research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of Na2SeO4·1.5H2O and Na2SeO4·10H2O

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and bIUT Bordeaux 1, 15 Rue Naudet, 33175 Gradignan, France
*Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 May 2014; accepted 21 May 2014; online 19 July 2014)

The crystal structures of Na2SeO4·1.5H2O (sodium selenate sesquihydrate) and Na2SeO4·10H2O (sodium selenate deca­hydrate) are isotypic with those of Na2CrO4·1.5H2O and Na2XSeO4·10H2O (X = S, Cr), respectively. The asymmetric unit of the sesquihydrate contains two Na+ cations, one SeO4 tetra­hedron and one and a half water mol­ecules, the other half being generated by twofold rotation symmetry. The coordination polyhedra of the cations are a distorted monocapped octa­hedron and a square pyramid; these [NaOx] polyhedra are linked through common edges and corners into a three-dimensional framework structure, the voids of which are filled with the Se atoms of the SeO4 tetra­hedra. The structure is consolidated by O—H⋯O hydrogen bonds between coordinating water mol­ecules and framework O atoms. The asymmetric unit of the deca­hydrate consists of two Na+ cations, one SeO4 tetra­hedron and ten water mol­ecules. Both Na+ cations are octa­hedrally surrounded by water mol­ecules and by edge-sharing condensed into zigzag chains extending parallel to [001]. The SeO4 tetra­hedra and two uncoordinating water mol­ecules are situated between the chains and are connected to the chains through an intricate network of medium-strength O—H⋯O hydrogen bonds.

1. Chemical context

Based on recent studies in the system Na/Se/O/H that revealed dimorphism of the phases NaHSeO4 and Na5H3(SeO4)4(H2O)2 (Pollitt & Weil, 2014[Pollitt, S. & Weil, M. (2014). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201400068.]), we became inter­ested in the structure determination of hydrous phases of Na2SeO4. Although the first report of the deca­hydrate of Na2SeO4 dates back to 1827 (Mitscherlich, 1827[Mitscherlich, E. (1827). Pogg. Ann. 11, 323-332.]), a detailed structure report for this compound has not been published so far. Mitscherlich (1827[Mitscherlich, E. (1827). Pogg. Ann. 11, 323-332.]) also recognized an isomorphic relationship of Na2SeO4·10H2O with Na2SO4·10H2O (Glauber's salt or mirabilite as a mineral species). This relation was later confirmed by Rosický (1908[Rosický, V. (1908). Z. Kristallogr. 45, 473-489.]) and by Ruben et al. (1961[Ruben, H. W., Templeton, D. H., Rosenstein, R. D. & Olovsson, I. (1961). J. Am. Chem. Soc. 83, 820-824.]) on the basis of unit-cell determinations using diffraction methods. Another hydrous phase of Na2SeO4 reported in the literature is the metastable hepta­hydrate that crystallized from supersaturated Na2SeO4 solutions only when seeded with Na2SO4·7H2O nuclei below 293 K (Belarew, 1965[Belarew, C. (1965). Z. Anorg. Allg. Chem. 336, 92-95.]).

During crystallization studies of aqueous Na2SeO4 solutions under different temperature conditions, we were able to isolate crystals not only of the deca­hydrate, but also of the sesqui­hydrate, the crystal structures of which are reported here.

2. Structural commentary

Na2SeO4·1.5H2O is isotypic with the corresponding chromate (Kahlenberg, 2012[Kahlenberg, V. (2012). Z. Kristallogr. 227, 621-628.]) and is the second example of the Na2XO4·1.5H2O structure family. The main building blocks of this structure type are distorted [NaO5(H2O)2] (Na1) monocapped octa­hedra, distorted [NaO4(H2O)] square pyramids (Na2) (Fig. 1[link]) and rather regular XO4 (X = Se, Cr) tetra­hedra. These building blocks are linked through common corners and edges into a three-dimensional framework structure (Fig. 2[link]). Hydrogen bonds of the type O—H⋯O between the coord­in­ating water mol­ecules and parts of the framework O atoms provide additional stabilization (Table 1[link]). The bond lengths (Table 2[link]) and angles within the individual building blocks of the selenate and chromate structures are more or less identical with mean distances of SeO4 = 1.641; CrO4 = 1.651; Na1O7 = 2.514 (selenate), 2.505 (chromate); Na2O5 = 2.350 (selenate), 2.360 Å (chromate).

Table 1
Hydrogen-bond geometry (Å, °) for 1.5-hydrate

D—H⋯A D—H H⋯A DA D—H⋯A
OW5—H1⋯O4viii 0.82 (1) 2.13 (1) 2.922 (2) 164 (3)
OW5—H2⋯O3ix 0.82 (1) 2.08 (1) 2.891 (2) 169 (3)
OW6—H3⋯O1vi 0.82 (1) 1.90 (1) 2.703 (2) 167 (4)
Symmetry codes: (vi) [x, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ix) [x+{\script{3\over 4}}, y-{\script{1\over 4}}, -z+{\script{1\over 4}}].

Table 2
Selected bond lengths (Å) for 1.5-hydrate

Na1—OW5 2.3660 (18) Na2—O2iv 2.3301 (18)
Na1—O3i 2.4157 (19) Na2—OW6v 2.3480 (18)
Na1—O1 2.4379 (18) Na2—O4vi 2.3651 (19)
Na1—O3ii 2.4594 (16) Na2—O1vii 2.4103 (18)
Na1—OW5i 2.465 (2) Se1—O2 1.6350 (14)
Na1—O4iii 2.6057 (19) Se1—O3 1.6367 (14)
Na1—O2ii 2.8475 (17) Se1—O4 1.6451 (16)
Na2—O2 2.298 (2) Se1—O1 1.6481 (15)
Symmetry codes: (i) [x+{\script{1\over 4}}, y+{\script{1\over 4}}, -z+{\script{1\over 4}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) x+1, y, z; (iv) [x-{\script{1\over 2}}, -y, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) [x, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The NaO7 and NaO5 polyhedra in the structure of Na2SO4·1.5H2O. Displacement parameters are drawn at the 99% probability level. [Symmetry codes: (i) [x+{\script{1\over 4}}], [y+{\script{1\over 4}}], [-z+{\script{1\over 4}}]; (ii) [x+{\script{1\over 2}}], [y+{\script{1\over 2}}], z; (iii) x+1, y, z; (iv) [x-{\script{1\over 2}}], -y, [-z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) x, [-y+{\script{1\over 2}}], [-z+{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}], [y-{\script{1\over 2}}], z.]
[Figure 2]
Figure 2
The crystal structure of Na2SO4·1.5H2O in a projection along [110]. NaO5 polyhedra are turquoise, NaO7 polyhedra are blue, SeO4 tetra­hedra are red and H atoms are grey. Hydrogen bonds have been omitted for clarity.

Isotypism has been reported for several Na2XO4·10H2O (X = S, Se, Cr, W, Mo) phases (Ruben et al., 1961[Ruben, H. W., Templeton, D. H., Rosenstein, R. D. & Olovsson, I. (1961). J. Am. Chem. Soc. 83, 820-824.]), but only the structures of X = S (Levy & Lisensky, 1978[Levy, H. A. & Lisensky, G. C. (1978). Acta Cryst. B34, 3502-3510.]; Prescott et al., 2001[Prescott, H. A., Troyanov, S. I. & Kemnitz, E. (2001). J. Solid State Chem. 156, 415-421.]) and Cr (Kahlenberg, 2012[Kahlenberg, V. (2012). Z. Kristallogr. 227, 621-628.]) have been determined so far. As expected, the general structural set-up in the isotypic Na2XO4·10H2O structures is very similar. Each of the two Na+ cations is octa­hedrally surrounded [mean Na—O distance of the two octa­hedra is 2.420 Å (see Table 3[link]); sulfate analogue (Prescott et al., 2001[Prescott, H. A., Troyanov, S. I. & Kemnitz, E. (2001). J. Solid State Chem. 156, 415-421.]): 2.415 Å; chromate analogue (Kahlenberg, 2012[Kahlenberg, V. (2012). Z. Kristallogr. 227, 621-628.]): 2.423 Å]. The [NaO6] octa­hedra are linked via edge-sharing into zigzag chains (Fig. 3[link]) running parallel to [001]. These chains are linked with neighbouring chains and inter­mediate SeO4 tetra­hedra (mean Se—O distance 1.639; sulfate 1.488, chromate 1.647 Å) and non-coordinating lattice water mol­ecules through O—H⋯O hydrogen bonds of medium strength (Table 4[link]) to build up the crystal structure (Fig. 4[link]). The most important difference between the structures of the three Na2XO4·10H2O (X = S, Se, Cr) phases is the missing disorder of the XO4 tetra­hedron in the selenate compound that has been observed in the sulfate compound on the basis of single-crystal neutron data (Levy & Lisensky, 1978[Levy, H. A. & Lisensky, G. C. (1978). Acta Cryst. B34, 3502-3510.]) and single-crystal X-ray data (Prescott et al., 2001[Prescott, H. A., Troyanov, S. I. & Kemnitz, E. (2001). J. Solid State Chem. 156, 415-421.]), or for the chromate compound on the basis of single-crystal X-ray data (Kahlenberg, 2012[Kahlenberg, V. (2012). Z. Kristallogr. 227, 621-628.]).

Table 3
Selected bond lengths (Å) for 10-hydrate

Na1—OW5 2.3776 (6) Na2—OW7 2.3935 (6)
Na1—OW6i 2.4181 (6) Na2—OW9 2.4325 (6)
Na1—OW11 2.4184 (6) Na2—OW6 2.4415 (6)
Na1—OW10 2.4194 (6) Na2—OW10ii 2.4667 (6)
Na1—OW8i 2.4473 (6) Se1—O41 1.6335 (5)
Na1—OW9i 2.4507 (6) Se1—O31 1.6394 (5)
Na2—OW12 2.3814 (6) Se1—O1 1.6398 (5)
Na2—OW5ii 2.3891 (6) Se1—O21 1.6421 (5)
Symmetry codes: (i) x, y, z+1; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for 10-hydrate

D—H⋯A D—H H⋯A DA D—H⋯A
OW5—H5A⋯O41 0.82 (1) 1.96 (1) 2.7570 (7) 164 (1)
OW5—H5B⋯OW13iii 0.82 (1) 2.00 (1) 2.7980 (7) 165 (1)
OW6—H6A⋯OW14 0.82 (1) 2.02 (1) 2.8301 (7) 168 (1)
OW6—H6B⋯O41ii 0.82 (1) 1.98 (1) 2.7791 (7) 166 (2)
OW7—H7A⋯O1iv 0.82 (1) 1.97 (1) 2.7727 (7) 166 (1)
OW7—H7B⋯OW8v 0.82 (1) 1.95 (1) 2.7542 (7) 168 (1)
OW8—H8A⋯O41ii 0.82 (1) 1.95 (1) 2.7544 (7) 166 (1)
OW8—H8B⋯OW7vi 0.82 (1) 1.99 (1) 2.8076 (7) 178 (1)
OW9—H9A⋯O1vii 0.82 (1) 2.11 (1) 2.9152 (7) 168 (1)
OW9—H9B⋯OW13viii 0.82 (1) 2.04 (1) 2.8596 (7) 177 (1)
OW10—H10A⋯OW14ix 0.82 (1) 2.05 (1) 2.8686 (7) 178 (2)
OW10—H10B⋯O31x 0.82 (1) 2.08 (1) 2.8920 (7) 174 (1)
OW11—H11A⋯O31 0.82 (1) 2.05 (1) 2.8604 (7) 171 (1)
OW11—H11B⋯OW12i 0.82 (1) 1.96 (1) 2.7716 (8) 168 (1)
OW12—H12A⋯O21iv 0.82 (1) 1.92 (1) 2.7359 (7) 179 (1)
OW12—H12B⋯OW11viii 0.82 (1) 1.97 (1) 2.7818 (7) 173 (1)
OW13—H13A⋯O1xi 0.82 (1) 1.98 (1) 2.7932 (7) 172 (1)
OW13—H13B⋯O21x 0.82 (1) 1.98 (1) 2.7931 (7) 170 (1)
OW14—H14A⋯O21xii 0.82 (1) 1.98 (1) 2.8002 (7) 174 (1)
OW14—H14B⋯O31viii 0.82 (1) 2.00 (1) 2.8061 (7) 169 (1)
Symmetry codes: (i) x, y, z+1; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+2, -y, -z+1; (viii) -x+1, -y, -z+1; (ix) -x+1, -y-1, -z+1; (x) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (xi) -x+1, -y, -z+2; (xii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A chain of edge-sharing NaO6 octa­hedra in the crystal structure of Na2SO4·10H2O. Displacement parameters are drawn at the 99% probability level. [Symmetry code: (i) x, −y − [{1\over 2}], z − [{1\over 2}].]
[Figure 4]
Figure 4
The crystal structure of Na2SO4·10H2O in a projection along [110]. NaO6 polyhedra are light blue, SeO4 tetra­hedra are red, O atoms are white and H atoms are grey. Hydrogen bonds have been omitted for clarity.

3. Synthesis and crystallization

Anhydrous Na2SeO4 was prepared according to the method compiled by Brauer (1963[Brauer, G. (1963). In Handbook of Preparative Inorganic Chemistry, Vol. 1, 2nd ed. New York, London: Academic Press.]) by adding a half-concentrated aqueous selenic acid solution (ca 60 wt%) to an excess of an Na2CO3 solution. The resulting solution was heated until a considerable amount of the neutralization product had crystallized. The crystal mush was then separated by suction filtration of the still-hot solution and dried in air. X-ray powder diffraction revealed a single-phase material. The Na2SeO4 crystals were then dissolved in small amounts of water and kept at ca 300, 293 and 280 K until complete evaporation of the solvent. According to Rietveld refinements using TOPAS (Bruker, 2013[Bruker (2013). APEX2, SAINT-Plus, SADABS and TOPAS. Bruker AXS Inc., Madison, Wisconsin, USA.]) the product crystallized at 300 K consisted of Na2SeO4 and Na2SeO4·1.5H2O in an approximate 9:1 weight ratio, the product crystallized at 290 K consisted of Na2SeO4 and Na2SeO4·1.5H2O in an approximate 5:1 ratio, and the product crystallized at 280 K consisted of Na2SeO4, Na2SeO4·1.5H2O and Na2SeO4·10H2O in an approximate 5:4:1 ratio. The crystal forms of the three obtained phases were different and were used for separation. Crystals of the anhydrous phase had mainly a lath-like form, of the sesquihydrate a plate-like form, and of the deca­hydrate a pinacoidal form. All obtained hydrate phases tend to weather when stored under ambient conditions.

4. Refinement

Unit-cell determinations revealed isotypic relationships with the corresponding chromate phases (Kahlenberg, 2012[Kahlenberg, V. (2012). Z. Kristallogr. 227, 621-628.]). For better comparison of the isotypic structures, atom labels and the setting of the unit cells of the selenate compounds were retained, and the coordinates of the non-H atoms of the chromate structure were used as starting parameters for refinement [note that the unit cell of Na2CrO4·1.5H2O is given in the non-standard setting F2dd of space group No. 43 (standard setting Fdd2)]. The H atoms of the water mol­ecules were located from difference maps and were refined with a common Uiso parameter and a fixed O—H distance of 0.82 Å. Experimental details are given in Table 1[link].

Table 5
Experimental details

  1.5-hydrate 10-hydrate
Crystal data
Chemical formula Na2SeO4·1.5H2O Na2O4Se·10H2O
Mr 215.96 369.10
Crystal system, space group Orthorhombic, F2dd Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 6.7533 (8), 8.6299 (10), 35.206 (4) 11.5758 (6), 10.4911 (5), 12.9570 (7)
α, β, γ (°) 90, 90, 90 90, 107.995 (3), 90
V3) 2051.8 (4) 1496.56 (13)
Z 16 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.43 2.62
Crystal size (mm) 0.20 × 0.15 × 0.10 0.32 × 0.18 × 0.09
 
Data collection
Diffractometer Bruker SMART CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT-Plus, SADABS and TOPAS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.488, 0.584 0.642, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 8363, 1824, 1723 213856, 11218, 9196
Rint 0.032 0.054
(sin θ/λ)max−1) 0.762 0.965
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.042, 0.99 0.021, 0.046, 1.05
No. of reflections 1824 11218
No. of parameters 89 215
No. of restraints 4 20
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.91, −0.37 0.48, −0.52
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 823 Friedel pairs
Absolute structure parameter 0.025 (8)
Computer programs: SMART, SAINT, SAINT-Plus and APEX2 (Bruker, 2013[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.], 2013[Bruker (2013). APEX2, SAINT-Plus, SADABS and TOPAS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Based on recent studies in the system Na/Se/O/H that revealed dimorphism of the phases NaHSeO4 and Na5H3(SeO4)4(H2O)2 (Pollitt & Weil, 2014), we became inter­ested in the structure determination of hydrous phases of Na2SeO4. Although the first report of the decahydrate of Na2SeO4 dates back to 1827 (Mitscherlich, 1827), a detailed structure report for this compound has not been published so far. Mitscherlich (1827) also recognized an isomorphic relationship of Na2SeO4.10H2O with Na2SO4.10H2O (Glauber's salt or mirabilite as a mineral species). This relation was later confirmed by Rosický (1908) and by Ruben et al. (1961) on the basis of unit-cell determinations using diffraction methods. Another hydrous phase of Na2SeO4 reported in the literature is the metastable heptahydrate that crystallized from supersaturated Na2SeO4 solutions only when seeded with Na2SO4.7H2O nuclei below 293 K (Belarew, 1965).

During crystallization studies of aqueous Na2SeO4 solutions under different temperature conditions, we were able to isolate crystals not only of the decahydrate, but also of the sesquihydrate, the crystal structures of which are reported here.

Structural commentary top

Na2SeO4.1.5H2O is isotypic with the corresponding chromate (Kahlenberg, 2012) and is the second example of the Na2XO4.1.5H2O structure family. The main building blocks of this structure type are distorted [NaO5(H2O)2] (Na1) monocapped o­cta­hedra, distorted [NaO4(H2O)] square pyramids (Na2) (Fig. 1) and rather regular XO4 (X = Se, Cr) tetra­hedra. These building blocks are linked through common corners and edges into a three-dimensional framework structure (Fig. 2). Hydrogen bonds of the type O—H···O between the coordinating water molecules and parts of the framework O atoms provide additional stabilization (Table 1). The bond lengths (Table 2) and angles within the individual building blocks of the selenate and chromate structures are more or less identical with mean distances of SeO4 = 1.641; CrO4 = 1.651; Na1O7 = 2.514 (selenate), 2.505 (chromate); Na2O5 = 2.350 (selenate), 2.360 Å (chromate).

Isotypism has been reported for several Na2XO4.10H2O (X = S, Se, Cr, W, Mo) phases (Ruben et al., 1961), but only the structures of X = S (Levy & Lisensky, 1978; Prescott et al., 2001) and Cr (Kahlenberg, 2012) have been determined so far. As expected, the general structural set-up in the isotypic Na2XO4.10H2O structures is very similar. Each of the two Na+ cations is o­cta­hedrally surrounded [mean Na—O distance of the two o­cta­hedra is 2.420 Å (see Table 3); sulfate analogue (Prescott et al., 2001): 2.415 Å; chromate analogue (Kahlenberg, 2012): 2.423 Å]. The [NaO6] o­cta­hedra are linked via edge-sharing into zigzag chains (Fig. 3) running parallel to [001]. These chains are linked with neighbouring chains and inter­mediate SeO4 tetra­hedra (mean Se—O distance 1.639; sulfate 1.488, chromate 1.647 Å) and non-coordinating lattice water molecules through O—H···O hydrogen bonds of medium strength (Table 4) to build up the crystal structure (Fig. 4). The most important difference between the structures of the three Na2XO4.10H2O (X = S, Se, Cr) phases is the missing disorder of the XO4 tetra­hedron in the selenate compound that has been observed in the sulfate compound on basis of single-crystal neutron data (Levy & Lisensky, 1978) and single-crystal X-ray data (Prescott et al., 2001), or for the chromate compound on basis of single-crystal X-ray data (Kahlenberg, 2012).

Synthesis and crystallization top

Anhydrous Na2SeO4 was prepared according to the method compiled by Brauer (1963) by adding a half-concentrated aqueous selenic acid solution (ca 60 wt%) to an excess of an Na2CO3 solution. The resulting solution was heated until a considerable amount of the neutralization product had crystallized. The crystal mush was then separated by suction filtration of the still hot solution and dried in air. X-ray powder diffraction revealed a single-phase material. The Na2SeO4 crystals were then dissolved in small amounts of water and kept at ca 300, 293 and 280 K until complete evaporation of the solvent. According to Rietveld refinements using TOPAS (Bruker, 2013) the product crystallized at 300 K consisted of Na2SeO4 and Na2SeO4.1.5H2O in an approximate 9:1 ratio, the product crystallized at 290 K consisted of Na2SeO4 and Na2SeO4.1.5H2O in an approximate 5:1 ratio, and the product crystallized at 280 K consisted of Na2SeO4, Na2SeO4.1.5H2O and Na2SeO4.10H2O in an approximate 5:4:1 ratio. The crystal forms of the three obtained phases were different and were used for separation. Crystals of the anhydrous phase had mainly a lath-like form, of the sesquihydrate a plate-like form, and of the decahydrate a pinacoidal form. All obtained hydrate phases tend to weather when stored under ambient conditions.

Refinement top

Unit-cell determinations revealed isotypic relationships with the corresponding chromate phases (Kahlenberg, 2012). For better comparison of the isotypic structures, atom labels and the setting of the unit cells of the selenate compounds were retained, and the coordinates of the non-H atoms of the chromate structure were used as starting parameters for refinement [note that the unit cell of Na2CrO4.1.5H2O is given in the non-standard setting F2dd of space group No. 43 (standard setting Fdd2)]. The H atoms of the water molecules were located from difference maps and were refined with a common Uiso parameter and a fixed O—H distance of 0.82 Å.

Related literature top

For related literature, see: Belarew (1965); Brauer (1963); Bruker (2013); Kahlenberg (2012); Levy & Lisensky (1978); Mitscherlich (1827); Pollitt & Weil (2014); Prescott et al. (2001); Rosický (1908); Ruben et al. (1961).

Computing details top

Data collection: SMART (Bruker, 2008) for 1.5-hydrate; APEX2 (Bruker, 2013) for 10-hydrate. Cell refinement: SAINT (Bruker, 2008) for 1.5-hydrate; SAINT-Plus (Bruker, 2013) for 10-hydrate. Data reduction: SAINT (Bruker, 2008) for 1.5-hydrate; SAINT-Plus (Bruker, 2013) for 10-hydrate. For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The NaO5 and NaO7 polyhedra in the structure of Na2SO4·1.5H2O. Displacement parameters are drawn at the 99% probability level. [Symmetry codes: (i) x + 1/4, y + 1/4, -z + 1/4; (ii) x + 1/2, y + 1/2, z; (iii) x + 1, y, z; (iv) x - 1/2, -y, -z + 1/2; (v) x - 1, y, z; (vi) x, -y + 1/2, -z + 1/2; (vii) x - 1/2, y - 1/2, z.]
[Figure 2] Fig. 2. The crystal structure of Na2SO4·1.5H2O in a projection along [110]. NaO5 polyhedra are turquoise, NaO7 polyhedra are blue, SeO4 tetrahedra are red and H atoms are grey. Hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. A chain of edge-sharing NaO6 octahedra in the crystal structure of Na2SO4.10H2O. Displacement parameters are drawn at the 99% probability level. [Symmetry code: (i) x, -y - 1/2, z - 1/2.]
[Figure 4] Fig. 4. The crystal structure of Na2SO4.10H2O in a projection along [110]. NaO6 polyhedra are light blue, SeO4 tetrahedra are red, O atoms are white and H atoms are grey. Hydrogen bonds have been omitted for clarity.
(1.5-hydrate) Sodium selenate sesquihydrate top
Crystal data top
Na2SeO4·1.5H2OF(000) = 1648
Mr = 215.96Dx = 2.797 Mg m3
Orthorhombic, F2ddMo Kα radiation, λ = 0.71073 Å
Hall symbol: F -2d 2Cell parameters from 4199 reflections
a = 6.7533 (8) Åθ = 3.9–32.8°
b = 8.6299 (10) ŵ = 7.43 mm1
c = 35.206 (4) ÅT = 100 K
V = 2051.8 (4) Å3Fragment, colourless
Z = 160.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
1824 independent reflections
Radiation source: fine-focus sealed tube1723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scanθmax = 32.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 109
Tmin = 0.488, Tmax = 0.584k = 1212
8363 measured reflectionsl = 5353
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0148P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
1824 reflectionsΔρmax = 0.91 e Å3
89 parametersΔρmin = 0.37 e Å3
4 restraintsAbsolute structure: Flack (1983), 823 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.025 (8)
Crystal data top
Na2SeO4·1.5H2OV = 2051.8 (4) Å3
Mr = 215.96Z = 16
Orthorhombic, F2ddMo Kα radiation
a = 6.7533 (8) ŵ = 7.43 mm1
b = 8.6299 (10) ÅT = 100 K
c = 35.206 (4) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
1824 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1723 reflections with I > 2σ(I)
Tmin = 0.488, Tmax = 0.584Rint = 0.032
8363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.042Δρmax = 0.91 e Å3
S = 0.99Δρmin = 0.37 e Å3
1824 reflectionsAbsolute structure: Flack (1983), 823 Friedel pairs
89 parametersAbsolute structure parameter: 0.025 (8)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.45783 (6)0.26019 (2)0.188204 (5)0.00624 (5)
Na10.94725 (16)0.40728 (9)0.15499 (2)0.01065 (16)
Na20.14581 (15)0.04335 (11)0.24656 (3)0.01009 (18)
O10.6662 (2)0.35383 (19)0.19642 (4)0.0091 (3)
O20.4372 (3)0.11507 (17)0.21780 (4)0.0097 (3)
O30.4561 (3)0.18930 (16)0.14509 (4)0.0096 (3)
O40.2752 (2)0.38446 (19)0.19358 (5)0.0095 (3)
OW50.9382 (3)0.13500 (18)0.14734 (4)0.0119 (3)
OW60.9204 (3)0.25000.25000.0122 (5)
H10.898 (5)0.076 (3)0.1639 (7)0.033 (6)*
H21.026 (4)0.088 (4)0.1364 (8)0.033 (6)*
H30.844 (4)0.232 (4)0.2676 (7)0.033 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.00707 (8)0.00585 (8)0.00581 (7)0.00002 (8)0.00015 (9)0.00019 (7)
Na10.0128 (4)0.0089 (4)0.0103 (4)0.0009 (4)0.0007 (4)0.0004 (3)
Na20.0106 (4)0.0103 (4)0.0094 (4)0.0018 (3)0.0014 (3)0.0007 (3)
O10.0081 (8)0.0091 (7)0.0100 (7)0.0028 (6)0.0001 (6)0.0007 (6)
O20.0106 (8)0.0081 (6)0.0106 (6)0.0013 (6)0.0004 (6)0.0046 (5)
O30.0128 (7)0.0093 (6)0.0068 (6)0.0010 (8)0.0005 (7)0.0033 (5)
O40.0101 (7)0.0093 (7)0.0091 (7)0.0035 (6)0.0010 (6)0.0011 (6)
OW50.0131 (9)0.0096 (7)0.0129 (7)0.0004 (7)0.0036 (7)0.0014 (5)
OW60.0112 (15)0.0156 (11)0.0097 (9)0.0000.0000.0036 (8)
Geometric parameters (Å, º) top
Na1—OW52.3660 (18)Na2—O2iv2.3301 (18)
Na1—O3i2.4157 (19)Na2—OW6v2.3480 (18)
Na1—O12.4379 (18)Na2—O4vi2.3651 (19)
Na1—O3ii2.4594 (16)Na2—O1vii2.4103 (18)
Na1—OW5i2.465 (2)Se1—O21.6350 (14)
Na1—O4iii2.6057 (19)Se1—O31.6367 (14)
Na1—O2ii2.8475 (17)Se1—O41.6451 (16)
Na2—O22.298 (2)Se1—O11.6481 (15)
O2—Se1—O3107.70 (7)O2iv—Na2—O4vi84.15 (6)
O2—Se1—O4111.23 (9)OW6v—Na2—O4vi89.63 (6)
O3—Se1—O4110.19 (9)O2—Na2—O1vii79.12 (6)
O2—Se1—O1109.66 (8)O2iv—Na2—O1vii91.76 (6)
O3—Se1—O1110.61 (9)OW6v—Na2—O1vii126.16 (6)
O4—Se1—O1107.47 (8)O4vi—Na2—O1vii144.12 (7)
OW5—Na1—O3i90.74 (6)Se1—O1—Na2ii114.37 (8)
OW5—Na1—O181.96 (6)Se1—O1—Na1130.73 (9)
O3i—Na1—O186.18 (7)Na2ii—O1—Na1110.74 (7)
OW5—Na1—O3ii165.30 (6)Se1—O2—Na2124.06 (9)
O3i—Na1—O3ii78.45 (5)Se1—O2—Na2viii137.82 (10)
O1—Na1—O3ii106.93 (7)Na2—O2—Na2viii97.03 (5)
OW5—Na1—OW5i81.63 (6)Se1—O2—Na1vii89.17 (6)
O3i—Na1—OW5i84.75 (6)Na2—O2—Na1vii101.13 (6)
O1—Na1—OW5i161.11 (7)Na2viii—O2—Na1vii91.96 (6)
O3ii—Na1—OW5i87.43 (6)Se1—O3—Na1ix135.64 (11)
OW5—Na1—O4iii90.36 (7)Se1—O3—Na1vii103.80 (7)
O3i—Na1—O4iii164.16 (7)Na1ix—O3—Na1vii90.39 (6)
O1—Na1—O4iii109.61 (5)Se1—O4—Na2vi123.44 (9)
O3ii—Na1—O4iii97.35 (7)Se1—O4—Na1v128.80 (9)
OW5i—Na1—O4iii79.79 (6)Na2vi—O4—Na1v97.50 (6)
OW5—Na1—O2ii135.50 (6)Na1—OW5—Na1ix91.42 (7)
O3i—Na1—O2ii118.59 (6)Na1—OW5—H1123 (2)
O1—Na1—O2ii68.66 (5)Na1ix—OW5—H1111 (2)
O3ii—Na1—O2ii59.17 (5)Na1—OW5—H2122 (3)
OW5i—Na1—O2ii130.17 (6)Na1ix—OW5—H2100 (2)
O4iii—Na1—O2ii70.31 (5)H1—OW5—H2106 (3)
O2—Na2—O2iv155.95 (7)Na2x—OW6—Na2iii99.15 (10)
O2—Na2—OW6v111.92 (6)Na2x—OW6—H3121 (3)
O2iv—Na2—OW6v91.48 (6)Na2iii—OW6—H3108 (3)
O2—Na2—O4vi90.30 (7)
Symmetry codes: (i) x+1/4, y+1/4, z+1/4; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z; (iv) x1/2, y, z+1/2; (v) x1, y, z; (vi) x, y+1/2, z+1/2; (vii) x1/2, y1/2, z; (viii) x+1/2, y, z+1/2; (ix) x1/4, y1/4, z+1/4; (x) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW5—H1···O4xi0.82 (1)2.13 (1)2.922 (2)164 (3)
OW5—H2···O3xii0.82 (1)2.08 (1)2.891 (2)169 (3)
OW6—H3···O1vi0.82 (1)1.90 (1)2.703 (2)167 (4)
Symmetry codes: (vi) x, y+1/2, z+1/2; (xi) x+1/2, y1/2, z; (xii) x+3/4, y1/4, z+1/4.
(10-hydrate) Sodium selenate decahydrate top
Crystal data top
Na2O4Se·10H2OF(000) = 752
Mr = 369.10Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9719 reflections
a = 11.5758 (6) Åθ = 2.7–40.1°
b = 10.4911 (5) ŵ = 2.62 mm1
c = 12.9570 (7) ÅT = 100 K
β = 107.995 (3)°Fragment, colourless
V = 1496.56 (13) Å30.32 × 0.18 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
11218 independent reflections
Radiation source: fine-focus sealed tube9196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω and ϕ scansθmax = 43.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 2222
Tmin = 0.642, Tmax = 0.749k = 2020
213856 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.017P)2 + 0.2899P]
where P = (Fo2 + 2Fc2)/3
11218 reflections(Δ/σ)max = 0.006
215 parametersΔρmax = 0.48 e Å3
20 restraintsΔρmin = 0.52 e Å3
Crystal data top
Na2O4Se·10H2OV = 1496.56 (13) Å3
Mr = 369.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5758 (6) ŵ = 2.62 mm1
b = 10.4911 (5) ÅT = 100 K
c = 12.9570 (7) Å0.32 × 0.18 × 0.09 mm
β = 107.995 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
11218 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
9196 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.749Rint = 0.054
213856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02120 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
11218 reflectionsΔρmin = 0.52 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.752121 (5)0.139467 (5)0.740658 (4)0.00723 (1)
Na10.74307 (2)0.24486 (3)0.97851 (2)0.01112 (5)
Na20.75630 (2)0.11228 (3)0.23666 (2)0.01081 (4)
O10.86910 (4)0.19770 (5)0.83551 (4)0.01211 (7)
O210.73195 (4)0.21974 (4)0.62765 (4)0.01245 (8)
O310.63136 (4)0.15034 (5)0.78083 (4)0.01257 (7)
O410.77699 (5)0.00971 (4)0.71826 (4)0.01330 (8)
OW50.85363 (4)0.21683 (5)0.85304 (4)0.01236 (7)
OW60.64473 (4)0.27987 (5)0.11583 (4)0.01269 (8)
OW70.87675 (5)0.03985 (5)0.36196 (4)0.01443 (8)
OW80.87052 (5)0.42968 (5)0.05311 (4)0.01472 (8)
OW90.88112 (4)0.10907 (5)0.11623 (4)0.01306 (8)
OW100.61813 (4)0.39325 (5)0.84832 (4)0.01310 (8)
OW110.61541 (5)0.06034 (5)0.91589 (4)0.01584 (9)
OW120.63321 (5)0.04187 (5)0.11747 (4)0.01397 (8)
OW130.09783 (5)0.14961 (5)0.94520 (4)0.01473 (8)
OW140.39997 (5)0.34873 (5)0.08502 (4)0.01467 (8)
H5A0.8345 (13)0.1472 (6)0.8240 (11)0.0412 (9)*
H5B0.9267 (3)0.2110 (14)0.8845 (10)0.0412 (9)*
H6A0.5712 (2)0.2905 (14)0.1003 (11)0.0412 (9)*
H6B0.6722 (13)0.3481 (7)0.1436 (11)0.0412 (9)*
H7A0.8618 (13)0.1162 (3)0.3535 (12)0.0412 (9)*
H7B0.8709 (12)0.0169 (13)0.4206 (5)0.0412 (9)*
H8A0.8415 (11)0.4602 (12)0.0978 (8)0.0412 (9)*
H8B0.9440 (2)0.4401 (13)0.0788 (10)0.0412 (9)*
H9A0.9508 (4)0.1364 (12)0.1394 (11)0.0412 (9)*
H9B0.8892 (13)0.0359 (5)0.0973 (11)0.0412 (9)*
H10A0.6143 (13)0.4669 (4)0.8683 (11)0.0412 (9)*
H10B0.5473 (4)0.3767 (12)0.8146 (10)0.0412 (9)*
H11A0.6205 (12)0.0062 (10)0.8719 (8)0.0412 (9)*
H11B0.6254 (12)0.0213 (11)0.9728 (6)0.0412 (9)*
H12A0.6618 (12)0.1138 (5)0.1205 (12)0.0412 (9)*
H12B0.5615 (3)0.0506 (13)0.1131 (11)0.0412 (9)*
H13A0.1146 (13)0.1610 (13)1.0108 (2)0.0412 (9)*
H13B0.1423 (10)0.1952 (11)0.9226 (10)0.0412 (9)*
H14A0.3586 (11)0.3337 (13)0.0224 (4)0.0412 (9)*
H14B0.3809 (12)0.2944 (10)0.1223 (9)0.0412 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.00796 (2)0.00652 (2)0.00716 (2)0.00002 (2)0.00228 (1)0.00003 (2)
Na10.01190 (11)0.01128 (11)0.01052 (11)0.00036 (9)0.00396 (9)0.00045 (8)
Na20.01176 (11)0.01011 (10)0.01050 (10)0.00016 (9)0.00333 (8)0.00013 (8)
O10.00993 (17)0.01300 (18)0.01144 (17)0.00124 (14)0.00041 (14)0.00188 (14)
O210.0162 (2)0.01156 (18)0.00963 (17)0.00085 (15)0.00404 (15)0.00315 (14)
O310.00980 (17)0.0156 (2)0.01373 (18)0.00012 (15)0.00571 (14)0.00071 (15)
O410.0190 (2)0.00658 (16)0.01498 (19)0.00140 (15)0.00617 (16)0.00054 (14)
OW50.01162 (18)0.01215 (18)0.01230 (18)0.00102 (15)0.00222 (14)0.00144 (14)
OW60.01137 (18)0.01229 (19)0.01431 (19)0.00005 (15)0.00381 (15)0.00107 (14)
OW70.0160 (2)0.01212 (19)0.01404 (19)0.00039 (16)0.00291 (16)0.00042 (15)
OW80.01307 (19)0.0172 (2)0.0149 (2)0.00141 (16)0.00583 (16)0.00232 (16)
OW90.01073 (18)0.01301 (18)0.0154 (2)0.00022 (14)0.00393 (15)0.00012 (15)
OW100.01081 (18)0.01338 (18)0.01408 (19)0.00065 (15)0.00237 (15)0.00038 (15)
OW110.0166 (2)0.0150 (2)0.0176 (2)0.00205 (17)0.00788 (17)0.00367 (16)
OW120.01201 (19)0.01201 (19)0.0171 (2)0.00065 (15)0.00339 (16)0.00122 (15)
OW130.01312 (19)0.0176 (2)0.01342 (19)0.00137 (16)0.00410 (15)0.00051 (16)
OW140.0148 (2)0.0152 (2)0.01333 (19)0.00127 (16)0.00335 (15)0.00077 (15)
Geometric parameters (Å, º) top
Na1—OW52.3776 (6)Na2—OW72.3935 (6)
Na1—OW6i2.4181 (6)Na2—OW92.4325 (6)
Na1—OW112.4184 (6)Na2—OW62.4415 (6)
Na1—OW102.4194 (6)Na2—OW10ii2.4667 (6)
Na1—OW8i2.4473 (6)Se1—O411.6335 (5)
Na1—OW9i2.4507 (6)Se1—O311.6394 (5)
Na2—OW122.3814 (6)Se1—O11.6398 (5)
Na2—OW5ii2.3891 (6)Se1—O211.6421 (5)
O41—Se1—O31109.72 (2)Na1—OW5—H5A107.3 (10)
O41—Se1—O1109.88 (3)Na2iii—OW5—H5A111.8 (10)
O31—Se1—O1108.89 (2)Na1—OW5—H5B111.1 (10)
O41—Se1—O21108.50 (2)Na2iii—OW5—H5B125.7 (10)
O31—Se1—O21110.31 (2)H5A—OW5—H5B104.6 (14)
O1—Se1—O21109.53 (2)Na1iv—OW6—Na294.959 (19)
OW5—Na1—OW6i175.60 (2)Na1iv—OW6—H6A122.0 (10)
OW5—Na1—OW1194.230 (19)Na2—OW6—H6A124.0 (10)
OW6i—Na1—OW1189.467 (19)Na1iv—OW6—H6B104.4 (10)
OW5—Na1—OW1086.270 (19)Na2—OW6—H6B106.9 (10)
OW6i—Na1—OW1095.70 (2)H6A—OW6—H6B102.8 (13)
OW11—Na1—OW1096.28 (2)Na2—OW7—H7A120.4 (10)
OW5—Na1—OW8i88.961 (19)Na2—OW7—H7B103.6 (10)
OW6i—Na1—OW8i87.276 (19)H7A—OW7—H7B109.7 (14)
OW11—Na1—OW8i176.39 (2)Na1iv—OW8—H8A105.1 (10)
OW10—Na1—OW8i85.59 (2)Na1iv—OW8—H8B133.6 (10)
OW5—Na1—OW9i93.341 (19)H8A—OW8—H8B105.2 (13)
OW6i—Na1—OW9i84.368 (19)Na2—OW9—Na1iv94.36 (2)
OW11—Na1—OW9i88.42 (2)Na2—OW9—H9A118.2 (10)
OW10—Na1—OW9i175.30 (2)Na1iv—OW9—H9A114.2 (10)
OW8i—Na1—OW9i89.72 (2)Na2—OW9—H9B110.5 (10)
OW12—Na2—OW5ii171.87 (2)Na1iv—OW9—H9B115.8 (10)
OW12—Na2—OW795.37 (2)H9A—OW9—H9B104.3 (13)
OW5ii—Na2—OW790.57 (2)Na1—OW10—Na2iii92.153 (19)
OW12—Na2—OW985.96 (2)Na1—OW10—H10A117.7 (10)
OW5ii—Na2—OW999.063 (19)Na2iii—OW10—H10A108.3 (10)
OW7—Na2—OW995.10 (2)Na1—OW10—H10B121.3 (10)
OW12—Na2—OW688.92 (2)Na2iii—OW10—H10B113.9 (10)
OW5ii—Na2—OW685.252 (19)H10A—OW10—H10B103.0 (13)
OW7—Na2—OW6175.61 (2)Na1—OW11—H11A128.3 (10)
OW9—Na2—OW684.260 (19)Na1—OW11—H11B101.3 (10)
OW12—Na2—OW10ii89.884 (19)H11A—OW11—H11B105.1 (13)
OW5ii—Na2—OW10ii84.965 (19)Na2—OW12—H12A116.2 (10)
OW7—Na2—OW10ii86.209 (19)Na2—OW12—H12B120.7 (10)
OW9—Na2—OW10ii175.74 (2)H12A—OW12—H12B106.6 (13)
OW6—Na2—OW10ii94.743 (19)H13A—OW13—H13B108.1 (13)
Na1—OW5—Na2iii95.178 (19)H14A—OW14—H14B105.5 (13)
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW5—H5A···O410.82 (1)1.96 (1)2.7570 (7)164 (1)
OW5—H5B···OW13v0.82 (1)2.00 (1)2.7980 (7)165 (1)
OW6—H6A···OW140.82 (1)2.02 (1)2.8301 (7)168 (1)
OW6—H6B···O41ii0.82 (1)1.98 (1)2.7791 (7)166 (2)
OW7—H7A···O1vi0.82 (1)1.97 (1)2.7727 (7)166 (1)
OW7—H7B···OW8iii0.82 (1)1.95 (1)2.7542 (7)168 (1)
OW8—H8A···O41ii0.82 (1)1.95 (1)2.7544 (7)166 (1)
OW8—H8B···OW7vii0.82 (1)1.99 (1)2.8076 (7)178 (1)
OW9—H9A···O1viii0.82 (1)2.11 (1)2.9152 (7)168 (1)
OW9—H9B···OW13ix0.82 (1)2.04 (1)2.8596 (7)177 (1)
OW10—H10A···OW14x0.82 (1)2.05 (1)2.8686 (7)178 (2)
OW10—H10B···O31xi0.82 (1)2.08 (1)2.8920 (7)174 (1)
OW11—H11A···O310.82 (1)2.05 (1)2.8604 (7)171 (1)
OW11—H11B···OW12i0.82 (1)1.96 (1)2.7716 (8)168 (1)
OW12—H12A···O21vi0.82 (1)1.92 (1)2.7359 (7)179 (1)
OW12—H12B···OW11ix0.82 (1)1.97 (1)2.7818 (7)173 (1)
OW13—H13A···O1xii0.82 (1)1.98 (1)2.7932 (7)172 (1)
OW13—H13B···O21xi0.82 (1)1.98 (1)2.7931 (7)170 (1)
OW14—H14A···O21xiii0.82 (1)1.98 (1)2.8002 (7)174 (1)
OW14—H14B···O31ix0.82 (1)2.00 (1)2.8061 (7)169 (1)
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z1/2; (iii) x, y1/2, z+1/2; (v) x+1, y, z; (vi) x, y+1/2, z1/2; (vii) x+2, y1/2, z+1/2; (viii) x+2, y, z+1; (ix) x+1, y, z+1; (x) x+1, y1, z+1; (xi) x+1, y1/2, z+3/2; (xii) x+1, y, z+2; (xiii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (1.5-hydrate) top
D—H···AD—HH···AD···AD—H···A
OW5—H1···O4viii0.8199 (10)2.125 (9)2.922 (2)164 (3)
OW5—H2···O3ix0.8200 (10)2.082 (7)2.891 (2)169 (3)
OW6—H3···O1vi0.8201 (10)1.898 (8)2.703 (2)167 (4)
Symmetry codes: (vi) x, y+1/2, z+1/2; (viii) x+1/2, y1/2, z; (ix) x+3/4, y1/4, z+1/4.
Selected bond lengths (Å) for (1.5-hydrate) top
Na1—OW52.3660 (18)Na2—O2iv2.3301 (18)
Na1—O3i2.4157 (19)Na2—OW6v2.3480 (18)
Na1—O12.4379 (18)Na2—O4vi2.3651 (19)
Na1—O3ii2.4594 (16)Na2—O1vii2.4103 (18)
Na1—OW5i2.465 (2)Se1—O21.6350 (14)
Na1—O4iii2.6057 (19)Se1—O31.6367 (14)
Na1—O2ii2.8475 (17)Se1—O41.6451 (16)
Na2—O22.298 (2)Se1—O11.6481 (15)
Symmetry codes: (i) x+1/4, y+1/4, z+1/4; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z; (iv) x1/2, y, z+1/2; (v) x1, y, z; (vi) x, y+1/2, z+1/2; (vii) x1/2, y1/2, z.
Selected bond lengths (Å) for (10-hydrate) top
Na1—OW52.3776 (6)Na2—OW72.3935 (6)
Na1—OW6i2.4181 (6)Na2—OW92.4325 (6)
Na1—OW112.4184 (6)Na2—OW62.4415 (6)
Na1—OW102.4194 (6)Na2—OW10ii2.4667 (6)
Na1—OW8i2.4473 (6)Se1—O411.6335 (5)
Na1—OW9i2.4507 (6)Se1—O311.6394 (5)
Na2—OW122.3814 (6)Se1—O11.6398 (5)
Na2—OW5ii2.3891 (6)Se1—O211.6421 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (10-hydrate) top
D—H···AD—HH···AD···AD—H···A
OW5—H5A···O410.8197 (10)1.959 (4)2.7570 (7)164.1 (14)
OW5—H5B···OW13iii0.8198 (10)1.999 (4)2.7980 (7)164.7 (14)
OW6—H6A···OW140.8198 (10)2.024 (3)2.8301 (7)167.5 (14)
OW6—H6B···O41ii0.8199 (10)1.977 (4)2.7791 (7)165.9 (15)
OW7—H7A···O1iv0.8198 (10)1.971 (4)2.7727 (7)165.6 (14)
OW7—H7B···OW8v0.8198 (10)1.946 (3)2.7542 (7)168.3 (14)
OW8—H8A···O41ii0.8198 (10)1.952 (4)2.7544 (7)165.9 (14)
OW8—H8B···OW7vi0.8197 (10)1.9883 (13)2.8076 (7)178.0 (14)
OW9—H9A···O1vii0.8201 (10)2.109 (3)2.9152 (7)167.5 (14)
OW9—H9B···OW13viii0.8199 (10)2.0408 (15)2.8596 (7)176.6 (14)
OW10—H10A···OW14ix0.8199 (10)2.0489 (13)2.8686 (7)178.3 (15)
OW10—H10B···O31x0.8199 (10)2.0750 (18)2.8920 (7)174.4 (14)
OW11—H11A···O310.8198 (10)2.049 (3)2.8604 (7)170.5 (14)
OW11—H11B···OW12i0.8199 (10)1.964 (3)2.7716 (8)168.4 (14)
OW12—H12A···O21iv0.8199 (10)1.9161 (13)2.7359 (7)178.7 (14)
OW12—H12B···OW11viii0.8198 (10)1.967 (2)2.7818 (7)172.5 (14)
OW13—H13A···O1xi0.8197 (10)1.979 (2)2.7932 (7)171.7 (14)
OW13—H13B···O21x0.8199 (10)1.981 (3)2.7931 (7)170.4 (14)
OW14—H14A···O21xii0.8197 (10)1.9837 (19)2.8002 (7)174.0 (14)
OW14—H14B···O31viii0.8199 (10)1.998 (3)2.8061 (7)168.5 (14)
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z1/2; (iii) x+1, y, z; (iv) x, y+1/2, z1/2; (v) x, y1/2, z+1/2; (vi) x+2, y1/2, z+1/2; (vii) x+2, y, z+1; (viii) x+1, y, z+1; (ix) x+1, y1, z+1; (x) x+1, y1/2, z+3/2; (xi) x+1, y, z+2; (xii) x+1, y1/2, z+1/2.

Experimental details

(1.5-hydrate)(10-hydrate)
Crystal data
Chemical formulaNa2SeO4·1.5H2ONa2O4Se·10H2O
Mr215.96369.10
Crystal system, space groupOrthorhombic, F2ddMonoclinic, P21/c
Temperature (K)100100
a, b, c (Å)6.7533 (8), 8.6299 (10), 35.206 (4)11.5758 (6), 10.4911 (5), 12.9570 (7)
α, β, γ (°)90, 90, 9090, 107.995 (3), 90
V3)2051.8 (4)1496.56 (13)
Z164
Radiation typeMo KαMo Kα
µ (mm1)7.432.62
Crystal size (mm)0.20 × 0.15 × 0.100.32 × 0.18 × 0.09
Data collection
DiffractometerBruker SMART CCD
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.488, 0.5840.642, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
8363, 1824, 1723 213856, 11218, 9196
Rint0.0320.054
(sin θ/λ)max1)0.7620.965
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.042, 0.99 0.021, 0.046, 1.05
No. of reflections182411218
No. of parameters89215
No. of restraints420
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.370.48, 0.52
Absolute structureFlack (1983), 823 Friedel pairs?
Absolute structure parameter0.025 (8)?

Computer programs: SMART (Bruker, 2008), APEX2 (Bruker, 2013), SAINT (Bruker, 2008), SAINT-Plus (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal and powder diffractometers. BB acknowledges the French government for a grant during a student exchange programme.

References

First citationBelarew, C. (1965). Z. Anorg. Allg. Chem. 336, 92–95.  Google Scholar
First citationBrauer, G. (1963). In Handbook of Preparative Inorganic Chemistry, Vol. 1, 2nd ed. New York, London: Academic Press.  Google Scholar
First citationBruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX2, SAINT-Plus, SADABS and TOPAS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKahlenberg, V. (2012). Z. Kristallogr. 227, 621–628.  Web of Science CrossRef CAS Google Scholar
First citationLevy, H. A. & Lisensky, G. C. (1978). Acta Cryst. B34, 3502–3510.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMitscherlich, E. (1827). Pogg. Ann. 11, 323–332.  Google Scholar
First citationPollitt, S. & Weil, M. (2014). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201400068.  Google Scholar
First citationPrescott, H. A., Troyanov, S. I. & Kemnitz, E. (2001). J. Solid State Chem. 156, 415–421.  Web of Science CrossRef CAS Google Scholar
First citationRosický, V. (1908). Z. Kristallogr. 45, 473–489.  Google Scholar
First citationRuben, H. W., Templeton, D. H., Rosenstein, R. D. & Olovsson, I. (1961). J. Am. Chem. Soc. 83, 820–824.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds