2. Structural commentary
Na2SeO4·1.5H2O is isotypic with the corresponding chromate (Kahlenberg, 2012) and is the second example of the Na2XO4·1.5H2O structure family. The main building blocks of this structure type are distorted [NaO5(H2O)2] (Na1) monocapped octahedra, distorted [NaO4(H2O)] square pyramids (Na2) (Fig. 1) and rather regular XO4 (X = Se, Cr) tetrahedra. These building blocks are linked through common corners and edges into a three-dimensional framework structure (Fig. 2). Hydrogen bonds of the type O—H⋯O between the coordinating water molecules and parts of the framework O atoms provide additional stabilization (Table 1). The bond lengths (Table 2) and angles within the individual building blocks of the selenate and chromate structures are more or less identical with mean distances of SeO4 = 1.641; CrO4 = 1.651; Na1O7 = 2.514 (selenate), 2.505 (chromate); Na2O5 = 2.350 (selenate), 2.360 Å (chromate).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | OW5—H1⋯O4viii | 0.82 (1) | 2.13 (1) | 2.922 (2) | 164 (3) | OW5—H2⋯O3ix | 0.82 (1) | 2.08 (1) | 2.891 (2) | 169 (3) | OW6—H3⋯O1vi | 0.82 (1) | 1.90 (1) | 2.703 (2) | 167 (4) | Symmetry codes: (vi) ; (viii) ; (ix) . | |
Na1—OW5 | 2.3660 (18) | Na2—O2iv | 2.3301 (18) | Na1—O3i | 2.4157 (19) | Na2—OW6v | 2.3480 (18) | Na1—O1 | 2.4379 (18) | Na2—O4vi | 2.3651 (19) | Na1—O3ii | 2.4594 (16) | Na2—O1vii | 2.4103 (18) | Na1—OW5i | 2.465 (2) | Se1—O2 | 1.6350 (14) | Na1—O4iii | 2.6057 (19) | Se1—O3 | 1.6367 (14) | Na1—O2ii | 2.8475 (17) | Se1—O4 | 1.6451 (16) | Na2—O2 | 2.298 (2) | Se1—O1 | 1.6481 (15) | Symmetry codes: (i) ; (ii) ; (iii) x+1, y, z; (iv) ; (v) x-1, y, z; (vi) ; (vii) . | |
| Figure 1 The NaO7 and NaO5 polyhedra in the structure of Na2SO4·1.5H2O. Displacement parameters are drawn at the 99% probability level. [Symmetry codes: (i) , , ; (ii) , , z; (iii) x+1, y, z; (iv) , -y, ; (v) x-1, y, z; (vi) x, , ; (vii) , , z.] |
| Figure 2 The crystal structure of Na2SO4·1.5H2O in a projection along [110]. NaO5 polyhedra are turquoise, NaO7 polyhedra are blue, SeO4 tetrahedra are red and H atoms are grey. Hydrogen bonds have been omitted for clarity. |
Isotypism has been reported for several Na2XO4·10H2O (X = S, Se, Cr, W, Mo) phases (Ruben et al., 1961), but only the structures of X = S (Levy & Lisensky, 1978; Prescott et al., 2001) and Cr (Kahlenberg, 2012) have been determined so far. As expected, the general structural set-up in the isotypic Na2XO4·10H2O structures is very similar. Each of the two Na+ cations is octahedrally surrounded [mean Na—O distance of the two octahedra is 2.420 Å (see Table 3); sulfate analogue (Prescott et al., 2001): 2.415 Å; chromate analogue (Kahlenberg, 2012): 2.423 Å]. The [NaO6] octahedra are linked via edge-sharing into zigzag chains (Fig. 3) running parallel to [001]. These chains are linked with neighbouring chains and intermediate SeO4 tetrahedra (mean Se—O distance 1.639; sulfate 1.488, chromate 1.647 Å) and non-coordinating lattice water molecules through O—H⋯O hydrogen bonds of medium strength (Table 4) to build up the crystal structure (Fig. 4). The most important difference between the structures of the three Na2XO4·10H2O (X = S, Se, Cr) phases is the missing disorder of the XO4 tetrahedron in the selenate compound that has been observed in the sulfate compound on the basis of single-crystal neutron data (Levy & Lisensky, 1978) and single-crystal X-ray data (Prescott et al., 2001), or for the chromate compound on the basis of single-crystal X-ray data (Kahlenberg, 2012).
Na1—OW5 | 2.3776 (6) | Na2—OW7 | 2.3935 (6) | Na1—OW6i | 2.4181 (6) | Na2—OW9 | 2.4325 (6) | Na1—OW11 | 2.4184 (6) | Na2—OW6 | 2.4415 (6) | Na1—OW10 | 2.4194 (6) | Na2—OW10ii | 2.4667 (6) | Na1—OW8i | 2.4473 (6) | Se1—O41 | 1.6335 (5) | Na1—OW9i | 2.4507 (6) | Se1—O31 | 1.6394 (5) | Na2—OW12 | 2.3814 (6) | Se1—O1 | 1.6398 (5) | Na2—OW5ii | 2.3891 (6) | Se1—O21 | 1.6421 (5) | Symmetry codes: (i) x, y, z+1; (ii) . | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | OW5—H5A⋯O41 | 0.82 (1) | 1.96 (1) | 2.7570 (7) | 164 (1) | OW5—H5B⋯OW13iii | 0.82 (1) | 2.00 (1) | 2.7980 (7) | 165 (1) | OW6—H6A⋯OW14 | 0.82 (1) | 2.02 (1) | 2.8301 (7) | 168 (1) | OW6—H6B⋯O41ii | 0.82 (1) | 1.98 (1) | 2.7791 (7) | 166 (2) | OW7—H7A⋯O1iv | 0.82 (1) | 1.97 (1) | 2.7727 (7) | 166 (1) | OW7—H7B⋯OW8v | 0.82 (1) | 1.95 (1) | 2.7542 (7) | 168 (1) | OW8—H8A⋯O41ii | 0.82 (1) | 1.95 (1) | 2.7544 (7) | 166 (1) | OW8—H8B⋯OW7vi | 0.82 (1) | 1.99 (1) | 2.8076 (7) | 178 (1) | OW9—H9A⋯O1vii | 0.82 (1) | 2.11 (1) | 2.9152 (7) | 168 (1) | OW9—H9B⋯OW13viii | 0.82 (1) | 2.04 (1) | 2.8596 (7) | 177 (1) | OW10—H10A⋯OW14ix | 0.82 (1) | 2.05 (1) | 2.8686 (7) | 178 (2) | OW10—H10B⋯O31x | 0.82 (1) | 2.08 (1) | 2.8920 (7) | 174 (1) | OW11—H11A⋯O31 | 0.82 (1) | 2.05 (1) | 2.8604 (7) | 171 (1) | OW11—H11B⋯OW12i | 0.82 (1) | 1.96 (1) | 2.7716 (8) | 168 (1) | OW12—H12A⋯O21iv | 0.82 (1) | 1.92 (1) | 2.7359 (7) | 179 (1) | OW12—H12B⋯OW11viii | 0.82 (1) | 1.97 (1) | 2.7818 (7) | 173 (1) | OW13—H13A⋯O1xi | 0.82 (1) | 1.98 (1) | 2.7932 (7) | 172 (1) | OW13—H13B⋯O21x | 0.82 (1) | 1.98 (1) | 2.7931 (7) | 170 (1) | OW14—H14A⋯O21xii | 0.82 (1) | 1.98 (1) | 2.8002 (7) | 174 (1) | OW14—H14B⋯O31viii | 0.82 (1) | 2.00 (1) | 2.8061 (7) | 169 (1) | Symmetry codes: (i) x, y, z+1; (ii) ; (iii) x+1, y, z; (iv) ; (v) ; (vi) ; (vii) -x+2, -y, -z+1; (viii) -x+1, -y, -z+1; (ix) -x+1, -y-1, -z+1; (x) ; (xi) -x+1, -y, -z+2; (xii) . | |
| Figure 3 A chain of edge-sharing NaO6 octahedra in the crystal structure of Na2SO4·10H2O. Displacement parameters are drawn at the 99% probability level. [Symmetry code: (i) x, −y − , z − .] |
| Figure 4 The crystal structure of Na2SO4·10H2O in a projection along [110]. NaO6 polyhedra are light blue, SeO4 tetrahedra are red, O atoms are white and H atoms are grey. Hydrogen bonds have been omitted for clarity. |
3. Synthesis and crystallization
Anhydrous Na2SeO4 was prepared according to the method compiled by Brauer (1963) by adding a half-concentrated aqueous selenic acid solution (ca 60 wt%) to an excess of an Na2CO3 solution. The resulting solution was heated until a considerable amount of the neutralization product had crystallized. The crystal mush was then separated by suction filtration of the still-hot solution and dried in air. X-ray powder diffraction revealed a single-phase material. The Na2SeO4 crystals were then dissolved in small amounts of water and kept at ca 300, 293 and 280 K until complete evaporation of the solvent. According to Rietveld refinements using TOPAS (Bruker, 2013) the product crystallized at 300 K consisted of Na2SeO4 and Na2SeO4·1.5H2O in an approximate 9:1 weight ratio, the product crystallized at 290 K consisted of Na2SeO4 and Na2SeO4·1.5H2O in an approximate 5:1 ratio, and the product crystallized at 280 K consisted of Na2SeO4, Na2SeO4·1.5H2O and Na2SeO4·10H2O in an approximate 5:4:1 ratio. The crystal forms of the three obtained phases were different and were used for separation. Crystals of the anhydrous phase had mainly a lath-like form, of the sesquihydrate a plate-like form, and of the decahydrate a pinacoidal form. All obtained hydrate phases tend to weather when stored under ambient conditions.
4. Refinement
Unit-cell determinations revealed isotypic relationships with the corresponding chromate phases (Kahlenberg, 2012). For better comparison of the isotypic structures, atom labels and the setting of the unit cells of the selenate compounds were retained, and the coordinates of the non-H atoms of the chromate structure were used as starting parameters for refinement [note that the unit cell of Na2CrO4·1.5H2O is given in the non-standard setting F2dd of space group No. 43 (standard setting Fdd2)]. The H atoms of the water molecules were located from difference maps and were refined with a common Uiso parameter and a fixed O—H distance of 0.82 Å. Experimental details are given in Table 1.
| 1.5-hydrate | 10-hydrate | Crystal data | Chemical formula | Na2SeO4·1.5H2O | Na2O4Se·10H2O | Mr | 215.96 | 369.10 | Crystal system, space group | Orthorhombic, F2dd | Monoclinic, P21/c | Temperature (K) | 100 | 100 | a, b, c (Å) | 6.7533 (8), 8.6299 (10), 35.206 (4) | 11.5758 (6), 10.4911 (5), 12.9570 (7) | α, β, γ (°) | 90, 90, 90 | 90, 107.995 (3), 90 | V (Å3) | 2051.8 (4) | 1496.56 (13) | Z | 16 | 4 | Radiation type | Mo Kα | Mo Kα | μ (mm−1) | 7.43 | 2.62 | Crystal size (mm) | 0.20 × 0.15 × 0.10 | 0.32 × 0.18 × 0.09 | | Data collection | Diffractometer | Bruker SMART CCD | Bruker APEXII CCD | Absorption correction | Multi-scan (SADABS; Bruker, 2008) | Multi-scan (SADABS; Bruker, 2013) | Tmin, Tmax | 0.488, 0.584 | 0.642, 0.749 | No. of measured, independent and observed [I > 2σ(I)] reflections | 8363, 1824, 1723 | 213856, 11218, 9196 | Rint | 0.032 | 0.054 | (sin θ/λ)max (Å−1) | 0.762 | 0.965 | | Refinement | R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.042, 0.99 | 0.021, 0.046, 1.05 | No. of reflections | 1824 | 11218 | No. of parameters | 89 | 215 | No. of restraints | 4 | 20 | H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | Δρmax, Δρmin (e Å−3) | 0.91, −0.37 | 0.48, −0.52 | Absolute structure | Flack (1983), 823 Friedel pairs | – | Absolute structure parameter | 0.025 (8) | – | Computer programs: SMART, SAINT, SAINT-Plus and APEX2 (Bruker, 2013, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2006) and publCIF (Westrip, 2010). | |
Supporting information
Based on recent studies in the system Na/Se/O/H that revealed dimorphism of the phases NaHSeO4 and Na5H3(SeO4)4(H2O)2 (Pollitt & Weil, 2014), we became interested in the structure determination of hydrous phases of Na2SeO4. Although the first report of the decahydrate of Na2SeO4 dates back to 1827 (Mitscherlich, 1827), a detailed structure report for this compound has not been published so far. Mitscherlich (1827) also recognized an isomorphic relationship of Na2SeO4.10H2O with Na2SO4.10H2O (Glauber's salt or mirabilite as a mineral species). This relation was later confirmed by Rosický (1908) and by Ruben et al. (1961) on the basis of unit-cell determinations using diffraction methods. Another hydrous phase of Na2SeO4 reported in the literature is the metastable heptahydrate that crystallized from supersaturated Na2SeO4 solutions only when seeded with Na2SO4.7H2O nuclei below 293 K (Belarew, 1965).
During crystallization studies of aqueous Na2SeO4 solutions under different temperature conditions, we were able to isolate crystals not only of the decahydrate, but also of the sesquihydrate, the crystal structures of which are reported here.
S2. Structural commentary
top Na2SeO4.1.5H2O is isotypic with the corresponding chromate (Kahlenberg, 2012) and is the second example of the Na2XO4.1.5H2O structure family. The main building blocks of this structure type are distorted [NaO5(H2O)2] (Na1) monocapped octahedra, distorted [NaO4(H2O)] square pyramids (Na2) (Fig. 1) and rather regular XO4 (X = Se, Cr) tetrahedra. These building blocks are linked through common corners and edges into a three-dimensional framework structure (Fig. 2). Hydrogen bonds of the type O—H···O between the coordinating water molecules and parts of the framework O atoms provide additional stabilization (Table 1). The bond lengths (Table 2) and angles within the individual building blocks of the selenate and chromate structures are more or less identical with mean distances of SeO4 = 1.641; CrO4 = 1.651; Na1O7 = 2.514 (selenate), 2.505 (chromate); Na2O5 = 2.350 (selenate), 2.360 Å (chromate).
Isotypism has been reported for several Na2XO4.10H2O (X = S, Se, Cr, W, Mo) phases (Ruben et al., 1961), but only the structures of X = S (Levy & Lisensky, 1978; Prescott et al., 2001) and Cr (Kahlenberg, 2012) have been determined so far. As expected, the general structural set-up in the isotypic Na2XO4.10H2O structures is very similar. Each of the two Na+ cations is octahedrally surrounded [mean Na—O distance of the two octahedra is 2.420 Å (see Table 3); sulfate analogue (Prescott et al., 2001): 2.415 Å; chromate analogue (Kahlenberg, 2012): 2.423 Å]. The [NaO6] octahedra are linked via edge-sharing into zigzag chains (Fig. 3) running parallel to [001]. These chains are linked with neighbouring chains and intermediate SeO4 tetrahedra (mean Se—O distance 1.639; sulfate 1.488, chromate 1.647 Å) and non-coordinating lattice water molecules through O—H···O hydrogen bonds of medium strength (Table 4) to build up the crystal structure (Fig. 4). The most important difference between the structures of the three Na2XO4.10H2O (X = S, Se, Cr) phases is the missing disorder of the XO4 tetrahedron in the selenate compound that has been observed in the sulfate compound on basis of single-crystal neutron data (Levy & Lisensky, 1978) and single-crystal X-ray data (Prescott et al., 2001), or for the chromate compound on basis of single-crystal X-ray data (Kahlenberg, 2012).
S3. Synthesis and crystallization
top Anhydrous Na2SeO4 was prepared according to the method compiled by Brauer (1963) by adding a half-concentrated aqueous selenic acid solution (ca 60 wt%) to an excess of an Na2CO3 solution. The resulting solution was heated until a considerable amount of the neutralization product had crystallized. The crystal mush was then separated by suction filtration of the still hot solution and dried in air. X-ray powder diffraction revealed a single-phase material. The Na2SeO4 crystals were then dissolved in small amounts of water and kept at ca 300, 293 and 280 K until complete evaporation of the solvent. According to Rietveld refinements using TOPAS (Bruker, 2013) the product crystallized at 300 K consisted of Na2SeO4 and Na2SeO4.1.5H2O in an approximate 9:1 ratio, the product crystallized at 290 K consisted of Na2SeO4 and Na2SeO4.1.5H2O in an approximate 5:1 ratio, and the product crystallized at 280 K consisted of Na2SeO4, Na2SeO4.1.5H2O and Na2SeO4.10H2O in an approximate 5:4:1 ratio. The crystal forms of the three obtained phases were different and were used for separation. Crystals of the anhydrous phase had mainly a lath-like form, of the sesquihydrate a plate-like form, and of the decahydrate a pinacoidal form. All obtained hydrate phases tend to weather when stored under ambient conditions.
Unit-cell determinations revealed isotypic relationships with the corresponding chromate phases (Kahlenberg, 2012). For better comparison of the isotypic structures, atom labels and the setting of the unit cells of the selenate compounds were retained, and the coordinates of the non-H atoms of the chromate structure were used as starting parameters for refinement [note that the unit cell of Na2CrO4.1.5H2O is given in the non-standard setting F2dd of space group No. 43 (standard setting Fdd2)]. The H atoms of the water molecules were located from difference maps and were refined with a common Uiso parameter and a fixed O—H distance of 0.82 Å.
Data collection: SMART (Bruker, 2008) for 1.5-hydrate; APEX2 (Bruker, 2013) for 10-hydrate. Cell refinement: SAINT (Bruker, 2008) for 1.5-hydrate; SAINT-Plus (Bruker, 2013) for 10-hydrate. Data reduction: SAINT (Bruker, 2008) for 1.5-hydrate; SAINT-Plus (Bruker, 2013) for 10-hydrate. For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
(1.5-hydrate) Sodium selenate sesquihydrate
top Crystal data top Na2SeO4·1.5H2O | F(000) = 1648 |
Mr = 215.96 | Dx = 2.797 Mg m−3 |
Orthorhombic, F2dd | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F -2d 2 | Cell parameters from 4199 reflections |
a = 6.7533 (8) Å | θ = 3.9–32.8° |
b = 8.6299 (10) Å | µ = 7.43 mm−1 |
c = 35.206 (4) Å | T = 100 K |
V = 2051.8 (4) Å3 | Fragment, colourless |
Z = 16 | 0.20 × 0.15 × 0.10 mm |
Data collection top Bruker SMART CCD diffractometer | 1824 independent reflections |
Radiation source: fine-focus sealed tube | 1723 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scan | θmax = 32.8°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→9 |
Tmin = 0.488, Tmax = 0.584 | k = −12→12 |
8363 measured reflections | l = −53→53 |
Refinement top Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.042 | w = 1/[σ2(Fo2) + (0.0148P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
1824 reflections | Δρmax = 0.91 e Å−3 |
89 parameters | Δρmin = −0.37 e Å−3 |
4 restraints | Absolute structure: Flack (1983), 823 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.025 (8) |
Crystal data top Na2SeO4·1.5H2O | V = 2051.8 (4) Å3 |
Mr = 215.96 | Z = 16 |
Orthorhombic, F2dd | Mo Kα radiation |
a = 6.7533 (8) Å | µ = 7.43 mm−1 |
b = 8.6299 (10) Å | T = 100 K |
c = 35.206 (4) Å | 0.20 × 0.15 × 0.10 mm |
Data collection top Bruker SMART CCD diffractometer | 1824 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1723 reflections with I > 2σ(I) |
Tmin = 0.488, Tmax = 0.584 | Rint = 0.032 |
8363 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.042 | Δρmax = 0.91 e Å−3 |
S = 0.99 | Δρmin = −0.37 e Å−3 |
1824 reflections | Absolute structure: Flack (1983), 823 Friedel pairs |
89 parameters | Absolute structure parameter: 0.025 (8) |
4 restraints | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Se1 | 0.45783 (6) | 0.26019 (2) | 0.188204 (5) | 0.00624 (5) | |
Na1 | 0.94725 (16) | 0.40728 (9) | 0.15499 (2) | 0.01065 (16) | |
Na2 | 0.14581 (15) | 0.04335 (11) | 0.24656 (3) | 0.01009 (18) | |
O1 | 0.6662 (2) | 0.35383 (19) | 0.19642 (4) | 0.0091 (3) | |
O2 | 0.4372 (3) | 0.11507 (17) | 0.21780 (4) | 0.0097 (3) | |
O3 | 0.4561 (3) | 0.18930 (16) | 0.14509 (4) | 0.0096 (3) | |
O4 | 0.2752 (2) | 0.38446 (19) | 0.19358 (5) | 0.0095 (3) | |
OW5 | 0.9382 (3) | 0.13500 (18) | 0.14734 (4) | 0.0119 (3) | |
OW6 | 0.9204 (3) | 0.2500 | 0.2500 | 0.0122 (5) | |
H1 | 0.898 (5) | 0.076 (3) | 0.1639 (7) | 0.033 (6)* | |
H2 | 1.026 (4) | 0.088 (4) | 0.1364 (8) | 0.033 (6)* | |
H3 | 0.844 (4) | 0.232 (4) | 0.2676 (7) | 0.033 (6)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Se1 | 0.00707 (8) | 0.00585 (8) | 0.00581 (7) | −0.00002 (8) | 0.00015 (9) | −0.00019 (7) |
Na1 | 0.0128 (4) | 0.0089 (4) | 0.0103 (4) | −0.0009 (4) | 0.0007 (4) | 0.0004 (3) |
Na2 | 0.0106 (4) | 0.0103 (4) | 0.0094 (4) | −0.0018 (3) | 0.0014 (3) | −0.0007 (3) |
O1 | 0.0081 (8) | 0.0091 (7) | 0.0100 (7) | −0.0028 (6) | 0.0001 (6) | −0.0007 (6) |
O2 | 0.0106 (8) | 0.0081 (6) | 0.0106 (6) | −0.0013 (6) | −0.0004 (6) | 0.0046 (5) |
O3 | 0.0128 (7) | 0.0093 (6) | 0.0068 (6) | −0.0010 (8) | −0.0005 (7) | −0.0033 (5) |
O4 | 0.0101 (7) | 0.0093 (7) | 0.0091 (7) | 0.0035 (6) | 0.0010 (6) | −0.0011 (6) |
OW5 | 0.0131 (9) | 0.0096 (7) | 0.0129 (7) | 0.0004 (7) | 0.0036 (7) | 0.0014 (5) |
OW6 | 0.0112 (15) | 0.0156 (11) | 0.0097 (9) | 0.000 | 0.000 | 0.0036 (8) |
Geometric parameters (Å, º) top Na1—OW5 | 2.3660 (18) | Na2—O2iv | 2.3301 (18) |
Na1—O3i | 2.4157 (19) | Na2—OW6v | 2.3480 (18) |
Na1—O1 | 2.4379 (18) | Na2—O4vi | 2.3651 (19) |
Na1—O3ii | 2.4594 (16) | Na2—O1vii | 2.4103 (18) |
Na1—OW5i | 2.465 (2) | Se1—O2 | 1.6350 (14) |
Na1—O4iii | 2.6057 (19) | Se1—O3 | 1.6367 (14) |
Na1—O2ii | 2.8475 (17) | Se1—O4 | 1.6451 (16) |
Na2—O2 | 2.298 (2) | Se1—O1 | 1.6481 (15) |
| | | |
O2—Se1—O3 | 107.70 (7) | O2iv—Na2—O4vi | 84.15 (6) |
O2—Se1—O4 | 111.23 (9) | OW6v—Na2—O4vi | 89.63 (6) |
O3—Se1—O4 | 110.19 (9) | O2—Na2—O1vii | 79.12 (6) |
O2—Se1—O1 | 109.66 (8) | O2iv—Na2—O1vii | 91.76 (6) |
O3—Se1—O1 | 110.61 (9) | OW6v—Na2—O1vii | 126.16 (6) |
O4—Se1—O1 | 107.47 (8) | O4vi—Na2—O1vii | 144.12 (7) |
OW5—Na1—O3i | 90.74 (6) | Se1—O1—Na2ii | 114.37 (8) |
OW5—Na1—O1 | 81.96 (6) | Se1—O1—Na1 | 130.73 (9) |
O3i—Na1—O1 | 86.18 (7) | Na2ii—O1—Na1 | 110.74 (7) |
OW5—Na1—O3ii | 165.30 (6) | Se1—O2—Na2 | 124.06 (9) |
O3i—Na1—O3ii | 78.45 (5) | Se1—O2—Na2viii | 137.82 (10) |
O1—Na1—O3ii | 106.93 (7) | Na2—O2—Na2viii | 97.03 (5) |
OW5—Na1—OW5i | 81.63 (6) | Se1—O2—Na1vii | 89.17 (6) |
O3i—Na1—OW5i | 84.75 (6) | Na2—O2—Na1vii | 101.13 (6) |
O1—Na1—OW5i | 161.11 (7) | Na2viii—O2—Na1vii | 91.96 (6) |
O3ii—Na1—OW5i | 87.43 (6) | Se1—O3—Na1ix | 135.64 (11) |
OW5—Na1—O4iii | 90.36 (7) | Se1—O3—Na1vii | 103.80 (7) |
O3i—Na1—O4iii | 164.16 (7) | Na1ix—O3—Na1vii | 90.39 (6) |
O1—Na1—O4iii | 109.61 (5) | Se1—O4—Na2vi | 123.44 (9) |
O3ii—Na1—O4iii | 97.35 (7) | Se1—O4—Na1v | 128.80 (9) |
OW5i—Na1—O4iii | 79.79 (6) | Na2vi—O4—Na1v | 97.50 (6) |
OW5—Na1—O2ii | 135.50 (6) | Na1—OW5—Na1ix | 91.42 (7) |
O3i—Na1—O2ii | 118.59 (6) | Na1—OW5—H1 | 123 (2) |
O1—Na1—O2ii | 68.66 (5) | Na1ix—OW5—H1 | 111 (2) |
O3ii—Na1—O2ii | 59.17 (5) | Na1—OW5—H2 | 122 (3) |
OW5i—Na1—O2ii | 130.17 (6) | Na1ix—OW5—H2 | 100 (2) |
O4iii—Na1—O2ii | 70.31 (5) | H1—OW5—H2 | 106 (3) |
O2—Na2—O2iv | 155.95 (7) | Na2x—OW6—Na2iii | 99.15 (10) |
O2—Na2—OW6v | 111.92 (6) | Na2x—OW6—H3 | 121 (3) |
O2iv—Na2—OW6v | 91.48 (6) | Na2iii—OW6—H3 | 108 (3) |
O2—Na2—O4vi | 90.30 (7) | | |
Symmetry codes: (i) x+1/4, y+1/4, −z+1/4; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z; (iv) x−1/2, −y, −z+1/2; (v) x−1, y, z; (vi) x, −y+1/2, −z+1/2; (vii) x−1/2, y−1/2, z; (viii) x+1/2, −y, −z+1/2; (ix) x−1/4, y−1/4, −z+1/4; (x) x+1, −y+1/2, −z+1/2. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
OW5—H1···O4xi | 0.82 (1) | 2.13 (1) | 2.922 (2) | 164 (3) |
OW5—H2···O3xii | 0.82 (1) | 2.08 (1) | 2.891 (2) | 169 (3) |
OW6—H3···O1vi | 0.82 (1) | 1.90 (1) | 2.703 (2) | 167 (4) |
Symmetry codes: (vi) x, −y+1/2, −z+1/2; (xi) x+1/2, y−1/2, z; (xii) x+3/4, y−1/4, −z+1/4. |
(10-hydrate) Sodium selenate decahydrate
top Crystal data top Na2O4Se·10H2O | F(000) = 752 |
Mr = 369.10 | Dx = 1.638 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9719 reflections |
a = 11.5758 (6) Å | θ = 2.7–40.1° |
b = 10.4911 (5) Å | µ = 2.62 mm−1 |
c = 12.9570 (7) Å | T = 100 K |
β = 107.995 (3)° | Fragment, colourless |
V = 1496.56 (13) Å3 | 0.32 × 0.18 × 0.09 mm |
Z = 4 | |
Data collection top Bruker APEXII CCD diffractometer | 11218 independent reflections |
Radiation source: fine-focus sealed tube | 9196 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ω and ϕ scans | θmax = 43.3°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −22→22 |
Tmin = 0.642, Tmax = 0.749 | k = −20→20 |
213856 measured reflections | l = −24→24 |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.017P)2 + 0.2899P] where P = (Fo2 + 2Fc2)/3 |
11218 reflections | (Δ/σ)max = 0.006 |
215 parameters | Δρmax = 0.48 e Å−3 |
20 restraints | Δρmin = −0.52 e Å−3 |
Crystal data top Na2O4Se·10H2O | V = 1496.56 (13) Å3 |
Mr = 369.10 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.5758 (6) Å | µ = 2.62 mm−1 |
b = 10.4911 (5) Å | T = 100 K |
c = 12.9570 (7) Å | 0.32 × 0.18 × 0.09 mm |
β = 107.995 (3)° | |
Data collection top Bruker APEXII CCD diffractometer | 11218 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 9196 reflections with I > 2σ(I) |
Tmin = 0.642, Tmax = 0.749 | Rint = 0.054 |
213856 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.021 | 20 restraints |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.48 e Å−3 |
11218 reflections | Δρmin = −0.52 e Å−3 |
215 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Se1 | 0.752121 (5) | 0.139467 (5) | 0.740658 (4) | 0.00723 (1) | |
Na1 | 0.74307 (2) | −0.24486 (3) | 0.97851 (2) | 0.01112 (5) | |
Na2 | 0.75630 (2) | −0.11228 (3) | 0.23666 (2) | 0.01081 (4) | |
O1 | 0.86910 (4) | 0.19770 (5) | 0.83551 (4) | 0.01211 (7) | |
O21 | 0.73195 (4) | 0.21974 (4) | 0.62765 (4) | 0.01245 (8) | |
O31 | 0.63136 (4) | 0.15034 (5) | 0.78083 (4) | 0.01257 (7) | |
O41 | 0.77699 (5) | −0.00971 (4) | 0.71826 (4) | 0.01330 (8) | |
OW5 | 0.85363 (4) | −0.21683 (5) | 0.85304 (4) | 0.01236 (7) | |
OW6 | 0.64473 (4) | −0.27987 (5) | 0.11583 (4) | 0.01269 (8) | |
OW7 | 0.87675 (5) | 0.03985 (5) | 0.36196 (4) | 0.01443 (8) | |
OW8 | 0.87052 (5) | −0.42968 (5) | 0.05311 (4) | 0.01472 (8) | |
OW9 | 0.88112 (4) | −0.10907 (5) | 0.11623 (4) | 0.01306 (8) | |
OW10 | 0.61813 (4) | −0.39325 (5) | 0.84832 (4) | 0.01310 (8) | |
OW11 | 0.61541 (5) | −0.06034 (5) | 0.91589 (4) | 0.01584 (9) | |
OW12 | 0.63321 (5) | 0.04187 (5) | 0.11747 (4) | 0.01397 (8) | |
OW13 | 0.09783 (5) | −0.14961 (5) | 0.94520 (4) | 0.01473 (8) | |
OW14 | 0.39997 (5) | −0.34873 (5) | 0.08502 (4) | 0.01467 (8) | |
H5A | 0.8345 (13) | −0.1472 (6) | 0.8240 (11) | 0.0412 (9)* | |
H5B | 0.9267 (3) | −0.2110 (14) | 0.8845 (10) | 0.0412 (9)* | |
H6A | 0.5712 (2) | −0.2905 (14) | 0.1003 (11) | 0.0412 (9)* | |
H6B | 0.6722 (13) | −0.3481 (7) | 0.1436 (11) | 0.0412 (9)* | |
H7A | 0.8618 (13) | 0.1162 (3) | 0.3535 (12) | 0.0412 (9)* | |
H7B | 0.8709 (12) | 0.0169 (13) | 0.4206 (5) | 0.0412 (9)* | |
H8A | 0.8415 (11) | −0.4602 (12) | 0.0978 (8) | 0.0412 (9)* | |
H8B | 0.9440 (2) | −0.4401 (13) | 0.0788 (10) | 0.0412 (9)* | |
H9A | 0.9508 (4) | −0.1364 (12) | 0.1394 (11) | 0.0412 (9)* | |
H9B | 0.8892 (13) | −0.0359 (5) | 0.0973 (11) | 0.0412 (9)* | |
H10A | 0.6143 (13) | −0.4669 (4) | 0.8683 (11) | 0.0412 (9)* | |
H10B | 0.5473 (4) | −0.3767 (12) | 0.8146 (10) | 0.0412 (9)* | |
H11A | 0.6205 (12) | −0.0062 (10) | 0.8719 (8) | 0.0412 (9)* | |
H11B | 0.6254 (12) | −0.0213 (11) | 0.9728 (6) | 0.0412 (9)* | |
H12A | 0.6618 (12) | 0.1138 (5) | 0.1205 (12) | 0.0412 (9)* | |
H12B | 0.5615 (3) | 0.0506 (13) | 0.1131 (11) | 0.0412 (9)* | |
H13A | 0.1146 (13) | −0.1610 (13) | 1.0108 (2) | 0.0412 (9)* | |
H13B | 0.1423 (10) | −0.1952 (11) | 0.9226 (10) | 0.0412 (9)* | |
H14A | 0.3586 (11) | −0.3337 (13) | 0.0224 (4) | 0.0412 (9)* | |
H14B | 0.3809 (12) | −0.2944 (10) | 0.1223 (9) | 0.0412 (9)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Se1 | 0.00796 (2) | 0.00652 (2) | 0.00716 (2) | 0.00002 (2) | 0.00228 (1) | 0.00003 (2) |
Na1 | 0.01190 (11) | 0.01128 (11) | 0.01052 (11) | −0.00036 (9) | 0.00396 (9) | −0.00045 (8) |
Na2 | 0.01176 (11) | 0.01011 (10) | 0.01050 (10) | 0.00016 (9) | 0.00333 (8) | 0.00013 (8) |
O1 | 0.00993 (17) | 0.01300 (18) | 0.01144 (17) | −0.00124 (14) | 0.00041 (14) | −0.00188 (14) |
O21 | 0.0162 (2) | 0.01156 (18) | 0.00963 (17) | 0.00085 (15) | 0.00404 (15) | 0.00315 (14) |
O31 | 0.00980 (17) | 0.0156 (2) | 0.01373 (18) | −0.00012 (15) | 0.00571 (14) | −0.00071 (15) |
O41 | 0.0190 (2) | 0.00658 (16) | 0.01498 (19) | 0.00140 (15) | 0.00617 (16) | −0.00054 (14) |
OW5 | 0.01162 (18) | 0.01215 (18) | 0.01230 (18) | −0.00102 (15) | 0.00222 (14) | 0.00144 (14) |
OW6 | 0.01137 (18) | 0.01229 (19) | 0.01431 (19) | −0.00005 (15) | 0.00381 (15) | 0.00107 (14) |
OW7 | 0.0160 (2) | 0.01212 (19) | 0.01404 (19) | −0.00039 (16) | 0.00291 (16) | 0.00042 (15) |
OW8 | 0.01307 (19) | 0.0172 (2) | 0.0149 (2) | 0.00141 (16) | 0.00583 (16) | 0.00232 (16) |
OW9 | 0.01073 (18) | 0.01301 (18) | 0.0154 (2) | 0.00022 (14) | 0.00393 (15) | 0.00012 (15) |
OW10 | 0.01081 (18) | 0.01338 (18) | 0.01408 (19) | −0.00065 (15) | 0.00237 (15) | 0.00038 (15) |
OW11 | 0.0166 (2) | 0.0150 (2) | 0.0176 (2) | 0.00205 (17) | 0.00788 (17) | 0.00367 (16) |
OW12 | 0.01201 (19) | 0.01201 (19) | 0.0171 (2) | −0.00065 (15) | 0.00339 (16) | 0.00122 (15) |
OW13 | 0.01312 (19) | 0.0176 (2) | 0.01342 (19) | 0.00137 (16) | 0.00410 (15) | 0.00051 (16) |
OW14 | 0.0148 (2) | 0.0152 (2) | 0.01333 (19) | 0.00127 (16) | 0.00335 (15) | −0.00077 (15) |
Geometric parameters (Å, º) top Na1—OW5 | 2.3776 (6) | Na2—OW7 | 2.3935 (6) |
Na1—OW6i | 2.4181 (6) | Na2—OW9 | 2.4325 (6) |
Na1—OW11 | 2.4184 (6) | Na2—OW6 | 2.4415 (6) |
Na1—OW10 | 2.4194 (6) | Na2—OW10ii | 2.4667 (6) |
Na1—OW8i | 2.4473 (6) | Se1—O41 | 1.6335 (5) |
Na1—OW9i | 2.4507 (6) | Se1—O31 | 1.6394 (5) |
Na2—OW12 | 2.3814 (6) | Se1—O1 | 1.6398 (5) |
Na2—OW5ii | 2.3891 (6) | Se1—O21 | 1.6421 (5) |
| | | |
O41—Se1—O31 | 109.72 (2) | Na1—OW5—H5A | 107.3 (10) |
O41—Se1—O1 | 109.88 (3) | Na2iii—OW5—H5A | 111.8 (10) |
O31—Se1—O1 | 108.89 (2) | Na1—OW5—H5B | 111.1 (10) |
O41—Se1—O21 | 108.50 (2) | Na2iii—OW5—H5B | 125.7 (10) |
O31—Se1—O21 | 110.31 (2) | H5A—OW5—H5B | 104.6 (14) |
O1—Se1—O21 | 109.53 (2) | Na1iv—OW6—Na2 | 94.959 (19) |
OW5—Na1—OW6i | 175.60 (2) | Na1iv—OW6—H6A | 122.0 (10) |
OW5—Na1—OW11 | 94.230 (19) | Na2—OW6—H6A | 124.0 (10) |
OW6i—Na1—OW11 | 89.467 (19) | Na1iv—OW6—H6B | 104.4 (10) |
OW5—Na1—OW10 | 86.270 (19) | Na2—OW6—H6B | 106.9 (10) |
OW6i—Na1—OW10 | 95.70 (2) | H6A—OW6—H6B | 102.8 (13) |
OW11—Na1—OW10 | 96.28 (2) | Na2—OW7—H7A | 120.4 (10) |
OW5—Na1—OW8i | 88.961 (19) | Na2—OW7—H7B | 103.6 (10) |
OW6i—Na1—OW8i | 87.276 (19) | H7A—OW7—H7B | 109.7 (14) |
OW11—Na1—OW8i | 176.39 (2) | Na1iv—OW8—H8A | 105.1 (10) |
OW10—Na1—OW8i | 85.59 (2) | Na1iv—OW8—H8B | 133.6 (10) |
OW5—Na1—OW9i | 93.341 (19) | H8A—OW8—H8B | 105.2 (13) |
OW6i—Na1—OW9i | 84.368 (19) | Na2—OW9—Na1iv | 94.36 (2) |
OW11—Na1—OW9i | 88.42 (2) | Na2—OW9—H9A | 118.2 (10) |
OW10—Na1—OW9i | 175.30 (2) | Na1iv—OW9—H9A | 114.2 (10) |
OW8i—Na1—OW9i | 89.72 (2) | Na2—OW9—H9B | 110.5 (10) |
OW12—Na2—OW5ii | 171.87 (2) | Na1iv—OW9—H9B | 115.8 (10) |
OW12—Na2—OW7 | 95.37 (2) | H9A—OW9—H9B | 104.3 (13) |
OW5ii—Na2—OW7 | 90.57 (2) | Na1—OW10—Na2iii | 92.153 (19) |
OW12—Na2—OW9 | 85.96 (2) | Na1—OW10—H10A | 117.7 (10) |
OW5ii—Na2—OW9 | 99.063 (19) | Na2iii—OW10—H10A | 108.3 (10) |
OW7—Na2—OW9 | 95.10 (2) | Na1—OW10—H10B | 121.3 (10) |
OW12—Na2—OW6 | 88.92 (2) | Na2iii—OW10—H10B | 113.9 (10) |
OW5ii—Na2—OW6 | 85.252 (19) | H10A—OW10—H10B | 103.0 (13) |
OW7—Na2—OW6 | 175.61 (2) | Na1—OW11—H11A | 128.3 (10) |
OW9—Na2—OW6 | 84.260 (19) | Na1—OW11—H11B | 101.3 (10) |
OW12—Na2—OW10ii | 89.884 (19) | H11A—OW11—H11B | 105.1 (13) |
OW5ii—Na2—OW10ii | 84.965 (19) | Na2—OW12—H12A | 116.2 (10) |
OW7—Na2—OW10ii | 86.209 (19) | Na2—OW12—H12B | 120.7 (10) |
OW9—Na2—OW10ii | 175.74 (2) | H12A—OW12—H12B | 106.6 (13) |
OW6—Na2—OW10ii | 94.743 (19) | H13A—OW13—H13B | 108.1 (13) |
Na1—OW5—Na2iii | 95.178 (19) | H14A—OW14—H14B | 105.5 (13) |
Symmetry codes: (i) x, y, z+1; (ii) x, −y−1/2, z−1/2; (iii) x, −y−1/2, z+1/2; (iv) x, y, z−1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
OW5—H5A···O41 | 0.82 (1) | 1.96 (1) | 2.7570 (7) | 164 (1) |
OW5—H5B···OW13v | 0.82 (1) | 2.00 (1) | 2.7980 (7) | 165 (1) |
OW6—H6A···OW14 | 0.82 (1) | 2.02 (1) | 2.8301 (7) | 168 (1) |
OW6—H6B···O41ii | 0.82 (1) | 1.98 (1) | 2.7791 (7) | 166 (2) |
OW7—H7A···O1vi | 0.82 (1) | 1.97 (1) | 2.7727 (7) | 166 (1) |
OW7—H7B···OW8iii | 0.82 (1) | 1.95 (1) | 2.7542 (7) | 168 (1) |
OW8—H8A···O41ii | 0.82 (1) | 1.95 (1) | 2.7544 (7) | 166 (1) |
OW8—H8B···OW7vii | 0.82 (1) | 1.99 (1) | 2.8076 (7) | 178 (1) |
OW9—H9A···O1viii | 0.82 (1) | 2.11 (1) | 2.9152 (7) | 168 (1) |
OW9—H9B···OW13ix | 0.82 (1) | 2.04 (1) | 2.8596 (7) | 177 (1) |
OW10—H10A···OW14x | 0.82 (1) | 2.05 (1) | 2.8686 (7) | 178 (2) |
OW10—H10B···O31xi | 0.82 (1) | 2.08 (1) | 2.8920 (7) | 174 (1) |
OW11—H11A···O31 | 0.82 (1) | 2.05 (1) | 2.8604 (7) | 171 (1) |
OW11—H11B···OW12i | 0.82 (1) | 1.96 (1) | 2.7716 (8) | 168 (1) |
OW12—H12A···O21vi | 0.82 (1) | 1.92 (1) | 2.7359 (7) | 179 (1) |
OW12—H12B···OW11ix | 0.82 (1) | 1.97 (1) | 2.7818 (7) | 173 (1) |
OW13—H13A···O1xii | 0.82 (1) | 1.98 (1) | 2.7932 (7) | 172 (1) |
OW13—H13B···O21xi | 0.82 (1) | 1.98 (1) | 2.7931 (7) | 170 (1) |
OW14—H14A···O21xiii | 0.82 (1) | 1.98 (1) | 2.8002 (7) | 174 (1) |
OW14—H14B···O31ix | 0.82 (1) | 2.00 (1) | 2.8061 (7) | 169 (1) |
Symmetry codes: (i) x, y, z+1; (ii) x, −y−1/2, z−1/2; (iii) x, −y−1/2, z+1/2; (v) x+1, y, z; (vi) x, −y+1/2, z−1/2; (vii) −x+2, y−1/2, −z+1/2; (viii) −x+2, −y, −z+1; (ix) −x+1, −y, −z+1; (x) −x+1, −y−1, −z+1; (xi) −x+1, y−1/2, −z+3/2; (xii) −x+1, −y, −z+2; (xiii) −x+1, y−1/2, −z+1/2. |
Hydrogen-bond geometry (Å, º) for (1.5-hydrate) top D—H···A | D—H | H···A | D···A | D—H···A |
OW5—H1···O4viii | 0.8199 (10) | 2.125 (9) | 2.922 (2) | 164 (3) |
OW5—H2···O3ix | 0.8200 (10) | 2.082 (7) | 2.891 (2) | 169 (3) |
OW6—H3···O1vi | 0.8201 (10) | 1.898 (8) | 2.703 (2) | 167 (4) |
Symmetry codes: (vi) x, −y+1/2, −z+1/2; (viii) x+1/2, y−1/2, z; (ix) x+3/4, y−1/4, −z+1/4. |
Selected bond lengths (Å) for (1.5-hydrate) topNa1—OW5 | 2.3660 (18) | Na2—O2iv | 2.3301 (18) |
Na1—O3i | 2.4157 (19) | Na2—OW6v | 2.3480 (18) |
Na1—O1 | 2.4379 (18) | Na2—O4vi | 2.3651 (19) |
Na1—O3ii | 2.4594 (16) | Na2—O1vii | 2.4103 (18) |
Na1—OW5i | 2.465 (2) | Se1—O2 | 1.6350 (14) |
Na1—O4iii | 2.6057 (19) | Se1—O3 | 1.6367 (14) |
Na1—O2ii | 2.8475 (17) | Se1—O4 | 1.6451 (16) |
Na2—O2 | 2.298 (2) | Se1—O1 | 1.6481 (15) |
Symmetry codes: (i) x+1/4, y+1/4, −z+1/4; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z; (iv) x−1/2, −y, −z+1/2; (v) x−1, y, z; (vi) x, −y+1/2, −z+1/2; (vii) x−1/2, y−1/2, z. |
Selected bond lengths (Å) for (10-hydrate) topNa1—OW5 | 2.3776 (6) | Na2—OW7 | 2.3935 (6) |
Na1—OW6i | 2.4181 (6) | Na2—OW9 | 2.4325 (6) |
Na1—OW11 | 2.4184 (6) | Na2—OW6 | 2.4415 (6) |
Na1—OW10 | 2.4194 (6) | Na2—OW10ii | 2.4667 (6) |
Na1—OW8i | 2.4473 (6) | Se1—O41 | 1.6335 (5) |
Na1—OW9i | 2.4507 (6) | Se1—O31 | 1.6394 (5) |
Na2—OW12 | 2.3814 (6) | Se1—O1 | 1.6398 (5) |
Na2—OW5ii | 2.3891 (6) | Se1—O21 | 1.6421 (5) |
Symmetry codes: (i) x, y, z+1; (ii) x, −y−1/2, z−1/2. |
Hydrogen-bond geometry (Å, º) for (10-hydrate) top D—H···A | D—H | H···A | D···A | D—H···A |
OW5—H5A···O41 | 0.8197 (10) | 1.959 (4) | 2.7570 (7) | 164.1 (14) |
OW5—H5B···OW13iii | 0.8198 (10) | 1.999 (4) | 2.7980 (7) | 164.7 (14) |
OW6—H6A···OW14 | 0.8198 (10) | 2.024 (3) | 2.8301 (7) | 167.5 (14) |
OW6—H6B···O41ii | 0.8199 (10) | 1.977 (4) | 2.7791 (7) | 165.9 (15) |
OW7—H7A···O1iv | 0.8198 (10) | 1.971 (4) | 2.7727 (7) | 165.6 (14) |
OW7—H7B···OW8v | 0.8198 (10) | 1.946 (3) | 2.7542 (7) | 168.3 (14) |
OW8—H8A···O41ii | 0.8198 (10) | 1.952 (4) | 2.7544 (7) | 165.9 (14) |
OW8—H8B···OW7vi | 0.8197 (10) | 1.9883 (13) | 2.8076 (7) | 178.0 (14) |
OW9—H9A···O1vii | 0.8201 (10) | 2.109 (3) | 2.9152 (7) | 167.5 (14) |
OW9—H9B···OW13viii | 0.8199 (10) | 2.0408 (15) | 2.8596 (7) | 176.6 (14) |
OW10—H10A···OW14ix | 0.8199 (10) | 2.0489 (13) | 2.8686 (7) | 178.3 (15) |
OW10—H10B···O31x | 0.8199 (10) | 2.0750 (18) | 2.8920 (7) | 174.4 (14) |
OW11—H11A···O31 | 0.8198 (10) | 2.049 (3) | 2.8604 (7) | 170.5 (14) |
OW11—H11B···OW12i | 0.8199 (10) | 1.964 (3) | 2.7716 (8) | 168.4 (14) |
OW12—H12A···O21iv | 0.8199 (10) | 1.9161 (13) | 2.7359 (7) | 178.7 (14) |
OW12—H12B···OW11viii | 0.8198 (10) | 1.967 (2) | 2.7818 (7) | 172.5 (14) |
OW13—H13A···O1xi | 0.8197 (10) | 1.979 (2) | 2.7932 (7) | 171.7 (14) |
OW13—H13B···O21x | 0.8199 (10) | 1.981 (3) | 2.7931 (7) | 170.4 (14) |
OW14—H14A···O21xii | 0.8197 (10) | 1.9837 (19) | 2.8002 (7) | 174.0 (14) |
OW14—H14B···O31viii | 0.8199 (10) | 1.998 (3) | 2.8061 (7) | 168.5 (14) |
Symmetry codes: (i) x, y, z+1; (ii) x, −y−1/2, z−1/2; (iii) x+1, y, z; (iv) x, −y+1/2, z−1/2; (v) x, −y−1/2, z+1/2; (vi) −x+2, y−1/2, −z+1/2; (vii) −x+2, −y, −z+1; (viii) −x+1, −y, −z+1; (ix) −x+1, −y−1, −z+1; (x) −x+1, y−1/2, −z+3/2; (xi) −x+1, −y, −z+2; (xii) −x+1, y−1/2, −z+1/2. |
Experimental details
| (1.5-hydrate) | (10-hydrate) |
Crystal data |
Chemical formula | Na2SeO4·1.5H2O | Na2O4Se·10H2O |
Mr | 215.96 | 369.10 |
Crystal system, space group | Orthorhombic, F2dd | Monoclinic, P21/c |
Temperature (K) | 100 | 100 |
a, b, c (Å) | 6.7533 (8), 8.6299 (10), 35.206 (4) | 11.5758 (6), 10.4911 (5), 12.9570 (7) |
α, β, γ (°) | 90, 90, 90 | 90, 107.995 (3), 90 |
V (Å3) | 2051.8 (4) | 1496.56 (13) |
Z | 16 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 7.43 | 2.62 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 | 0.32 × 0.18 × 0.09 |
|
Data collection |
Diffractometer | Bruker SMART CCD diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) | Multi-scan (SADABS; Bruker, 2013) |
Tmin, Tmax | 0.488, 0.584 | 0.642, 0.749 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8363, 1824, 1723 | 213856, 11218, 9196 |
Rint | 0.032 | 0.054 |
(sin θ/λ)max (Å−1) | 0.762 | 0.965 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.042, 0.99 | 0.021, 0.046, 1.05 |
No. of reflections | 1824 | 11218 |
No. of parameters | 89 | 215 |
No. of restraints | 4 | 20 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.91, −0.37 | 0.48, −0.52 |
Absolute structure | Flack (1983), 823 Friedel pairs | ? |
Absolute structure parameter | 0.025 (8) | ? |
Acknowledgements
The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal and powder diffractometers. BB acknowledges the French government for a grant during a student exchange programme.
References
Belarew, C. (1965). Z. Anorg. Allg. Chem. 336, 92–95. Google Scholar
Brauer, G. (1963). In Handbook of Preparative Inorganic Chemistry, Vol. 1, 2nd ed. New York, London: Academic Press. Google Scholar
Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). APEX2, SAINT-Plus, SADABS and TOPAS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kahlenberg, V. (2012). Z. Kristallogr. 227, 621–628. Web of Science CrossRef CAS Google Scholar
Levy, H. A. & Lisensky, G. C. (1978). Acta Cryst. B34, 3502–3510. CrossRef CAS IUCr Journals Web of Science Google Scholar
Mitscherlich, E. (1827). Pogg. Ann. 11, 323–332. Google Scholar
Pollitt, S. & Weil, M. (2014). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201400068. Google Scholar
Prescott, H. A., Troyanov, S. I. & Kemnitz, E. (2001). J. Solid State Chem. 156, 415–421. Web of Science CrossRef CAS Google Scholar
Rosický, V. (1908). Z. Kristallogr. 45, 473–489. Google Scholar
Ruben, H. W., Templeton, D. H., Rosenstein, R. D. & Olovsson, I. (1961). J. Am. Chem. Soc. 83, 820–824. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access