,7,8,9,10- deca­hydro­acridine-1,8-dione (Khalilov et al., 2011) closely resemble (1), each with 2-hy­droxy substituents on the aromatic rings that form intra­molecular hydrogen bonds to one of the two keto O atoms in each molecule. In the first instance, the 2-hy­droxy­ethyl substituent on the N atom is identical to that for (1), while the 2-hy­droxy­propyl substituent in the second analogue is closely related.

Synthesis and crystallization top

A mixture of 1 mmol (235.5 mg) 3-bromo-5-chloro-2-hy­droxy­benzaldehyde, 2 mmol (280 mg) 5,5-di­methyl­cyclo­hexane-1,3-dione and 1 mmol (61 mg) amino-ethanol in 30 ml of ethanol was refluxed for 12 h. The reaction was monitored by TLC until completion. Excess solvent was evaporated under vacuum and the resulting solid product was recrystallized from a mixture of ethanol/acetone (10:1 v:v) to afford yellow needles of the title compound. M.p. 513 K, 82% yield.

IR cm-1: OH phenolic 3400, OH alcoholic 3335, Ar 3001, CH-aliphatic 2882, CO 1694, CC 1591, C—Br 605, C—Cl 738; 1H NMR: δ 10.01 (s, 1H, OH phenolic), 7.3 (d, 2H, Ar), 6.7 (d, 1H, C9), 5.00 (s, 1H, OH alcoholic), 4.02 (t, 2H, C2), 3.75 (t, 2H, C7), 2.95 (d, 2H, C4), 2.7(d, 2H, C5), 2.2 (m, 4H, ethyl group), 1–1.2 (m, 12H, 4 methyl groups); 13C NMR: d 199, 200 (C O, C1, C8), 145, 132 and 130 (CC Ar), 110, 112 (CC, in acridine fused rings), 122 (C—N), 62 (C—Br), 73 (C—Cl), 50 (C—OH), 20, 28, 30 and 32 (C—C of CH2CH2 and 4CH3); MS: m/z 522 (100), 523 (30), 524 (100), 525 (30), 443 (56), 363 (39), 271 (42), 175 (29), 94 (74). Analysis calculated for C25H29BrClNO4 (522.85): C 57.43, H 5.59, Br 15.28, Cl 6.78, N 2.68%; found: C 57.41, H 5.60, Br 15.31, Cl 6.81, N 3.71.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms of the two hy­droxy substituents were located in an electron density map and their coordinates were freely refined with Uiso = 1.5Ueq (O). All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å Uiso = 1.2Ueq (C) for aromatic, 0.99 Å, Uiso = 1.2Ueq (C) for methyl­ene, 1.00 Å, Uiso = 1.2Ueq (C) for methine, and 0.98 Å, Uiso = 1.5Ueq (C) for methyl H atoms.

Related literature top

For related literature, see: Abdelhamid et al. (2011); Allen (2002); Denny et al. (1983); Gaidukevich et al. (1987); Gaiukevich et al. (1973); Khalilov et al. (2011); Kimura et al. (1993); Misra & Bahel (1984); Miyase et al. (2009); Nakhi et al. (2013); Natarajan & Mathews (2011); Ngadi et al. (1993); Shaikh et al. (2010); Shi et al. (2008); Shul'ga, Sukhomlinov, Goncharov & Dikaya (1974); Sondhi et al. (2004); Srivastava et al. (1985); Sugaya et al. (1994); Taraporewala & Kauffman (1990); Wang et al. (2003).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (1) with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Zigzag chains of (1) parallel to the c axis with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 2.
[Figure 3] Fig. 3. Sheets of molecules of (1) parallel to (421) with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 2.
[Figure 4] Fig. 4. Chains of molecules of (1) along the diagonal of the ac plane with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 2.
[Figure 5] Fig. 5. Overall packing for (1) viewed along the a axis with hydrogen bonds drawn as dashed lines.
9-(3-Bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione top
Crystal data top
C25H29BrClNO4F(000) = 1080
Mr = 522.85Dx = 1.470 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.5373 (3) ÅCell parameters from 8397 reflections
b = 17.1597 (3) Åθ = 4.3–76.4°
c = 13.7278 (4) ŵ = 3.67 mm1
β = 107.908 (3)°T = 100 K
V = 2361.96 (10) Å3Needle, yellow
Z = 40.19 × 0.07 × 0.06 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
4922 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4128 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.076
ω scansθmax = 76.7°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 1312
Tmin = 0.733, Tmax = 1.000k = 2121
20233 measured reflectionsl = 1715
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0431P)2 + 3.0935P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4922 reflectionsΔρmax = 0.67 e Å3
299 parametersΔρmin = 0.57 e Å3
Crystal data top
C25H29BrClNO4V = 2361.96 (10) Å3
Mr = 522.85Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.5373 (3) ŵ = 3.67 mm1
b = 17.1597 (3) ÅT = 100 K
c = 13.7278 (4) Å0.19 × 0.07 × 0.06 mm
β = 107.908 (3)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
4922 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
4128 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 1.000Rint = 0.076
20233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.67 e Å3
4922 reflectionsΔρmin = 0.57 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2756 (3)0.38420 (16)0.7425 (2)0.0165 (5)
O10.2646 (2)0.41046 (12)0.65603 (15)0.0220 (4)
C20.2254 (3)0.42807 (16)0.8181 (2)0.0183 (6)
H2A0.15550.46530.78080.022*
H2B0.29960.45840.86440.022*
C30.1680 (3)0.37339 (17)0.8817 (2)0.0182 (6)
C310.0446 (3)0.33120 (18)0.8117 (2)0.0218 (6)
H31A0.02210.36970.77600.033*
H31B0.00680.29730.85310.033*
H31C0.07070.29970.76150.033*
C320.1278 (3)0.42057 (18)0.9624 (2)0.0224 (6)
H32A0.20580.44861.00580.034*
H32B0.09380.38521.00460.034*
H32C0.05820.45800.92820.034*
C40.2757 (3)0.31371 (16)0.9365 (2)0.0169 (5)
H4A0.34010.33940.99580.020*
H4B0.23270.27090.96310.020*
C50.6375 (3)0.13867 (17)0.9129 (2)0.0187 (6)
H5A0.59840.09440.94000.022*
H5B0.69870.16650.97190.022*
C60.7183 (3)0.10665 (17)0.8456 (2)0.0199 (6)
C610.6375 (3)0.04386 (18)0.7733 (2)0.0272 (7)
H61A0.61930.00060.81370.041*
H61B0.68860.02470.72940.041*
H61C0.55310.06610.73070.041*
C620.8489 (3)0.0709 (2)0.9150 (3)0.0284 (7)
H62A0.82810.03000.95760.043*
H62B0.90240.11150.95910.043*
H62C0.89930.04830.87260.043*
C70.7509 (3)0.17336 (18)0.7830 (2)0.0210 (6)
H7A0.80910.21170.83000.025*
H7B0.80000.15250.73770.025*
C80.6261 (3)0.21319 (16)0.7195 (2)0.0179 (5)
O80.6181 (2)0.23890 (12)0.63285 (15)0.0211 (4)
C90.3948 (3)0.26576 (16)0.7015 (2)0.0146 (5)
H90.42020.30420.65600.018*
N100.4338 (2)0.21496 (13)0.90561 (17)0.0150 (4)
C1010.4242 (3)0.17121 (17)0.9961 (2)0.0193 (6)
H10A0.39740.20721.04270.023*
H10B0.51280.14941.03370.023*
C1020.3240 (3)0.10579 (18)0.9650 (2)0.0243 (6)
H10C0.31860.07761.02650.029*
H10D0.23470.12720.92880.029*
O1020.3641 (3)0.05431 (14)0.9002 (2)0.0338 (6)
H1020.318 (5)0.015 (3)0.888 (4)0.051*
C110.3399 (3)0.30933 (16)0.7750 (2)0.0151 (5)
C120.3510 (3)0.27926 (16)0.8694 (2)0.0156 (5)
C130.5263 (3)0.19368 (15)0.8568 (2)0.0153 (5)
C140.5183 (3)0.22261 (16)0.7631 (2)0.0155 (5)
C910.2933 (3)0.20862 (16)0.6350 (2)0.0152 (5)
C920.2973 (3)0.18932 (16)0.5361 (2)0.0155 (5)
O920.3860 (2)0.22101 (12)0.49447 (15)0.0185 (4)
H920.453 (4)0.232 (2)0.542 (3)0.028*
C930.2039 (3)0.13599 (17)0.4773 (2)0.0167 (5)
Br930.20688 (3)0.10910 (2)0.34475 (2)0.01878 (10)
C940.1101 (3)0.10051 (15)0.5147 (2)0.0156 (5)
H940.04640.06520.47360.019*
C950.1116 (3)0.11794 (16)0.6140 (2)0.0165 (5)
Cl950.00165 (7)0.07019 (4)0.66614 (5)0.01978 (15)
C960.2010 (3)0.17139 (16)0.6729 (2)0.0157 (5)
H960.19930.18280.74020.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0146 (12)0.0157 (13)0.0207 (13)0.0030 (10)0.0075 (10)0.0029 (10)
O10.0287 (11)0.0196 (10)0.0212 (10)0.0037 (9)0.0128 (8)0.0039 (8)
C20.0217 (14)0.0140 (13)0.0223 (13)0.0013 (11)0.0114 (11)0.0024 (11)
C30.0179 (13)0.0196 (13)0.0190 (13)0.0008 (11)0.0085 (11)0.0019 (11)
C310.0183 (14)0.0254 (15)0.0241 (14)0.0015 (12)0.0100 (11)0.0023 (12)
C320.0257 (15)0.0213 (14)0.0243 (14)0.0003 (12)0.0139 (12)0.0013 (12)
C40.0182 (13)0.0160 (13)0.0190 (12)0.0009 (11)0.0094 (10)0.0004 (11)
C50.0184 (14)0.0154 (13)0.0208 (13)0.0016 (11)0.0039 (10)0.0017 (11)
C60.0187 (14)0.0177 (14)0.0230 (14)0.0046 (11)0.0058 (11)0.0007 (11)
C610.0315 (17)0.0190 (14)0.0308 (16)0.0009 (13)0.0094 (13)0.0066 (13)
C620.0243 (16)0.0259 (16)0.0339 (17)0.0087 (13)0.0070 (13)0.0032 (13)
C70.0176 (14)0.0244 (15)0.0235 (14)0.0034 (12)0.0099 (11)0.0004 (12)
C80.0187 (13)0.0147 (13)0.0213 (13)0.0036 (11)0.0076 (10)0.0067 (11)
O80.0183 (10)0.0254 (11)0.0215 (10)0.0003 (8)0.0089 (8)0.0010 (8)
C90.0163 (13)0.0143 (12)0.0145 (12)0.0000 (10)0.0066 (10)0.0010 (10)
N100.0173 (11)0.0119 (10)0.0176 (11)0.0013 (9)0.0082 (9)0.0013 (9)
C1010.0253 (14)0.0169 (13)0.0178 (13)0.0004 (11)0.0100 (11)0.0008 (11)
C1020.0328 (17)0.0195 (14)0.0246 (15)0.0041 (13)0.0145 (13)0.0021 (11)
O1020.0382 (14)0.0207 (11)0.0491 (15)0.0109 (10)0.0232 (11)0.0082 (11)
C110.0168 (13)0.0129 (12)0.0170 (12)0.0023 (10)0.0074 (10)0.0034 (10)
C120.0145 (13)0.0132 (12)0.0205 (13)0.0020 (10)0.0077 (10)0.0016 (10)
C130.0156 (12)0.0122 (12)0.0204 (12)0.0055 (10)0.0087 (10)0.0060 (10)
C140.0149 (13)0.0141 (12)0.0186 (12)0.0021 (10)0.0067 (10)0.0037 (10)
C910.0148 (12)0.0143 (12)0.0176 (12)0.0014 (10)0.0067 (10)0.0009 (10)
C920.0160 (13)0.0138 (12)0.0175 (12)0.0036 (10)0.0061 (10)0.0024 (10)
O920.0172 (10)0.0237 (10)0.0167 (9)0.0020 (8)0.0084 (8)0.0001 (8)
C930.0160 (13)0.0177 (13)0.0169 (12)0.0026 (11)0.0058 (10)0.0007 (10)
Br930.02276 (17)0.01832 (16)0.01709 (15)0.00042 (11)0.00884 (11)0.00280 (10)
C940.0146 (13)0.0133 (12)0.0177 (12)0.0010 (10)0.0034 (10)0.0010 (10)
C950.0160 (13)0.0130 (12)0.0225 (13)0.0008 (10)0.0089 (10)0.0023 (10)
Cl950.0189 (3)0.0198 (3)0.0234 (3)0.0044 (3)0.0106 (2)0.0021 (3)
C960.0167 (13)0.0150 (12)0.0163 (12)0.0017 (10)0.0066 (10)0.0001 (10)
Geometric parameters (Å, º) top
C1—O11.242 (3)C7—H7A0.9900
C1—C111.457 (4)C7—H7B0.9900
C1—C21.504 (4)C8—O81.247 (4)
C2—C31.527 (4)C8—C141.447 (4)
C2—H2A0.9900C9—C111.506 (4)
C2—H2B0.9900C9—C141.510 (4)
C3—C321.532 (4)C9—C911.529 (4)
C3—C311.539 (4)C9—H91.0000
C3—C41.542 (4)N10—C131.392 (3)
C31—H31A0.9800N10—C121.399 (4)
C31—H31B0.9800N10—C1011.481 (3)
C31—H31C0.9800C101—C1021.510 (4)
C32—H32A0.9800C101—H10A0.9900
C32—H32B0.9800C101—H10B0.9900
C32—H32C0.9800C102—O1021.408 (4)
C4—C121.508 (4)C102—H10C0.9900
C4—H4A0.9900C102—H10D0.9900
C4—H4B0.9900O102—H1020.81 (5)
C5—C131.517 (4)C11—C121.367 (4)
C5—C61.538 (4)C13—C141.357 (4)
C5—H5A0.9900C91—C961.392 (4)
C5—H5B0.9900C91—C921.410 (4)
C6—C71.532 (4)C92—O921.351 (3)
C6—C611.533 (4)C92—C931.403 (4)
C6—C621.541 (4)O92—H920.82 (4)
C61—H61A0.9800C93—C941.387 (4)
C61—H61B0.9800C93—Br931.887 (3)
C61—H61C0.9800C94—C951.390 (4)
C62—H62A0.9800C94—H940.9500
C62—H62B0.9800C95—C961.384 (4)
C62—H62C0.9800C95—Cl951.742 (3)
C7—C81.501 (4)C96—H960.9500
O1—C1—C11120.7 (3)C8—C7—H7B109.4
O1—C1—C2121.9 (3)C6—C7—H7B109.4
C11—C1—C2117.4 (2)H7A—C7—H7B108.0
C1—C2—C3111.8 (2)O8—C8—C14121.5 (3)
C1—C2—H2A109.2O8—C8—C7120.4 (3)
C3—C2—H2A109.2C14—C8—C7118.0 (2)
C1—C2—H2B109.2C11—C9—C14108.1 (2)
C3—C2—H2B109.2C11—C9—C91112.1 (2)
H2A—C2—H2B107.9C14—C9—C91110.1 (2)
C2—C3—C32109.5 (2)C11—C9—H9108.8
C2—C3—C31109.8 (2)C14—C9—H9108.8
C32—C3—C31109.4 (2)C91—C9—H9108.8
C2—C3—C4109.0 (2)C13—N10—C12119.2 (2)
C32—C3—C4108.9 (2)C13—N10—C101120.6 (2)
C31—C3—C4110.2 (2)C12—N10—C101120.1 (2)
C3—C31—H31A109.5N10—C101—C102111.2 (2)
C3—C31—H31B109.5N10—C101—H10A109.4
H31A—C31—H31B109.5C102—C101—H10A109.4
C3—C31—H31C109.5N10—C101—H10B109.4
H31A—C31—H31C109.5C102—C101—H10B109.4
H31B—C31—H31C109.5H10A—C101—H10B108.0
C3—C32—H32A109.5O102—C102—C101109.0 (3)
C3—C32—H32B109.5O102—C102—H10C109.9
H32A—C32—H32B109.5C101—C102—H10C109.9
C3—C32—H32C109.5O102—C102—H10D109.9
H32A—C32—H32C109.5C101—C102—H10D109.9
H32B—C32—H32C109.5H10C—C102—H10D108.3
C12—C4—C3114.2 (2)C102—O102—H102112 (3)
C12—C4—H4A108.7C12—C11—C1121.3 (2)
C3—C4—H4A108.7C12—C11—C9120.6 (2)
C12—C4—H4B108.7C1—C11—C9118.1 (2)
C3—C4—H4B108.7C11—C12—N10119.8 (2)
H4A—C4—H4B107.6C11—C12—C4121.5 (2)
C13—C5—C6113.6 (2)N10—C12—C4118.7 (2)
C13—C5—H5A108.8C14—C13—N10120.8 (3)
C6—C5—H5A108.8C14—C13—C5121.5 (3)
C13—C5—H5B108.8N10—C13—C5117.7 (2)
C6—C5—H5B108.8C13—C14—C8121.5 (3)
H5A—C5—H5B107.7C13—C14—C9120.1 (2)
C7—C6—C61109.8 (2)C8—C14—C9118.3 (2)
C7—C6—C5109.3 (2)C96—C91—C92118.9 (2)
C61—C6—C5109.9 (2)C96—C91—C9120.8 (2)
C7—C6—C62109.4 (3)C92—C91—C9120.2 (2)
C61—C6—C62109.4 (2)O92—C92—C93118.2 (2)
C5—C6—C62109.0 (2)O92—C92—C91122.8 (2)
C6—C61—H61A109.5C93—C92—C91118.9 (3)
C6—C61—H61B109.5C92—O92—H92107 (3)
H61A—C61—H61B109.5C94—C93—C92121.8 (3)
C6—C61—H61C109.5C94—C93—Br93118.4 (2)
H61A—C61—H61C109.5C92—C93—Br93119.8 (2)
H61B—C61—H61C109.5C93—C94—C95118.3 (2)
C6—C62—H62A109.5C93—C94—H94120.9
C6—C62—H62B109.5C95—C94—H94120.9
H62A—C62—H62B109.5C96—C95—C94121.1 (3)
C6—C62—H62C109.5C96—C95—Cl95119.4 (2)
H62A—C62—H62C109.5C94—C95—Cl95119.5 (2)
H62B—C62—H62C109.5C95—C96—C91120.9 (3)
C8—C7—C6111.0 (2)C95—C96—H96119.5
C8—C7—H7A109.4C91—C96—H96119.5
C6—C7—H7A109.4
O1—C1—C2—C3143.8 (3)C101—N10—C13—C14166.6 (2)
C11—C1—C2—C336.9 (3)C12—N10—C13—C5164.2 (2)
C1—C2—C3—C32175.9 (2)C101—N10—C13—C514.7 (4)
C1—C2—C3—C3163.9 (3)C6—C5—C13—C1412.2 (4)
C1—C2—C3—C456.9 (3)C6—C5—C13—N10169.1 (2)
C2—C3—C4—C1244.4 (3)N10—C13—C14—C8168.2 (2)
C32—C3—C4—C12163.8 (2)C5—C13—C14—C810.4 (4)
C31—C3—C4—C1276.1 (3)N10—C13—C14—C911.8 (4)
C13—C5—C6—C745.1 (3)C5—C13—C14—C9169.5 (2)
C13—C5—C6—C6175.5 (3)O8—C8—C14—C13179.1 (3)
C13—C5—C6—C62164.6 (2)C7—C8—C14—C132.7 (4)
C61—C6—C7—C863.6 (3)O8—C8—C14—C90.9 (4)
C5—C6—C7—C857.0 (3)C7—C8—C14—C9177.3 (2)
C62—C6—C7—C8176.2 (2)C11—C9—C14—C1333.7 (3)
C6—C7—C8—O8144.6 (3)C91—C9—C14—C1389.1 (3)
C6—C7—C8—C1437.2 (3)C11—C9—C14—C8146.4 (2)
C13—N10—C101—C10291.2 (3)C91—C9—C14—C890.8 (3)
C12—N10—C101—C10289.9 (3)C11—C9—C91—C9632.5 (3)
N10—C101—C102—O10260.0 (3)C14—C9—C91—C9687.9 (3)
O1—C1—C11—C12179.1 (3)C11—C9—C91—C92151.4 (2)
C2—C1—C11—C121.6 (4)C14—C9—C91—C9288.2 (3)
O1—C1—C11—C91.2 (4)C96—C91—C92—O92178.2 (2)
C2—C1—C11—C9178.1 (2)C9—C91—C92—O921.9 (4)
C14—C9—C11—C1233.5 (3)C96—C91—C92—C933.0 (4)
C91—C9—C11—C1288.1 (3)C9—C91—C92—C93179.2 (2)
C14—C9—C11—C1146.2 (2)O92—C92—C93—C94179.6 (2)
C91—C9—C11—C192.2 (3)C91—C92—C93—C941.5 (4)
C1—C11—C12—N10168.3 (2)O92—C92—C93—Br931.1 (3)
C9—C11—C12—N1011.4 (4)C91—C92—C93—Br93180.0 (2)
C1—C11—C12—C411.8 (4)C92—C93—C94—C951.1 (4)
C9—C11—C12—C4168.5 (2)Br93—C93—C94—C95177.4 (2)
C13—N10—C12—C1114.7 (4)C93—C94—C95—C962.3 (4)
C101—N10—C12—C11166.4 (2)C93—C94—C95—Cl95176.3 (2)
C13—N10—C12—C4165.4 (2)C94—C95—C96—C910.8 (4)
C101—N10—C12—C413.5 (4)Cl95—C95—C96—C91177.8 (2)
C3—C4—C12—C1111.1 (4)C92—C91—C96—C951.9 (4)
C3—C4—C12—N10168.8 (2)C9—C91—C96—C95178.1 (2)
C12—N10—C13—C1414.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O92—H92···O80.82 (4)1.81 (4)2.613 (3)166 (4)
O102—H102···O1i0.81 (5)2.01 (5)2.808 (3)167 (5)
C61—H61B···Br93ii0.982.873.720 (3)146
C31—H31B···O92iii0.982.653.532 (4)150
C5—H5B···O92iv0.992.713.479 (4)135
C7—H7A···O92iv0.992.443.346 (4)151
C4—H4A···Cl95iv0.992.883.868 (3)173
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H29BrClNO4
Mr522.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.5373 (3), 17.1597 (3), 13.7278 (4)
β (°) 107.908 (3)
V3)2361.96 (10)
Z4
Radiation typeCu Kα
µ (mm1)3.67
Crystal size (mm)0.19 × 0.07 × 0.06
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.733, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20233, 4922, 4128
Rint0.076
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.03
No. of reflections4922
No. of parameters299
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.57

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O92—H92···O80.82 (4)1.81 (4)2.613 (3)166 (4)
O102—H102···O1i0.81 (5)2.01 (5)2.808 (3)167 (5)
C61—H61B···Br93ii0.982.873.720 (3)146
C31—H31B···O92iii0.982.653.532 (4)150
C5—H5B···O92iv0.992.713.479 (4)135
C7—H7A···O92iv0.992.443.346 (4)151
C4—H4A···Cl95iv0.992.883.868 (3)173
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank Manchester Metropolitan University for supporting this study and the University of Otago for the purchase of the diffractometer.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDenny, W. A., Baguley, B. C., Cain, B. F. & Waring, M. J. (1983). Antitumor acridines in molecular aspects of anticancer drug action, edited by S. Neidle & M. J. Waring, pp. 1–34. London: Macmillan.  Google Scholar
First citationGaidukevich, A. N., Kazakov, G. P., Kravchenko, A. A., Porokhnyak, L. A. & Dinchuk, V. V. (1987). Khim. Farm. Zh. 21, 1067–1070.  CAS Google Scholar
First citationGaiukevich, N. A., Bashura, G. S., Pestsev, I. M., Pimenov, O. A. & Pyatkop, A. I. (1973). Farm. Zh. 28, 50–54.  PubMed Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKimura, M., Okabayashi, I. & Kato, A. (1993). J. Heterocycl. Chem. 30, 1101–1104.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMisra, V. K. & Bahel, S. C. (1984). J. Indian Chem. Soc. 61, 916–918.  Google Scholar
First citationMiyase, G. G., Ali, E., Dogan, R. S., Kevser, E. & Cihat, S. (2009). Med. Chem. Res. 18, 317–325.  Google Scholar
First citationNakhi, A., Srinivas, P. T. V. A., Rahman, M. S., Kishore, R., Seerapu, G. P. K., Kumar, K. L., Haldar, D., Rao, M. V. B. & Pal, M. (2013). Bioorg. Med. Chem. Lett. 23, 1828–1833.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNatarajan, S. & Mathews, R. (2011). J. Chem. Crystallogr. 41, 678–683.  Web of Science CSD CrossRef CAS Google Scholar
First citationNgadi, L., Bisri, N. G., Mahamoud, A., Galy, A. M., Galy, J. P., Soyfer, J. C., Barbe, J. & Placidi, M. (1993). Arzneim. Forsch. 43, 480–483.  CAS Google Scholar
First citationShaikh, B. M., Konda, S. G., Mehare, A. V., Mandawad, G. G., Chobe, S. S. & Dawane, B. S. (2010). Pharma Chem. 2, 25–29.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D.-Q., Ni, S.-N., Fang-Yang, Shi, J.-W., Dou, G.-L., Li, X.-Y. & Wang, X.-S. (2008). J. Heterocycl. Chem. 45, 653–660.  CSD CrossRef CAS Google Scholar
First citationShul'ga, I. S., Sukhomlinov, A. K., Goncharov, I. A. & Dikaya, E. M. (1974). Farm. Zh. 29, 27–29.  CAS Google Scholar
First citationSondhi, S. M., Bhattacharjee, G., Jameel, R. K., Shukla, R., Raghubir, R., Lozach, O. & Meijer, L. (2004). Cent. Eur. J. Chem. 2, 1–15.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, A., Pathak, R. B. & Bahel, S. C. (1985). J. Indian Chem. Soc. 62, 486–487.  CAS Google Scholar
First citationSugaya, T., Mimura, Y., Shida, Y., Osawa, Y. & Matsukuma, I. (1994). J. Med. Chem. 37, 1028–1032.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTaraporewala, I. B. & Kauffman, J. M. (1990). J. Pharm. Sci. 79, 173–178.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, X., Shi, D. & Tu, S. (2003). Acta Cryst. E59, o1139–o1140.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds