research communications
H,5H)-dione
of 9-(3-bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2aChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, and cDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz
The title compound C25H29BrClNO4, comprises a 3,3,6,6-tetramethyltetrahydroacridine-1,8-dione ring system that carries a hydroxyethyl substituent on the acridine N atom and a 3-bromo-5-chloro-2-hydroxyphenyl ring on the central methine C atom of the dihydropyridine ring. The benzene ring is inclined to the acridine ring system at an angle of 89.84 (6)° and this conformation is stabilized by an intramolecular O—H⋯O hydrogen bond between the hydroxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit. In the crystal, O—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds combine to stack molecules in interconnected columns propagating along the a-axis direction.
Keywords: crystal structure; acridine; hydroacridine.
CCDC reference: 1004259
1. Chemical context
Acridine derivatives occupy an important position in medicinal chemistry due to their wide range of biological applications. They exhibit fungicidal (Misra & Bahel, 1984; Srivastava et al., 1985), anti-cancer (Sondhi et al., 2004; Sugaya et al., 1994; Kimura et al., 1993), anti-parasitic (Ngadi et al., 1993), anti-inflammatory and anti-microbial (Shul'ga et al., 1974; Gaiukevich et al., 1973) activity. They are also components of effective analgesics (Taraporewala & Kauffman, 1990; Gaidukevich et al., 1987). Other pharmaceutically active acridine derivatives (e.g. Mepacrine, Azacrine, Proflavine, and Aminacrine) also demonstrate antimalarial and antibacterial activity (Denny et al., 1983).
Recently hydroacridine derivatives were found to have significant antimicrobial activity and to act as potassium channel blockers (Shaikh et al., 2010; Miyase et al., 2009). A recent investigation has also shown hydroacridines to act as inhibitors of sirtuins (class III NAD-dependent deacetylases) that are considered to be important targets for cancer therapeutics (Nakhi et al., 2013). In light of this interest and as part of our on-going studies of the synthesis and biological assessment of new hydroacridinone derivatives, we report here the synthesis and of the title compound, (1).2. Structural commentary
The structure of (1) is shown in Fig. 1. The 3,3,6,6-tetramethyl-tetrahydroacridine-1,8-dione ring system is substituted at the central methine C9 atom by a 3-bromo-5-chloro-2-hydroxyphenyl ring and carries a hydroxyethyl substituent on the acridine N atom. The acridinedione ring system deviates significantly from planarity with an r.m.s. deviation of 0.336 Å for the 13 C atoms and one N atom of the acridine unit. This plane is almost orthogonal to the benzene ring plane [dihedral angle = 89.84 (6)°], a conformation that is stabilized by a strong intramolecular O92—H92⋯O8 hydrogen bond between the two systems (Table 1). Both the 3-bromo-5-chloro-2-hydroxyphenyl and hydroxyethyl substituents point in the same direction with respect to the acridine plane. Furthermore, one methyl group is axial and the other equatorial with respect to the two outer cyclohexenone rings of the acridinedione and again, the axial methyl substituents are found on the same face of the acridinedione ring system. Overall this ring system is V-shaped with the substituents mentioned above on the convex surface of the shallow V. The outer cyclohexenone rings both adopt flattened chair configurations with the C3 and C6 atoms each 0.646 (4) Å, in the same direction, from the best-fit planes through the remaining five C atoms. In contrast, the central C9/N10/C11–C14 ring can best be described as a flattened boat with C9 and N10 0.423 (4) and 0.154 (4) Å, respectively, from the best-fit plane through the remaining four C atoms. The bond lengths and angles in the molecule of (1) agree reasonably well with those found in closely related molecules (Abdelhamid et al., 2011; Khalilov et al., 2011).
3. Supramolecular features
The b axis (Fig. 2). Weak C4—H4A⋯Cl95 together with C5—H5B⋯O92 and C7—H7A⋯O92 hydrogen bonds to the same acceptor oxygen atom form R22(15), R22(13) and R21(6) rings. These, combined with weaker inversion-related C61—H61B⋯Br93 contacts [which in turn generate R22(22) motifs], generate sheets of molecules lying parallel to the (21) plane, as shown in Fig. 3. C31—H31B⋯O92 hydrogen bonds form additional chains of molecules along the ac diagonal (Fig. 4). Overall, these interactions stack the molecules into interconnected columns along the a-axis direction (Fig. 5).
of (1) features O102—H102⋯O1 hydrogen bonds, which link the molecules into zigzag chains parallel to the4. Database survey
Numerous structures of acridine and its derivatives have been reported previously, with 373 entries in the current database (Version 5.35, November 2013 with 1 update; Allen, 2002). However, far fewer structures of derivatives of the seminal hydroacridine, 3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H)-acridinedione (Natarajan & Mathews, 2011) are found with only 25 unique structures of derivatives with an aryl substituent on the methine C atom and an alkyl or aryl substituent on the N atom. Of these, aromatic substituents on the N atom predominate with 15 entries (see, for example, Nakhi et al. 2013; Shi et al. 2008; Wang et al. 2003). Two structures, 10-(2-hydroxyethyl)-9-(2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione (Abdelhamid et al., 2011) and 9-(5-bromo-2-hydroxyphenyl)-10-(2-hydroxypropyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione (Khalilov et al., 2011) closely resemble (1), each with 2-hydroxy substituents on the aromatic rings that form intramolecular hydrogen bonds to one of the two keto O atoms in each molecule. In the first instance, the 2-hydroxyethyl substituent on the N atom is identical to that for (1), while the 2-hydroxypropyl substituent in the second analogue is closely related.
5. Synthesis and crystallization
A mixture of 1 mmol (235.5 mg) 3-bromo-5-chloro-2-hydroxybenzaldehyde, 2 mmol (280 mg) 5,5-dimethylcyclohexane-1,3-dione and 1 mmol (61 mg) amino-ethanol in 30 ml of ethanol was refluxed for 12 h. The reaction was monitored by TLC until completion. Excess solvent was evaporated under vacuum and the resulting solid product was recrystallized from a mixture of ethanol/acetone (10:1 v:v) to afford yellow needles of the title compound. M.p. 513 K, 82% yield.
IR cm−1: OH phenolic 3400, OH alcoholic 3335, Ar 3001, CH-aliphatic 2882, CO 1694, C=C 1591, C—Br 605, C—Cl 738; 1H NMR: δ 10.01 (s, 1H, OH phenolic), 7.3 (d, 2H, Ar), 6.7 (d, 1H, C9), 5.00 (s, 1H, OH alcoholic), 4.02 (t, 2H, C2), 3.75 (t, 2H, C7), 2.95 (d, 2H, C4), 2.7(d, 2H, C5), 2.2 (m, 4H, ethyl group), 1–1.2 (m, 12H, 4 methyl groups); 13C NMR: δ 199, 200 (C=O, C1, C8), 145, 132 and 130 (C=C Ar), 110, 112 (C=C, in acridine fused rings), 122 (C—N), 62 (C—Br), 73 (C—Cl), 50 (C—OH), 20, 28, 30 and 32 (C—C of CH2CH2 and 4CH3); MS: m/z 522 (100), 523 (30), 524 (100), 525 (30), 443 (56), 363 (39), 271 (42), 175 (29), 94 (74). Analysis calculated for C25H29BrClNO4 (522.85): C 57.43, H 5.59, Br 15.28, Cl 6.78, N 2.68%; found: C 57.41, H 5.60, Br 15.31, Cl 6.81, N 2.71.
6. Refinement
Crystal data, data collection and structure . The H atoms of the two hydroxy substituents were located in an and their coordinates were freely refined with Uiso = 1.5Ueq (O). All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å Uiso = 1.2Ueq (C) for aromatic, 0.99 Å, Uiso = 1.2Ueq (C) for methylene, 1.00 Å, Uiso = 1.2Ueq (C) for methine, and 0.98 Å, Uiso = 1.5Ueq (C) for methyl H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1004259
10.1107/S1600536814009556/hb0002sup1.cif
contains datablocks global, 1. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814009556/hb0002Isup2.hkl
Acridine derivatives occupy an important position in medicinal chemistry due to their wide range of biological applications. They exhibit fungicidal (Misra & Bahel, 1984; Srivastava et al., 1985), anti-cancer (Sondhi et al., 2004; Sugaya et al., 1994; Kimura et al., 1993), anti-parasitic (Ngadi et al., 1993), anti-inflammatory and anti-microbial (Shul'ga et al., 1974; Gaiukevich et al., 1973) activity. They are also components of effective analgesics (Taraporewala & Kauffman, 1990; Gaidukevich et al., 1987). Other pharmaceutically active acridine derivatives (e.g. Mepacrine, Azacrine, Proflavine, and Aminacrine) also demonstrate antimalarial and antibacterial activity (Denny et al., 1983). Recently hydroacridine derivatives were found to have significant antimicrobial activity and to act as potassium channel blockers (Shaikh et al., 2010; Miyase et al., 2009). A recent investigation has also shown hydroacridines to act as inhibitors of sirtuins (class III NAD-dependent deacetylases) that are considered to be important targets for cancer therapeutics (Nakhi et al., 2013). In light of this interest and as part of our on-going studies of the synthesis and biological assessment of new hydroacridinone derivatives, we report here the synthesis and
of the title compound, (1).The structure of (1) is shown in Fig. 1. The 3,3,6,6-tetramethyl-tetrahydroacridine-1,8-dione ring system is substituted at the central methine C9 atom by a 3-bromo-5-chloro-2-hydroxyphenyl ring and carries a hydroxyethyl substituent on the acridine N atom. The acridinedione ring system deviates significantly from planarity with an r.m.s. deviation of 0.336 Å for the 13 C atoms and one N atom of the acridine unit. This plane is almost orthogonal to the benzene ring plane [dihedral angle = 89.84 (6)°], a conformation that is stabilized by a strong intramolecular O92—H92···O8 hydrogen bond between the two systems (Table 2). Both the 3-bromo-5-chloro-2-hydroxyphenyl and hydroxyethyl substituents point in the same direction with respect to the acridine plane. Furthermore, one methyl group is axial and the other equatorial with respect to the two outer cyclohexenone rings of the acridinedione and again, the axial methyl substituents are found on the same face of the acridinedione ring system. Overall this ring system is V-shaped with the substituents mentioned above on the convex surface of the shallow V. The outer cyclohexenone rings both adopt flattened chair configurations with the C3 and C6 atoms each 0.646 (4) Å, in the same direction, from the best-fit planes through the remaining five C atoms. In contrast, the central C9/N10/C11–C14 ring can best be described as a flattened boat with C9 and N10 0.423 (4) and 0.154 (4) Å, respectively, from the best-fit plane through the remaining four C atoms. The bond lengths and angles in the molecule of (1) agree reasonably well with those found in closely related molecules (Abdelhamid et al., 2011; Khalilov et al., 2011).
The 421) plane, as shown in Fig. 3. C31—H31B···O92 hydrogen bonds form additional chains of molecules along the ac diagonal (Fig. 4). Overall, these interactions stack the molecules into interconnected columns along the a-axis direction (Fig. 5).
of (1) features O102—H102···O1 hydrogen bonds, which link the molecules into zigzag chains parallel to the c axis (Fig. 2). Weak C4—H4A···Cl95 together with C5—H5B···O92 and C7—H7A···O92 hydrogen bonds to the same acceptor oxygen atom form R22(15), R22(13) and R12(6) rings. These, combined with weaker inversion-related C61—H61B···Br93 contacts [which in turn generate R22(22) motifs], generate sheets of molecules lying parallel to the (Numerous structures of acridine and its derivatives have been reported previously, with 373 entries in the current database (version 5.35, November 2013 with 1 update; Allen, 2002). However, far fewer structures of derivatives of the seminal hydroacridine, 3,3,6,6-tetramethyl-3,4,6,7,9,10- hexahydro-1,8(2H,5H)-acridinedione (Natarajan & Mathews, 2011) are found with only 25 unique structures of derivatives with an aryl substituent on the methine C atom and an alkyl or aryl substituent on the N atom. Of these, aromatic substituents on the N atom predominate with 15 entries (see, for example, Nakhi et al. 2013; Shi et al. 2008; Wang et al. 2003). Two structures, 10-(2-hydroxyethyl)-9-(2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione (Abdelhamid et al., 2011) and 9-(5-bromo-2-hydroxyphenyl)-10-(2-hydroxypropyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10- decahydroacridine-1,8-dione (Khalilov et al., 2011) closely resemble (1), each with 2-hydroxy substituents on the aromatic rings that form intramolecular hydrogen bonds to one of the two keto O atoms in each molecule. In the first instance, the 2-hydroxyethyl substituent on the N atom is identical to that for (1), while the 2-hydroxypropyl substituent in the second analogue is closely related.
A mixture of 1 mmol (235.5 mg) 3-bromo-5-chloro-2-hydroxybenzaldehyde, 2 mmol (280 mg) 5,5-dimethylcyclohexane-1,3-dione and 1 mmol (61 mg) amino-ethanol in 30 ml of ethanol was refluxed for 12 h. The reaction was monitored by TLC until completion. Excess solvent was evaporated under vacuum and the resulting solid product was recrystallized from a mixture of ethanol/acetone (10:1 v:v) to afford yellow needles of the title compound. M.p. 513 K, 82% yield.
IR cm-1: OH phenolic 3400, OH alcoholic 3335, Ar 3001, CH-aliphatic 2882, CO 1694, C═C 1591, C—Br 605, C—Cl 738; 1H NMR: δ 10.01 (s, 1H, OH phenolic), 7.3 (d, 2H, Ar), 6.7 (d, 1H, C9), 5.00 (s, 1H, OH alcoholic), 4.02 (t, 2H, C2), 3.75 (t, 2H, C7), 2.95 (d, 2H, C4), 2.7(d, 2H, C5), 2.2 (m, 4H, ethyl group), 1–1.2 (m, 12H, 4 methyl groups); 13C NMR: d 199, 200 (C═ O, C1, C8), 145, 132 and 130 (C═C Ar), 110, 112 (C═C, in acridine fused rings), 122 (C—N), 62 (C—Br), 73 (C—Cl), 50 (C—OH), 20, 28, 30 and 32 (C—C of CH2CH2 and 4CH3); MS: m/z 522 (100), 523 (30), 524 (100), 525 (30), 443 (56), 363 (39), 271 (42), 175 (29), 94 (74). Analysis calculated for C25H29BrClNO4 (522.85): C 57.43, H 5.59, Br 15.28, Cl 6.78, N 2.68%; found: C 57.41, H 5.60, Br 15.31, Cl 6.81, N 3.71.
Crystal data, data collection and structure
details are summarized in Table 1. The H atoms of the two hydroxy substituents were located in an and their coordinates were freely refined with Uiso = 1.5Ueq (O). All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å Uiso = 1.2Ueq (C) for aromatic, 0.99 Å, Uiso = 1.2Ueq (C) for methylene, 1.00 Å, Uiso = 1.2Ueq (C) for methine, and 0.98 Å, Uiso = 1.5Ueq (C) for methyl H atoms.Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. The structure of (1) with ellipsoids drawn at the 50% probability level. | |
Fig. 2. Zigzag chains of (1) parallel to the c axis with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 2. | |
Fig. 3. Sheets of molecules of (1) parallel to (421) with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 2. | |
Fig. 4. Chains of molecules of (1) along the diagonal of the ac plane with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 2. | |
Fig. 5. Overall packing for (1) viewed along the a axis with hydrogen bonds drawn as dashed lines. |
C25H29BrClNO4 | F(000) = 1080 |
Mr = 522.85 | Dx = 1.470 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 10.5373 (3) Å | Cell parameters from 8397 reflections |
b = 17.1597 (3) Å | θ = 4.3–76.4° |
c = 13.7278 (4) Å | µ = 3.67 mm−1 |
β = 107.908 (3)° | T = 100 K |
V = 2361.96 (10) Å3 | Needle, yellow |
Z = 4 | 0.19 × 0.07 × 0.06 mm |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 4922 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 4128 reflections with I > 2σ(I) |
Detector resolution: 5.1725 pixels mm-1 | Rint = 0.076 |
ω scans | θmax = 76.7°, θmin = 4.3° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | h = −13→12 |
Tmin = 0.733, Tmax = 1.000 | k = −21→21 |
20233 measured reflections | l = −17→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0431P)2 + 3.0935P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
4922 reflections | Δρmax = 0.67 e Å−3 |
299 parameters | Δρmin = −0.57 e Å−3 |
C25H29BrClNO4 | V = 2361.96 (10) Å3 |
Mr = 522.85 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 10.5373 (3) Å | µ = 3.67 mm−1 |
b = 17.1597 (3) Å | T = 100 K |
c = 13.7278 (4) Å | 0.19 × 0.07 × 0.06 mm |
β = 107.908 (3)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 4922 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 4128 reflections with I > 2σ(I) |
Tmin = 0.733, Tmax = 1.000 | Rint = 0.076 |
20233 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.67 e Å−3 |
4922 reflections | Δρmin = −0.57 e Å−3 |
299 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2756 (3) | 0.38420 (16) | 0.7425 (2) | 0.0165 (5) | |
O1 | 0.2646 (2) | 0.41046 (12) | 0.65603 (15) | 0.0220 (4) | |
C2 | 0.2254 (3) | 0.42807 (16) | 0.8181 (2) | 0.0183 (6) | |
H2A | 0.1555 | 0.4653 | 0.7808 | 0.022* | |
H2B | 0.2996 | 0.4584 | 0.8644 | 0.022* | |
C3 | 0.1680 (3) | 0.37339 (17) | 0.8817 (2) | 0.0182 (6) | |
C31 | 0.0446 (3) | 0.33120 (18) | 0.8117 (2) | 0.0218 (6) | |
H31A | −0.0221 | 0.3697 | 0.7760 | 0.033* | |
H31B | 0.0068 | 0.2973 | 0.8531 | 0.033* | |
H31C | 0.0707 | 0.2997 | 0.7615 | 0.033* | |
C32 | 0.1278 (3) | 0.42057 (18) | 0.9624 (2) | 0.0224 (6) | |
H32A | 0.2058 | 0.4486 | 1.0058 | 0.034* | |
H32B | 0.0938 | 0.3852 | 1.0046 | 0.034* | |
H32C | 0.0582 | 0.4580 | 0.9282 | 0.034* | |
C4 | 0.2757 (3) | 0.31371 (16) | 0.9365 (2) | 0.0169 (5) | |
H4A | 0.3401 | 0.3394 | 0.9958 | 0.020* | |
H4B | 0.2327 | 0.2709 | 0.9631 | 0.020* | |
C5 | 0.6375 (3) | 0.13867 (17) | 0.9129 (2) | 0.0187 (6) | |
H5A | 0.5984 | 0.0944 | 0.9400 | 0.022* | |
H5B | 0.6987 | 0.1665 | 0.9719 | 0.022* | |
C6 | 0.7183 (3) | 0.10665 (17) | 0.8456 (2) | 0.0199 (6) | |
C61 | 0.6375 (3) | 0.04386 (18) | 0.7733 (2) | 0.0272 (7) | |
H61A | 0.6193 | 0.0006 | 0.8137 | 0.041* | |
H61B | 0.6886 | 0.0247 | 0.7294 | 0.041* | |
H61C | 0.5531 | 0.0661 | 0.7307 | 0.041* | |
C62 | 0.8489 (3) | 0.0709 (2) | 0.9150 (3) | 0.0284 (7) | |
H62A | 0.8281 | 0.0300 | 0.9576 | 0.043* | |
H62B | 0.9024 | 0.1115 | 0.9591 | 0.043* | |
H62C | 0.8993 | 0.0483 | 0.8726 | 0.043* | |
C7 | 0.7509 (3) | 0.17336 (18) | 0.7830 (2) | 0.0210 (6) | |
H7A | 0.8091 | 0.2117 | 0.8300 | 0.025* | |
H7B | 0.8000 | 0.1525 | 0.7377 | 0.025* | |
C8 | 0.6261 (3) | 0.21319 (16) | 0.7195 (2) | 0.0179 (5) | |
O8 | 0.6181 (2) | 0.23890 (12) | 0.63285 (15) | 0.0211 (4) | |
C9 | 0.3948 (3) | 0.26576 (16) | 0.7015 (2) | 0.0146 (5) | |
H9 | 0.4202 | 0.3042 | 0.6560 | 0.018* | |
N10 | 0.4338 (2) | 0.21496 (13) | 0.90561 (17) | 0.0150 (4) | |
C101 | 0.4242 (3) | 0.17121 (17) | 0.9961 (2) | 0.0193 (6) | |
H10A | 0.3974 | 0.2072 | 1.0427 | 0.023* | |
H10B | 0.5128 | 0.1494 | 1.0337 | 0.023* | |
C102 | 0.3240 (3) | 0.10579 (18) | 0.9650 (2) | 0.0243 (6) | |
H10C | 0.3186 | 0.0776 | 1.0265 | 0.029* | |
H10D | 0.2347 | 0.1272 | 0.9288 | 0.029* | |
O102 | 0.3641 (3) | 0.05431 (14) | 0.9002 (2) | 0.0338 (6) | |
H102 | 0.318 (5) | 0.015 (3) | 0.888 (4) | 0.051* | |
C11 | 0.3399 (3) | 0.30933 (16) | 0.7750 (2) | 0.0151 (5) | |
C12 | 0.3510 (3) | 0.27926 (16) | 0.8694 (2) | 0.0156 (5) | |
C13 | 0.5263 (3) | 0.19368 (15) | 0.8568 (2) | 0.0153 (5) | |
C14 | 0.5183 (3) | 0.22261 (16) | 0.7631 (2) | 0.0155 (5) | |
C91 | 0.2933 (3) | 0.20862 (16) | 0.6350 (2) | 0.0152 (5) | |
C92 | 0.2973 (3) | 0.18932 (16) | 0.5361 (2) | 0.0155 (5) | |
O92 | 0.3860 (2) | 0.22101 (12) | 0.49447 (15) | 0.0185 (4) | |
H92 | 0.453 (4) | 0.232 (2) | 0.542 (3) | 0.028* | |
C93 | 0.2039 (3) | 0.13599 (17) | 0.4773 (2) | 0.0167 (5) | |
Br93 | 0.20688 (3) | 0.10910 (2) | 0.34475 (2) | 0.01878 (10) | |
C94 | 0.1101 (3) | 0.10051 (15) | 0.5147 (2) | 0.0156 (5) | |
H94 | 0.0464 | 0.0652 | 0.4736 | 0.019* | |
C95 | 0.1116 (3) | 0.11794 (16) | 0.6140 (2) | 0.0165 (5) | |
Cl95 | 0.00165 (7) | 0.07019 (4) | 0.66614 (5) | 0.01978 (15) | |
C96 | 0.2010 (3) | 0.17139 (16) | 0.6729 (2) | 0.0157 (5) | |
H96 | 0.1993 | 0.1828 | 0.7402 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0146 (12) | 0.0157 (13) | 0.0207 (13) | −0.0030 (10) | 0.0075 (10) | −0.0029 (10) |
O1 | 0.0287 (11) | 0.0196 (10) | 0.0212 (10) | 0.0037 (9) | 0.0128 (8) | 0.0039 (8) |
C2 | 0.0217 (14) | 0.0140 (13) | 0.0223 (13) | −0.0013 (11) | 0.0114 (11) | −0.0024 (11) |
C3 | 0.0179 (13) | 0.0196 (13) | 0.0190 (13) | −0.0008 (11) | 0.0085 (11) | −0.0019 (11) |
C31 | 0.0183 (14) | 0.0254 (15) | 0.0241 (14) | −0.0015 (12) | 0.0100 (11) | −0.0023 (12) |
C32 | 0.0257 (15) | 0.0213 (14) | 0.0243 (14) | 0.0003 (12) | 0.0139 (12) | −0.0013 (12) |
C4 | 0.0182 (13) | 0.0160 (13) | 0.0190 (12) | −0.0009 (11) | 0.0094 (10) | −0.0004 (11) |
C5 | 0.0184 (14) | 0.0154 (13) | 0.0208 (13) | 0.0016 (11) | 0.0039 (10) | 0.0017 (11) |
C6 | 0.0187 (14) | 0.0177 (14) | 0.0230 (14) | 0.0046 (11) | 0.0058 (11) | −0.0007 (11) |
C61 | 0.0315 (17) | 0.0190 (14) | 0.0308 (16) | 0.0009 (13) | 0.0094 (13) | −0.0066 (13) |
C62 | 0.0243 (16) | 0.0259 (16) | 0.0339 (17) | 0.0087 (13) | 0.0070 (13) | 0.0032 (13) |
C7 | 0.0176 (14) | 0.0244 (15) | 0.0235 (14) | 0.0034 (12) | 0.0099 (11) | −0.0004 (12) |
C8 | 0.0187 (13) | 0.0147 (13) | 0.0213 (13) | −0.0036 (11) | 0.0076 (10) | −0.0067 (11) |
O8 | 0.0183 (10) | 0.0254 (11) | 0.0215 (10) | −0.0003 (8) | 0.0089 (8) | −0.0010 (8) |
C9 | 0.0163 (13) | 0.0143 (12) | 0.0145 (12) | 0.0000 (10) | 0.0066 (10) | 0.0010 (10) |
N10 | 0.0173 (11) | 0.0119 (10) | 0.0176 (11) | −0.0013 (9) | 0.0082 (9) | 0.0013 (9) |
C101 | 0.0253 (14) | 0.0169 (13) | 0.0178 (13) | −0.0004 (11) | 0.0100 (11) | 0.0008 (11) |
C102 | 0.0328 (17) | 0.0195 (14) | 0.0246 (15) | −0.0041 (13) | 0.0145 (13) | 0.0021 (11) |
O102 | 0.0382 (14) | 0.0207 (11) | 0.0491 (15) | −0.0109 (10) | 0.0232 (11) | −0.0082 (11) |
C11 | 0.0168 (13) | 0.0129 (12) | 0.0170 (12) | −0.0023 (10) | 0.0074 (10) | −0.0034 (10) |
C12 | 0.0145 (13) | 0.0132 (12) | 0.0205 (13) | −0.0020 (10) | 0.0077 (10) | −0.0016 (10) |
C13 | 0.0156 (12) | 0.0122 (12) | 0.0204 (12) | −0.0055 (10) | 0.0087 (10) | −0.0060 (10) |
C14 | 0.0149 (13) | 0.0141 (12) | 0.0186 (12) | −0.0021 (10) | 0.0067 (10) | −0.0037 (10) |
C91 | 0.0148 (12) | 0.0143 (12) | 0.0176 (12) | 0.0014 (10) | 0.0067 (10) | −0.0009 (10) |
C92 | 0.0160 (13) | 0.0138 (12) | 0.0175 (12) | 0.0036 (10) | 0.0061 (10) | 0.0024 (10) |
O92 | 0.0172 (10) | 0.0237 (10) | 0.0167 (9) | −0.0020 (8) | 0.0084 (8) | −0.0001 (8) |
C93 | 0.0160 (13) | 0.0177 (13) | 0.0169 (12) | 0.0026 (11) | 0.0058 (10) | −0.0007 (10) |
Br93 | 0.02276 (17) | 0.01832 (16) | 0.01709 (15) | 0.00042 (11) | 0.00884 (11) | −0.00280 (10) |
C94 | 0.0146 (13) | 0.0133 (12) | 0.0177 (12) | 0.0010 (10) | 0.0034 (10) | −0.0010 (10) |
C95 | 0.0160 (13) | 0.0130 (12) | 0.0225 (13) | 0.0008 (10) | 0.0089 (10) | 0.0023 (10) |
Cl95 | 0.0189 (3) | 0.0198 (3) | 0.0234 (3) | −0.0044 (3) | 0.0106 (2) | −0.0021 (3) |
C96 | 0.0167 (13) | 0.0150 (12) | 0.0163 (12) | 0.0017 (10) | 0.0066 (10) | 0.0001 (10) |
C1—O1 | 1.242 (3) | C7—H7A | 0.9900 |
C1—C11 | 1.457 (4) | C7—H7B | 0.9900 |
C1—C2 | 1.504 (4) | C8—O8 | 1.247 (4) |
C2—C3 | 1.527 (4) | C8—C14 | 1.447 (4) |
C2—H2A | 0.9900 | C9—C11 | 1.506 (4) |
C2—H2B | 0.9900 | C9—C14 | 1.510 (4) |
C3—C32 | 1.532 (4) | C9—C91 | 1.529 (4) |
C3—C31 | 1.539 (4) | C9—H9 | 1.0000 |
C3—C4 | 1.542 (4) | N10—C13 | 1.392 (3) |
C31—H31A | 0.9800 | N10—C12 | 1.399 (4) |
C31—H31B | 0.9800 | N10—C101 | 1.481 (3) |
C31—H31C | 0.9800 | C101—C102 | 1.510 (4) |
C32—H32A | 0.9800 | C101—H10A | 0.9900 |
C32—H32B | 0.9800 | C101—H10B | 0.9900 |
C32—H32C | 0.9800 | C102—O102 | 1.408 (4) |
C4—C12 | 1.508 (4) | C102—H10C | 0.9900 |
C4—H4A | 0.9900 | C102—H10D | 0.9900 |
C4—H4B | 0.9900 | O102—H102 | 0.81 (5) |
C5—C13 | 1.517 (4) | C11—C12 | 1.367 (4) |
C5—C6 | 1.538 (4) | C13—C14 | 1.357 (4) |
C5—H5A | 0.9900 | C91—C96 | 1.392 (4) |
C5—H5B | 0.9900 | C91—C92 | 1.410 (4) |
C6—C7 | 1.532 (4) | C92—O92 | 1.351 (3) |
C6—C61 | 1.533 (4) | C92—C93 | 1.403 (4) |
C6—C62 | 1.541 (4) | O92—H92 | 0.82 (4) |
C61—H61A | 0.9800 | C93—C94 | 1.387 (4) |
C61—H61B | 0.9800 | C93—Br93 | 1.887 (3) |
C61—H61C | 0.9800 | C94—C95 | 1.390 (4) |
C62—H62A | 0.9800 | C94—H94 | 0.9500 |
C62—H62B | 0.9800 | C95—C96 | 1.384 (4) |
C62—H62C | 0.9800 | C95—Cl95 | 1.742 (3) |
C7—C8 | 1.501 (4) | C96—H96 | 0.9500 |
O1—C1—C11 | 120.7 (3) | C8—C7—H7B | 109.4 |
O1—C1—C2 | 121.9 (3) | C6—C7—H7B | 109.4 |
C11—C1—C2 | 117.4 (2) | H7A—C7—H7B | 108.0 |
C1—C2—C3 | 111.8 (2) | O8—C8—C14 | 121.5 (3) |
C1—C2—H2A | 109.2 | O8—C8—C7 | 120.4 (3) |
C3—C2—H2A | 109.2 | C14—C8—C7 | 118.0 (2) |
C1—C2—H2B | 109.2 | C11—C9—C14 | 108.1 (2) |
C3—C2—H2B | 109.2 | C11—C9—C91 | 112.1 (2) |
H2A—C2—H2B | 107.9 | C14—C9—C91 | 110.1 (2) |
C2—C3—C32 | 109.5 (2) | C11—C9—H9 | 108.8 |
C2—C3—C31 | 109.8 (2) | C14—C9—H9 | 108.8 |
C32—C3—C31 | 109.4 (2) | C91—C9—H9 | 108.8 |
C2—C3—C4 | 109.0 (2) | C13—N10—C12 | 119.2 (2) |
C32—C3—C4 | 108.9 (2) | C13—N10—C101 | 120.6 (2) |
C31—C3—C4 | 110.2 (2) | C12—N10—C101 | 120.1 (2) |
C3—C31—H31A | 109.5 | N10—C101—C102 | 111.2 (2) |
C3—C31—H31B | 109.5 | N10—C101—H10A | 109.4 |
H31A—C31—H31B | 109.5 | C102—C101—H10A | 109.4 |
C3—C31—H31C | 109.5 | N10—C101—H10B | 109.4 |
H31A—C31—H31C | 109.5 | C102—C101—H10B | 109.4 |
H31B—C31—H31C | 109.5 | H10A—C101—H10B | 108.0 |
C3—C32—H32A | 109.5 | O102—C102—C101 | 109.0 (3) |
C3—C32—H32B | 109.5 | O102—C102—H10C | 109.9 |
H32A—C32—H32B | 109.5 | C101—C102—H10C | 109.9 |
C3—C32—H32C | 109.5 | O102—C102—H10D | 109.9 |
H32A—C32—H32C | 109.5 | C101—C102—H10D | 109.9 |
H32B—C32—H32C | 109.5 | H10C—C102—H10D | 108.3 |
C12—C4—C3 | 114.2 (2) | C102—O102—H102 | 112 (3) |
C12—C4—H4A | 108.7 | C12—C11—C1 | 121.3 (2) |
C3—C4—H4A | 108.7 | C12—C11—C9 | 120.6 (2) |
C12—C4—H4B | 108.7 | C1—C11—C9 | 118.1 (2) |
C3—C4—H4B | 108.7 | C11—C12—N10 | 119.8 (2) |
H4A—C4—H4B | 107.6 | C11—C12—C4 | 121.5 (2) |
C13—C5—C6 | 113.6 (2) | N10—C12—C4 | 118.7 (2) |
C13—C5—H5A | 108.8 | C14—C13—N10 | 120.8 (3) |
C6—C5—H5A | 108.8 | C14—C13—C5 | 121.5 (3) |
C13—C5—H5B | 108.8 | N10—C13—C5 | 117.7 (2) |
C6—C5—H5B | 108.8 | C13—C14—C8 | 121.5 (3) |
H5A—C5—H5B | 107.7 | C13—C14—C9 | 120.1 (2) |
C7—C6—C61 | 109.8 (2) | C8—C14—C9 | 118.3 (2) |
C7—C6—C5 | 109.3 (2) | C96—C91—C92 | 118.9 (2) |
C61—C6—C5 | 109.9 (2) | C96—C91—C9 | 120.8 (2) |
C7—C6—C62 | 109.4 (3) | C92—C91—C9 | 120.2 (2) |
C61—C6—C62 | 109.4 (2) | O92—C92—C93 | 118.2 (2) |
C5—C6—C62 | 109.0 (2) | O92—C92—C91 | 122.8 (2) |
C6—C61—H61A | 109.5 | C93—C92—C91 | 118.9 (3) |
C6—C61—H61B | 109.5 | C92—O92—H92 | 107 (3) |
H61A—C61—H61B | 109.5 | C94—C93—C92 | 121.8 (3) |
C6—C61—H61C | 109.5 | C94—C93—Br93 | 118.4 (2) |
H61A—C61—H61C | 109.5 | C92—C93—Br93 | 119.8 (2) |
H61B—C61—H61C | 109.5 | C93—C94—C95 | 118.3 (2) |
C6—C62—H62A | 109.5 | C93—C94—H94 | 120.9 |
C6—C62—H62B | 109.5 | C95—C94—H94 | 120.9 |
H62A—C62—H62B | 109.5 | C96—C95—C94 | 121.1 (3) |
C6—C62—H62C | 109.5 | C96—C95—Cl95 | 119.4 (2) |
H62A—C62—H62C | 109.5 | C94—C95—Cl95 | 119.5 (2) |
H62B—C62—H62C | 109.5 | C95—C96—C91 | 120.9 (3) |
C8—C7—C6 | 111.0 (2) | C95—C96—H96 | 119.5 |
C8—C7—H7A | 109.4 | C91—C96—H96 | 119.5 |
C6—C7—H7A | 109.4 | ||
O1—C1—C2—C3 | 143.8 (3) | C101—N10—C13—C14 | 166.6 (2) |
C11—C1—C2—C3 | −36.9 (3) | C12—N10—C13—C5 | 164.2 (2) |
C1—C2—C3—C32 | 175.9 (2) | C101—N10—C13—C5 | −14.7 (4) |
C1—C2—C3—C31 | −63.9 (3) | C6—C5—C13—C14 | −12.2 (4) |
C1—C2—C3—C4 | 56.9 (3) | C6—C5—C13—N10 | 169.1 (2) |
C2—C3—C4—C12 | −44.4 (3) | N10—C13—C14—C8 | 168.2 (2) |
C32—C3—C4—C12 | −163.8 (2) | C5—C13—C14—C8 | −10.4 (4) |
C31—C3—C4—C12 | 76.1 (3) | N10—C13—C14—C9 | −11.8 (4) |
C13—C5—C6—C7 | 45.1 (3) | C5—C13—C14—C9 | 169.5 (2) |
C13—C5—C6—C61 | −75.5 (3) | O8—C8—C14—C13 | 179.1 (3) |
C13—C5—C6—C62 | 164.6 (2) | C7—C8—C14—C13 | −2.7 (4) |
C61—C6—C7—C8 | 63.6 (3) | O8—C8—C14—C9 | −0.9 (4) |
C5—C6—C7—C8 | −57.0 (3) | C7—C8—C14—C9 | 177.3 (2) |
C62—C6—C7—C8 | −176.2 (2) | C11—C9—C14—C13 | 33.7 (3) |
C6—C7—C8—O8 | −144.6 (3) | C91—C9—C14—C13 | −89.1 (3) |
C6—C7—C8—C14 | 37.2 (3) | C11—C9—C14—C8 | −146.4 (2) |
C13—N10—C101—C102 | −91.2 (3) | C91—C9—C14—C8 | 90.8 (3) |
C12—N10—C101—C102 | 89.9 (3) | C11—C9—C91—C96 | −32.5 (3) |
N10—C101—C102—O102 | 60.0 (3) | C14—C9—C91—C96 | 87.9 (3) |
O1—C1—C11—C12 | −179.1 (3) | C11—C9—C91—C92 | 151.4 (2) |
C2—C1—C11—C12 | 1.6 (4) | C14—C9—C91—C92 | −88.2 (3) |
O1—C1—C11—C9 | 1.2 (4) | C96—C91—C92—O92 | −178.2 (2) |
C2—C1—C11—C9 | −178.1 (2) | C9—C91—C92—O92 | −1.9 (4) |
C14—C9—C11—C12 | −33.5 (3) | C96—C91—C92—C93 | 3.0 (4) |
C91—C9—C11—C12 | 88.1 (3) | C9—C91—C92—C93 | 179.2 (2) |
C14—C9—C11—C1 | 146.2 (2) | O92—C92—C93—C94 | 179.6 (2) |
C91—C9—C11—C1 | −92.2 (3) | C91—C92—C93—C94 | −1.5 (4) |
C1—C11—C12—N10 | −168.3 (2) | O92—C92—C93—Br93 | 1.1 (3) |
C9—C11—C12—N10 | 11.4 (4) | C91—C92—C93—Br93 | 180.0 (2) |
C1—C11—C12—C4 | 11.8 (4) | C92—C93—C94—C95 | −1.1 (4) |
C9—C11—C12—C4 | −168.5 (2) | Br93—C93—C94—C95 | 177.4 (2) |
C13—N10—C12—C11 | 14.7 (4) | C93—C94—C95—C96 | 2.3 (4) |
C101—N10—C12—C11 | −166.4 (2) | C93—C94—C95—Cl95 | −176.3 (2) |
C13—N10—C12—C4 | −165.4 (2) | C94—C95—C96—C91 | −0.8 (4) |
C101—N10—C12—C4 | 13.5 (4) | Cl95—C95—C96—C91 | 177.8 (2) |
C3—C4—C12—C11 | 11.1 (4) | C92—C91—C96—C95 | −1.9 (4) |
C3—C4—C12—N10 | −168.8 (2) | C9—C91—C96—C95 | −178.1 (2) |
C12—N10—C13—C14 | −14.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O92—H92···O8 | 0.82 (4) | 1.81 (4) | 2.613 (3) | 166 (4) |
O102—H102···O1i | 0.81 (5) | 2.01 (5) | 2.808 (3) | 167 (5) |
C61—H61B···Br93ii | 0.98 | 2.87 | 3.720 (3) | 146 |
C31—H31B···O92iii | 0.98 | 2.65 | 3.532 (4) | 150 |
C5—H5B···O92iv | 0.99 | 2.71 | 3.479 (4) | 135 |
C7—H7A···O92iv | 0.99 | 2.44 | 3.346 (4) | 151 |
C4—H4A···Cl95iv | 0.99 | 2.88 | 3.868 (3) | 173 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x−1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C25H29BrClNO4 |
Mr | 522.85 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 10.5373 (3), 17.1597 (3), 13.7278 (4) |
β (°) | 107.908 (3) |
V (Å3) | 2361.96 (10) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 3.67 |
Crystal size (mm) | 0.19 × 0.07 × 0.06 |
Data collection | |
Diffractometer | Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2013) |
Tmin, Tmax | 0.733, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20233, 4922, 4128 |
Rint | 0.076 |
(sin θ/λ)max (Å−1) | 0.631 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.108, 1.03 |
No. of reflections | 4922 |
No. of parameters | 299 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.67, −0.57 |
Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O92—H92···O8 | 0.82 (4) | 1.81 (4) | 2.613 (3) | 166 (4) |
O102—H102···O1i | 0.81 (5) | 2.01 (5) | 2.808 (3) | 167 (5) |
C61—H61B···Br93ii | 0.98 | 2.87 | 3.720 (3) | 146 |
C31—H31B···O92iii | 0.98 | 2.65 | 3.532 (4) | 150 |
C5—H5B···O92iv | 0.99 | 2.71 | 3.479 (4) | 135 |
C7—H7A···O92iv | 0.99 | 2.44 | 3.346 (4) | 151 |
C4—H4A···Cl95iv | 0.99 | 2.88 | 3.868 (3) | 173 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x−1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
We thank Manchester Metropolitan University for supporting this study and the University of Otago for the purchase of the diffractometer.
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Denny, W. A., Baguley, B. C., Cain, B. F. & Waring, M. J. (1983). Antitumor acridines in molecular aspects of anticancer drug action, edited by S. Neidle & M. J. Waring, pp. 1–34. London: Macmillan. Google Scholar
Gaidukevich, A. N., Kazakov, G. P., Kravchenko, A. A., Porokhnyak, L. A. & Dinchuk, V. V. (1987). Khim. Farm. Zh. 21, 1067–1070. CAS Google Scholar
Gaiukevich, N. A., Bashura, G. S., Pestsev, I. M., Pimenov, O. A. & Pyatkop, A. I. (1973). Farm. Zh. 28, 50–54. PubMed Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kimura, M., Okabayashi, I. & Kato, A. (1993). J. Heterocycl. Chem. 30, 1101–1104. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Misra, V. K. & Bahel, S. C. (1984). J. Indian Chem. Soc. 61, 916–918. Google Scholar
Miyase, G. G., Ali, E., Dogan, R. S., Kevser, E. & Cihat, S. (2009). Med. Chem. Res. 18, 317–325. Google Scholar
Nakhi, A., Srinivas, P. T. V. A., Rahman, M. S., Kishore, R., Seerapu, G. P. K., Kumar, K. L., Haldar, D., Rao, M. V. B. & Pal, M. (2013). Bioorg. Med. Chem. Lett. 23, 1828–1833. Web of Science CSD CrossRef CAS PubMed Google Scholar
Natarajan, S. & Mathews, R. (2011). J. Chem. Crystallogr. 41, 678–683. Web of Science CSD CrossRef CAS Google Scholar
Ngadi, L., Bisri, N. G., Mahamoud, A., Galy, A. M., Galy, J. P., Soyfer, J. C., Barbe, J. & Placidi, M. (1993). Arzneim. Forsch. 43, 480–483. CAS Google Scholar
Shaikh, B. M., Konda, S. G., Mehare, A. V., Mandawad, G. G., Chobe, S. S. & Dawane, B. S. (2010). Pharma Chem. 2, 25–29. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, D.-Q., Ni, S.-N., Fang-Yang, Shi, J.-W., Dou, G.-L., Li, X.-Y. & Wang, X.-S. (2008). J. Heterocycl. Chem. 45, 653–660. CSD CrossRef CAS Google Scholar
Shul'ga, I. S., Sukhomlinov, A. K., Goncharov, I. A. & Dikaya, E. M. (1974). Farm. Zh. 29, 27–29. CAS Google Scholar
Sondhi, S. M., Bhattacharjee, G., Jameel, R. K., Shukla, R., Raghubir, R., Lozach, O. & Meijer, L. (2004). Cent. Eur. J. Chem. 2, 1–15. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srivastava, A., Pathak, R. B. & Bahel, S. C. (1985). J. Indian Chem. Soc. 62, 486–487. CAS Google Scholar
Sugaya, T., Mimura, Y., Shida, Y., Osawa, Y. & Matsukuma, I. (1994). J. Med. Chem. 37, 1028–1032. CrossRef CAS PubMed Web of Science Google Scholar
Taraporewala, I. B. & Kauffman, J. M. (1990). J. Pharm. Sci. 79, 173–178. CrossRef CAS PubMed Web of Science Google Scholar
Wang, X., Shi, D. & Tu, S. (2003). Acta Cryst. E59, o1139–o1140. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.