research communications
N-(4-methylphenyl)-3-nitropyridin-2-amine
of a new monoclinic polymorph ofaDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The title compound, C12H11N3O2, is a second monoclinic polymorph (P21, with Z′ = 4) of the previously reported monoclinic (P21/c, with Z′ = 2) form [Akhmad Aznan et al. (2010). Acta Cryst. E66, o2400]. Four independent molecules comprise the which have the common features of a syn disposition of the pyridine N atom and the toluene ring, and an intramolecular amine–nitro N—H⋯O hydrogen bond. The differences between molecules relate to the dihedral angles between the rings which range from 2.92 (19) to 26.24 (19)°. The geometry-optimized structure [B3LYP level of theory and 6–311 g+(d,p) basis set] has the same features except that the entire molecule is planar. In the crystal, the three-dimensional architecture is consolidated by a combination of C—H⋯O, C—H⋯π, nitro-N—O⋯π and π–π interactions [inter-centroid distances = 3.649 (2)–3.916 (2) Å].
Keywords: crystal structure; amine; pyridine; polymorph; conformation.
CCDC reference: 1004278
1. Chemical context
Original interest in the molecules related to the title compound revolved around their fluorescence properties (Kawai et al., 2001; Abdullah, 2005). The title compound was isolated during an ongoing study of co-crystals formed between carboxylic acids and pyridine-containing molecules (Arman & Tiekink, 2013; Arman et al., 2014), designed to prove the robustness of the {⋯HOC(=O)⋯N(pyridine)} heterosynthon in co-crystals (Shattock et al., 2008) of functionalized carboxylic acids with pyridine derivatives. The of the title compound has been reported previously as a monoclinic (P21/c, with Z′ = 2) polymorph (Akhmad Aznan et al., 2010), and the present polymorph was isolated from a failed co-crystallization experiment as detailed in Section 5. The phenomenon of isolating polymorphs from co-crystallization experiments is gaining increasing prominence, especially since the isolation of a second form of aspirin (Vishweshwar et al., 2005), and led Zaworotko to suggest co-crystallization experiments should also be employed in polymorph screening (Arora & Zaworotko, 2009).
2. Structural commentary
Four crystallographically independent molecules comprise the ). Each molecule features a secondary amine linking nitrobenzene and tolyl groups, with the nitropyridyl N atom syn to the toluene ring. An intramolecular N—H⋯O hydrogen bond closes an S(6) loop in each molecule (Table 1). This feature of the structure confers coplanarity of the nitro group with the pyridyl ring to which it is attached; the maximum deviation from coplanarity is seen in the pyridyl/nitro group dihedral angle of 5.2 (3)°, for the N10-containing molecule. More significant differences are found in the dihedral angles between the two rings, i.e. 23.79 (19), 26.24 (19), 6.57 (18) and 2.92 (19)° for the N1-, N4-, N7- and N10-containing molecules, respectively. Similar conformations were observed for the two independent molecules in the previously reported P21/c polymorph (Aznan Akhmad et al., 2010). Here, the dihedral angles between the rings were 17.42 (16) and 34.64 (16)°, resembling the N1- and N4-containing molecules in the present study rather than the almost planar N7- and N10-containing molecules.
(Fig. 1Geometry optimization calculations were conducted using GAUSSIAN09 (Frisch et al., 2009) with the hybrid B3LYP level of theory and the 6-311g+(d,p) basis set. To confirm that a true minimum had been calculated, a frequency calculation was also performed. The gas-phase-optimized structure is strictly planar. An overlay diagram for the six experimentally determined molecules is shown in Fig. 2 and these are superimposed upon the geometry-optimized structure. Clearly, deviations from planarity in the experimentally determined molecules arise from the dictates of crystal packing.
3. Supramolecular features
Globally, the crystal packing features alternating layers of molecules that stack along the b axis. The first layer comprises N1- and N7-containing molecules that associate via C—H⋯O interactions (Table 1). Ten-membered {⋯HC2NO}2 synthons, with no crystallographically imposed symmetry, are formed via pyridine–nitro C—H⋯O interactions. Larger, again non-symmetric, 16-membered {⋯HC2NC2NO}2 synthons are formed via toluene–nitro C—H⋯O interactions (Fig. 3). These combine to form rows of molecules aligned along the a axis. The second independent layer comprises N4- and N10-containing molecules which associate in a similar fashion. However, it is noted that the C40—H40⋯O(nitro) interaction to close the 10-membered {⋯HC2NO}2 synthon is a little longer that the standard distance criteria incorporated in PLATON (Spek, 2009). Rows of N1- and N7-containing molecules and rows of N4- and N10-containing molecules are connected into a double chain with an undulating topology via π–π and nitro-O⋯π(pyridyl) interactions (Fig. 4). The π–π interactions occur between toluene C6–C11 and N11-pyridine rings [intercentroid separation = 3.680 (2) Å; angle of inclination = 4.03 (19)° for (−x, y − , −z + 1)], and toluene C18–C23 and N8-pyridine rings [3.649 (2) Å, 3.44 (18)°, −x + 1, y + , −z + 1]. As summarized in Table 1, the nitro–pyridine O⋯π interactions occur between the nitro O2 and O4 atoms and the N5- and N2-containing pyridine rings. Chains are connected into a layer parallel to (010) via methyl–toluene C—H⋯π interactions, and layers are connected into a three-dimensional architecture (Fig. 5) via weaker π–π interactions between pyridine and toluene rings: intercentroid distance for (N4/C1–C5)⋯(C18–C23) = 3.916 (2) Å, with an angle of inclination of 11.04 (19)°, and intercentroid distance for (C6–C11)⋯(N5/C13–C17) = 3.913 (2) Å, with an angle of inclination of 13.44 (19)° and (x − 1, y, z).
4. Database survey
The most closely related structures in the literature are N-(3-chlorophenyl)-3-nitropyridin-2-amine (Akhmad Aznan et al., 2011) and 4-[(3-nitropyridin-2-yl)amino]phenol (Cao et al., 2011). Similar features are evident in these molecules, i.e. the intramolecular N—H⋯O(nitro) hydrogen bond, the coplanarity of the nitro group and pyridine ring, and a conrotatory twist of the two rings, i.e. dihedral angles of 9.88 (5) and 84.77 (10)°, respectively. Finally, the structure of the all-phenyl analogue, 2-nitrodiphenylamine, has been reported (McWilliam et al., 2001). Again, the same features are evident and the comparable dihedral angle is 44.45 (7)°.
5. Synthesis and crystallization
N-(4-Methylphenyl)-3-nitropyridin-2-amine (0.05 g, 0.22 mmol), prepared according to the literature procedure of Akhmad Aznan et al. (2010), was mixed with 3-nitrobenzoic acid (Merck; 0.03 g, 0.22 mmol) in a 1:1 solution of ethanol and ether (10 ml). The solution was refluxed for 4 h at 350 K. The mixture was then left for slow evaporation and red crystals formed after 3–4 d.
6. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the in the riding-model approximation, with Uiso(H) set at 1.2Ueq(C). N-bound H atoms were located in a difference Fourier map but were refined with a distance restraint of N—H = 0.88±0.01 Å and with Uiso(H) set at 1.2Ueq(N). In the absence of significant effects, 4208 Friedel pairs were averaged in the final refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1004278
10.1107/S1600536814012227/hb0011sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814012227/hb0011Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814012227/hb0011Isup3.cml
Original interest in the molecules related to the title compound revolved around their fluorescence properties (Kawai et al., 2001; Abdullah, 2005). The title compound was isolated during an ongoing study of co-crystals formed between carboxylic acids and pyridine-containing molecules (Arman & Tiekink, 2013; Arman et al., 2014), designed to prove the robustness of the {···HOC(═O)···N(pyridine)} heterosynthon in co-crystals (Shattock et al., 2008) of functionalized carboxylic acids with pyridine derivatives. The of the title compound has been reported previously as a monoclinic (P21/c, with Z' = 2) polymorph (Akhmad Aznan et al., 2010), and the present polymorph was isolated from a failed co-crystallization experiment as detailed in Section 5. The phenomenon of isolating polymorphs from co-crystallization experiments is gaining increasing prominence, especially since the isolation of a second form of aspirin (Vishweshwar et al., 2005), and led Zaworotko to suggest co-crystallization experiments should also be employed in polymorph screening (Arora & Zaworotko, 2009).
Four crystallographically independent molecules comprise the
(Fig. 1). Each molecule features a secondary amine linking nitrobenzene and tolyl groups, with the pyridine N atom syn to the toluene ring. An intramolecular N—H···O hydrogen bond closes an S(6) loop in each molecule (Table 2). This feature of the structure confers coplanarity of the nitro group with the benzene ring to which it is attached; the maximum deviation from coplanarity is seen in the benzene/nitro group dihedral angle of 5.2 (3)°, for the N10-containing molecule. More significant differences are found in the dihedral angles between the two rings, i.e. 23.79 (19), 26.24 (19), 6.57 (18) and 2.92 (19)° for the N1-, N4-, N7- and N10-containing molecules, respectively. Similar conformations were observed for the two independent molecules in the previously reported P21/c polymorph (Aznan Akhmad et al., 2010). Here, the dihedral angles between the rings were 17.42 (16) and 34.64 (16)°, resembling the N1- and N4-containing molecules in the present study rather than the almost planar N7- and N10-containing molecules.Geometry optimization calculations were conducted using GAUSSIAN09 (Frisch et al., 2009) with the hybrid B3LYP level of theory and the 6-311g+(d,p) basis set. To confirm that a true minimum had been calculated, a frequency calculation was also performed. The gas-phase-optimized structure is strictly planar. An overlay diagram for the six experimentally determined molecules is shown in Fig. 2 and these are superimposed upon the geometry optimized structure. Clearly, deviations from planarity in the experimentally determined molecules arise from the dictates of crystal packing.
Globally, the crystal packing features alternating layers of molecules that stack along the b axis. The first layer comprises N1- and N7-containing molecules that associate via C—H···O interactions (Table 1). Ten-membered {···HC2NO}2 synthons, with no crystallographically imposed symmetry, are formed via pyridine–nitro C—H···O interactions. Larger, again non-symmetric, 16-membered {···HC2NC2NO}2 synthons are formed via toluene–nitro C—H···O interactions (Fig. 3). These combine to form rows of molecules aligned along the a axis. The second independent layer comprises N4- and N10-containing molecules which associate in a similar fashion. However, it is noted that the C40—H40···O(nitro) interaction to close the 10-membered {···HC2NO}2 synthon is a little longer that the standard distance criteria incorporated in PLATON (Spek, 2009). Rows of N1- and N7-containing molecules and rows of N4- and N10-containing molecules are connected into a double chain with an undulating topology via π–π and nitro-O···π(pyridyl) interactions (Fig. 4). The π–π interactions occur between toluene C6–C11 and N11-pyridine rings [intercentroid separation = 3.680 (2) Å; angle of inclination = 4.03 (19)° for (-x, y-1/2, -z+1)], and toluene C18–C23 and N8-pyridine rings [3.649 (2), 3.44 (18) Å; -x+1, y+1/2, -z+1]. As summarized in Table 1, the nitro–pyridine O···π interactions occur between the nitro O2 and O4 atoms and the N5- and N2-containing pyridine rings. Chains are connected into a layer parallel to (010) via methyl–toluene C—H···π interactions, and layers are connected into a three-dimensional architecture (Fig. 5) via weaker π–π interactions between pyridine and toluene rings: intercentroid distance for (N4/C1–C5)···(C18–C23) = 3.916 (2) Å, with an angle of inclination of 11.04 (19)°, and intercentroid distance for (C6–C11)···(N5/C13–C17) = 3.913 (2) Å, with an angle of inclination of 13.44 (19)° and (x-1, y, z).
The most closely related structures in the literature are N-(3-chlorophenyl)-3-nitropyridin-2-amine (Akhmad Aznan et al., 2011) and 4-[(3-nitropyridin-2-yl)amino]phenol (Cao et al., 2011). Similar features are evident in these molecules, i.e. the intramolecular N—H···O(nitro) hydrogen bond, the coplanarity of the nitro group and pyridine ring, and a conrotatory twist of the two rings, i.e. dihedral angles of 9.88 (5) and 84.77 (10)°, respectively. Finally, the structure of the all-phenyl analogue, 2-nitrodiphenylamine, has been reported (McWilliam et al., 2001). Again, the same features are evident and the comparable dihedral angle is 44.45 (7)°.
N-(4-Methylphenyl)-3-nitropyridin-2-amine (0.05 g, 0.22 mmol), prepared according to the literature procedure of Akhmad Aznan et al., 2010), was mixed with 3-nitrobenzoic acid (Merck; 0.03 g, 0.22 mmol) in a 1:1 solution of ethanol and ether (10 ml). The solution was refluxed for 4 h at 350 K. The mixture was then left for slow evaporation and red crystals formed after 3–4 d.
Crystal data, data collection and structure
details are summarized in Table 2. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the in the riding-model approximation, with Uiso(H) set at 1.2Ueq(C). N-bound H atoms were located in a difference Fourier map but were refined with a distance restraint of N—H = 0.88±0.01 Å and with Uiso(H) set at 1.2Ueq(N). In the absence of significant effects, 4208 Friedel pairs were averaged in the final refinement.Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structures of the four independent molecule in the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. Overlay diagram of conformations of the title compound. The N1-, N4-, N7- and N10-containing molecules determined in the present study are shown in red, pink, blue and aqua, respectively; the N1-, N7- and N10-containing molecules were inverted for a better fit. The green and yellow images correspond to the unique molecules in the known polymorph and the black image corresponds to the geometry-optimized structure. | |
Fig. 3. Supramolecular rows along the a axis involving the N1- and N7-containing molecules. The C—H···O interactions are shown as orange dashed lines. | |
Fig. 4. View of the double chain with an undulating topology. The C—H···O, N—O···π and π–π contacts are shown as orange, blue and purple dashed lines, respectively. | |
Fig. 5. Unit-cell contents shown in projection down the a axis. The C—H···O, C—H···π, N—O···π and π–π contacts are shown as orange, brown, blue and purple dashed lines, respectively. |
C12H11N3O2 | F(000) = 960 |
Mr = 229.24 | Dx = 1.417 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2yb | Cell parameters from 4609 reflections |
a = 11.4079 (6) Å | θ = 3.1–76.4° |
b = 13.1968 (8) Å | µ = 0.82 mm−1 |
c = 14.3681 (7) Å | T = 100 K |
β = 96.387 (5)° | Plate, red |
V = 2149.7 (2) Å3 | 0.20 × 0.20 × 0.04 mm |
Z = 8 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4623 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 3633 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.064 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 75.0°, θmin = 3.1° |
ω scan | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −16→16 |
Tmin = 0.206, Tmax = 1.000 | l = −14→17 |
24994 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0775P)2 + 0.0456P] where P = (Fo2 + 2Fc2)/3 |
4623 reflections | (Δ/σ)max < 0.001 |
629 parameters | Δρmax = 0.27 e Å−3 |
5 restraints | Δρmin = −0.27 e Å−3 |
C12H11N3O2 | V = 2149.7 (2) Å3 |
Mr = 229.24 | Z = 8 |
Monoclinic, P21 | Cu Kα radiation |
a = 11.4079 (6) Å | µ = 0.82 mm−1 |
b = 13.1968 (8) Å | T = 100 K |
c = 14.3681 (7) Å | 0.20 × 0.20 × 0.04 mm |
β = 96.387 (5)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4623 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 3633 reflections with I > 2σ(I) |
Tmin = 0.206, Tmax = 1.000 | Rint = 0.064 |
24994 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 5 restraints |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.27 e Å−3 |
4623 reflections | Δρmin = −0.27 e Å−3 |
629 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1693 (2) | 0.4996 (2) | 1.11071 (17) | 0.0305 (6) | |
O2 | 0.3584 (2) | 0.4890 (2) | 1.14982 (19) | 0.0406 (7) | |
N1 | 0.0806 (3) | 0.4751 (3) | 0.9351 (2) | 0.0244 (7) | |
H1N | 0.069 (3) | 0.486 (3) | 0.9939 (11) | 0.029* | |
N2 | 0.2143 (3) | 0.4208 (3) | 0.8357 (2) | 0.0260 (7) | |
N3 | 0.2712 (3) | 0.4837 (2) | 1.0903 (2) | 0.0278 (6) | |
C1 | 0.1923 (3) | 0.4515 (3) | 0.9220 (2) | 0.0218 (7) | |
C2 | 0.3235 (3) | 0.3972 (3) | 0.8216 (3) | 0.0305 (8) | |
H2 | 0.3364 | 0.3756 | 0.7605 | 0.037* | |
C3 | 0.4211 (3) | 0.4013 (3) | 0.8889 (3) | 0.0321 (8) | |
H3 | 0.4977 | 0.3834 | 0.8743 | 0.039* | |
C4 | 0.4021 (3) | 0.4322 (3) | 0.9773 (3) | 0.0281 (8) | |
H4 | 0.4660 | 0.4365 | 1.0256 | 0.034* | |
C5 | 0.2883 (3) | 0.4573 (3) | 0.9954 (2) | 0.0244 (7) | |
C6 | −0.0239 (3) | 0.4736 (3) | 0.8718 (2) | 0.0214 (7) | |
C7 | −0.1293 (3) | 0.4664 (3) | 0.9128 (2) | 0.0250 (7) | |
H7 | −0.1271 | 0.4602 | 0.9789 | 0.030* | |
C8 | −0.2366 (3) | 0.4684 (3) | 0.8576 (2) | 0.0245 (7) | |
H8 | −0.3074 | 0.4633 | 0.8864 | 0.029* | |
C9 | −0.2432 (3) | 0.4777 (3) | 0.7603 (3) | 0.0242 (7) | |
C10 | −0.1377 (3) | 0.4853 (3) | 0.7207 (2) | 0.0243 (7) | |
H10 | −0.1401 | 0.4916 | 0.6547 | 0.029* | |
C11 | −0.0288 (3) | 0.4837 (3) | 0.7750 (2) | 0.0236 (7) | |
H11 | 0.0419 | 0.4896 | 0.7461 | 0.028* | |
C12 | −0.3607 (3) | 0.4781 (3) | 0.7003 (2) | 0.0282 (7) | |
H12A | −0.3549 | 0.5194 | 0.6444 | 0.042* | |
H12B | −0.4211 | 0.5066 | 0.7362 | 0.042* | |
H12C | −0.3823 | 0.4086 | 0.6816 | 0.042* | |
O3 | 0.5598 (2) | 0.6453 (2) | 1.07113 (18) | 0.0350 (6) | |
O4 | 0.7456 (3) | 0.6690 (2) | 1.1166 (2) | 0.0416 (7) | |
N4 | 0.4768 (3) | 0.6770 (2) | 0.8954 (2) | 0.0246 (6) | |
H4N | 0.465 (4) | 0.666 (3) | 0.9539 (12) | 0.030* | |
N5 | 0.6142 (3) | 0.7310 (3) | 0.7993 (2) | 0.0301 (7) | |
N6 | 0.6613 (3) | 0.6682 (2) | 1.0544 (2) | 0.0303 (7) | |
C13 | 0.5895 (3) | 0.7002 (3) | 0.8844 (3) | 0.0252 (8) | |
C14 | 0.7248 (3) | 0.7557 (3) | 0.7875 (3) | 0.0326 (8) | |
H14 | 0.7406 | 0.7770 | 0.7270 | 0.039* | |
C15 | 0.8189 (3) | 0.7523 (3) | 0.8582 (3) | 0.0357 (10) | |
H15 | 0.8962 | 0.7713 | 0.8463 | 0.043* | |
C16 | 0.7964 (3) | 0.7208 (3) | 0.9452 (3) | 0.0327 (9) | |
H16 | 0.8587 | 0.7161 | 0.9947 | 0.039* | |
C17 | 0.6822 (3) | 0.6959 (3) | 0.9604 (3) | 0.0263 (8) | |
C18 | 0.3730 (3) | 0.6821 (3) | 0.8309 (3) | 0.0223 (7) | |
C19 | 0.2680 (3) | 0.6955 (3) | 0.8700 (2) | 0.0229 (7) | |
H19 | 0.2691 | 0.7027 | 0.9359 | 0.027* | |
C20 | 0.1620 (3) | 0.6984 (3) | 0.8131 (2) | 0.0241 (7) | |
H20 | 0.0909 | 0.7065 | 0.8409 | 0.029* | |
C21 | 0.1568 (3) | 0.6898 (3) | 0.7160 (2) | 0.0230 (7) | |
C22 | 0.2628 (3) | 0.6757 (3) | 0.6785 (2) | 0.0237 (7) | |
H22 | 0.2616 | 0.6689 | 0.6125 | 0.028* | |
C23 | 0.3706 (3) | 0.6712 (3) | 0.7341 (2) | 0.0233 (7) | |
H23 | 0.4416 | 0.6608 | 0.7065 | 0.028* | |
C24 | 0.0417 (3) | 0.6970 (3) | 0.6543 (2) | 0.0268 (7) | |
H24A | 0.0370 | 0.6424 | 0.6078 | 0.040* | |
H24B | 0.0368 | 0.7627 | 0.6223 | 0.040* | |
H24C | −0.0238 | 0.6906 | 0.6927 | 0.040* | |
O5 | 0.8659 (2) | 0.4620 (2) | 0.14411 (17) | 0.0357 (6) | |
O6 | 0.6805 (2) | 0.4394 (2) | 0.09688 (17) | 0.0326 (6) | |
N7 | 0.9406 (3) | 0.4660 (2) | 0.3234 (2) | 0.0250 (6) | |
H7N | 0.953 (4) | 0.478 (3) | 0.2651 (12) | 0.030* | |
N8 | 0.7985 (2) | 0.4312 (2) | 0.42218 (19) | 0.0242 (6) | |
N9 | 0.7626 (3) | 0.4480 (2) | 0.1605 (2) | 0.0266 (6) | |
C25 | 0.8268 (3) | 0.4458 (3) | 0.3342 (2) | 0.0217 (7) | |
C26 | 0.6856 (3) | 0.4129 (3) | 0.4340 (3) | 0.0277 (7) | |
H26 | 0.6671 | 0.4017 | 0.4960 | 0.033* | |
C27 | 0.5933 (3) | 0.4092 (3) | 0.3618 (3) | 0.0278 (8) | |
H27 | 0.5143 | 0.3984 | 0.3744 | 0.033* | |
C28 | 0.6209 (3) | 0.4218 (3) | 0.2718 (3) | 0.0263 (8) | |
H28 | 0.5610 | 0.4184 | 0.2204 | 0.032* | |
C29 | 0.7366 (3) | 0.4392 (3) | 0.2567 (2) | 0.0241 (7) | |
C30 | 1.0440 (3) | 0.4666 (3) | 0.3872 (2) | 0.0220 (7) | |
C31 | 1.1492 (3) | 0.4748 (3) | 0.3470 (2) | 0.0232 (7) | |
H31 | 1.1472 | 0.4801 | 0.2809 | 0.028* | |
C32 | 1.2568 (3) | 0.4754 (3) | 0.4023 (2) | 0.0256 (7) | |
H32 | 1.3273 | 0.4825 | 0.3734 | 0.031* | |
C33 | 1.2639 (3) | 0.4659 (3) | 0.4994 (2) | 0.0225 (7) | |
C34 | 1.1585 (3) | 0.4584 (3) | 0.5390 (2) | 0.0250 (7) | |
H34 | 1.1610 | 0.4528 | 0.6051 | 0.030* | |
C35 | 1.0491 (3) | 0.4589 (3) | 0.4846 (2) | 0.0234 (7) | |
H35 | 0.9784 | 0.4540 | 0.5136 | 0.028* | |
C36 | 1.3811 (3) | 0.4627 (3) | 0.5588 (2) | 0.0269 (7) | |
H36A | 1.3743 | 0.4966 | 0.6187 | 0.040* | |
H36B | 1.4405 | 0.4974 | 0.5261 | 0.040* | |
H36C | 1.4048 | 0.3920 | 0.5703 | 0.040* | |
O7 | 0.2612 (2) | 0.7100 (2) | 0.10311 (17) | 0.0298 (6) | |
O8 | 0.0735 (2) | 0.7151 (2) | 0.05973 (17) | 0.0349 (6) | |
N10 | 0.3413 (3) | 0.7031 (2) | 0.2823 (2) | 0.0218 (6) | |
H10N | 0.358 (3) | 0.695 (3) | 0.2239 (12) | 0.026* | |
N11 | 0.2005 (3) | 0.7369 (3) | 0.3827 (2) | 0.0261 (7) | |
N12 | 0.1578 (2) | 0.7149 (2) | 0.12156 (19) | 0.0247 (6) | |
C37 | 0.2271 (3) | 0.7206 (3) | 0.2953 (2) | 0.0229 (7) | |
C38 | 0.0884 (3) | 0.7487 (3) | 0.3965 (2) | 0.0283 (8) | |
H38 | 0.0712 | 0.7591 | 0.4590 | 0.034* | |
C39 | −0.0058 (3) | 0.7470 (3) | 0.3266 (3) | 0.0300 (8) | |
H39 | −0.0846 | 0.7546 | 0.3411 | 0.036* | |
C40 | 0.0185 (3) | 0.7339 (3) | 0.2358 (2) | 0.0266 (7) | |
H40 | −0.0432 | 0.7328 | 0.1857 | 0.032* | |
C41 | 0.1350 (3) | 0.7223 (3) | 0.2190 (2) | 0.0239 (7) | |
C42 | 0.4438 (3) | 0.6970 (3) | 0.3468 (2) | 0.0223 (7) | |
C43 | 0.5494 (3) | 0.6836 (3) | 0.3066 (2) | 0.0243 (7) | |
H43 | 0.5474 | 0.6785 | 0.2404 | 0.029* | |
C44 | 0.6560 (3) | 0.6777 (3) | 0.3620 (2) | 0.0252 (7) | |
H44 | 0.7264 | 0.6688 | 0.3334 | 0.030* | |
C45 | 0.6625 (3) | 0.6846 (3) | 0.4598 (3) | 0.0238 (8) | |
C46 | 0.5573 (3) | 0.6970 (3) | 0.4987 (2) | 0.0239 (7) | |
H46 | 0.5595 | 0.7013 | 0.5649 | 0.029* | |
C47 | 0.4485 (3) | 0.7033 (3) | 0.4441 (2) | 0.0259 (7) | |
H47 | 0.3781 | 0.7117 | 0.4729 | 0.031* | |
C48 | 0.7799 (3) | 0.6812 (3) | 0.5197 (3) | 0.0293 (8) | |
H48A | 0.7675 | 0.6639 | 0.5842 | 0.044* | |
H48B | 0.8181 | 0.7477 | 0.5188 | 0.044* | |
H48C | 0.8303 | 0.6299 | 0.4950 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0286 (14) | 0.0374 (15) | 0.0249 (13) | 0.0041 (11) | 0.0009 (10) | −0.0004 (11) |
O2 | 0.0310 (14) | 0.0523 (18) | 0.0343 (14) | 0.0054 (13) | −0.0150 (11) | −0.0031 (13) |
N1 | 0.0190 (14) | 0.0333 (17) | 0.0202 (14) | 0.0008 (12) | −0.0008 (11) | −0.0027 (13) |
N2 | 0.0210 (14) | 0.0302 (17) | 0.0265 (15) | 0.0023 (12) | 0.0003 (12) | −0.0023 (12) |
N3 | 0.0255 (15) | 0.0267 (16) | 0.0289 (15) | 0.0002 (12) | −0.0063 (12) | 0.0009 (12) |
C1 | 0.0182 (16) | 0.0207 (17) | 0.0256 (17) | −0.0017 (13) | −0.0016 (13) | 0.0000 (13) |
C2 | 0.0231 (17) | 0.034 (2) | 0.0352 (19) | −0.0009 (14) | 0.0061 (14) | −0.0036 (15) |
C3 | 0.0212 (17) | 0.033 (2) | 0.043 (2) | −0.0008 (15) | 0.0045 (16) | 0.0011 (16) |
C4 | 0.0186 (16) | 0.0265 (19) | 0.0375 (19) | −0.0030 (13) | −0.0052 (14) | 0.0069 (15) |
C5 | 0.0219 (16) | 0.0230 (18) | 0.0275 (17) | −0.0004 (13) | −0.0004 (13) | 0.0012 (13) |
C6 | 0.0162 (16) | 0.0233 (17) | 0.0236 (17) | −0.0003 (12) | −0.0033 (13) | −0.0003 (13) |
C7 | 0.0256 (17) | 0.0284 (19) | 0.0208 (16) | −0.0031 (14) | 0.0021 (13) | −0.0014 (13) |
C8 | 0.0170 (15) | 0.0293 (19) | 0.0273 (18) | −0.0010 (13) | 0.0034 (13) | −0.0029 (14) |
C9 | 0.0205 (16) | 0.0212 (17) | 0.0297 (19) | 0.0008 (13) | −0.0018 (14) | −0.0008 (14) |
C10 | 0.0255 (18) | 0.0260 (18) | 0.0207 (16) | 0.0010 (14) | −0.0010 (13) | 0.0008 (13) |
C11 | 0.0201 (16) | 0.0277 (18) | 0.0231 (16) | 0.0004 (13) | 0.0027 (13) | 0.0019 (14) |
C12 | 0.0249 (17) | 0.0316 (19) | 0.0267 (18) | 0.0011 (14) | −0.0039 (14) | 0.0014 (14) |
O3 | 0.0304 (14) | 0.0431 (16) | 0.0297 (13) | −0.0026 (12) | −0.0052 (11) | 0.0014 (11) |
O4 | 0.0379 (16) | 0.0442 (18) | 0.0375 (16) | −0.0008 (13) | −0.0194 (13) | −0.0036 (13) |
N4 | 0.0200 (14) | 0.0316 (17) | 0.0215 (14) | −0.0030 (12) | −0.0008 (11) | 0.0005 (12) |
N5 | 0.0216 (15) | 0.0338 (18) | 0.0345 (17) | 0.0002 (13) | 0.0018 (12) | 0.0002 (14) |
N6 | 0.0310 (17) | 0.0281 (16) | 0.0289 (16) | 0.0009 (13) | −0.0089 (13) | −0.0034 (13) |
C13 | 0.0202 (17) | 0.0234 (19) | 0.0308 (19) | 0.0044 (14) | −0.0022 (14) | −0.0033 (15) |
C14 | 0.0247 (18) | 0.037 (2) | 0.037 (2) | −0.0022 (15) | 0.0057 (15) | −0.0036 (16) |
C15 | 0.0179 (18) | 0.033 (2) | 0.057 (3) | 0.0013 (15) | 0.0061 (17) | −0.0118 (18) |
C16 | 0.0225 (19) | 0.030 (2) | 0.044 (2) | 0.0050 (15) | −0.0055 (16) | −0.0085 (17) |
C17 | 0.0220 (17) | 0.0215 (18) | 0.034 (2) | 0.0033 (14) | −0.0048 (15) | −0.0064 (14) |
C18 | 0.0202 (17) | 0.0210 (17) | 0.0251 (18) | −0.0008 (13) | −0.0002 (14) | 0.0010 (13) |
C19 | 0.0218 (16) | 0.0268 (18) | 0.0199 (15) | −0.0026 (13) | 0.0013 (13) | −0.0005 (13) |
C20 | 0.0185 (16) | 0.0264 (17) | 0.0277 (17) | 0.0019 (13) | 0.0040 (13) | −0.0004 (14) |
C21 | 0.0205 (16) | 0.0223 (17) | 0.0250 (17) | −0.0011 (13) | −0.0022 (13) | 0.0025 (13) |
C22 | 0.0234 (17) | 0.0279 (18) | 0.0193 (16) | −0.0028 (14) | 0.0002 (13) | −0.0010 (13) |
C23 | 0.0175 (16) | 0.0270 (18) | 0.0252 (17) | −0.0009 (13) | 0.0015 (13) | −0.0022 (13) |
C24 | 0.0217 (17) | 0.0321 (19) | 0.0257 (17) | 0.0004 (14) | −0.0018 (14) | 0.0022 (14) |
O5 | 0.0248 (13) | 0.0582 (19) | 0.0236 (12) | −0.0023 (12) | 0.0006 (10) | 0.0065 (12) |
O6 | 0.0304 (14) | 0.0401 (16) | 0.0245 (13) | 0.0015 (12) | −0.0096 (10) | 0.0010 (11) |
N7 | 0.0208 (14) | 0.0342 (17) | 0.0192 (14) | −0.0009 (12) | −0.0014 (11) | 0.0030 (12) |
N8 | 0.0190 (14) | 0.0295 (16) | 0.0235 (14) | −0.0007 (12) | 0.0003 (11) | −0.0001 (12) |
N9 | 0.0246 (14) | 0.0298 (16) | 0.0238 (14) | 0.0025 (12) | −0.0048 (11) | 0.0020 (12) |
C25 | 0.0203 (16) | 0.0202 (17) | 0.0237 (17) | 0.0014 (13) | −0.0016 (13) | 0.0008 (13) |
C26 | 0.0215 (16) | 0.0310 (19) | 0.0313 (18) | −0.0006 (14) | 0.0056 (14) | −0.0013 (15) |
C27 | 0.0164 (16) | 0.033 (2) | 0.0334 (19) | 0.0003 (14) | 0.0017 (14) | −0.0011 (15) |
C28 | 0.0194 (17) | 0.0278 (19) | 0.0299 (19) | 0.0021 (14) | −0.0050 (14) | −0.0026 (15) |
C29 | 0.0250 (17) | 0.0234 (18) | 0.0232 (17) | 0.0018 (14) | −0.0002 (14) | 0.0017 (14) |
C30 | 0.0202 (16) | 0.0230 (18) | 0.0219 (17) | −0.0002 (13) | −0.0017 (13) | −0.0018 (13) |
C31 | 0.0223 (16) | 0.0275 (18) | 0.0197 (16) | −0.0022 (13) | 0.0015 (13) | 0.0026 (13) |
C32 | 0.0189 (16) | 0.0282 (19) | 0.0301 (18) | −0.0020 (13) | 0.0044 (13) | 0.0011 (14) |
C33 | 0.0180 (16) | 0.0213 (17) | 0.0271 (17) | −0.0005 (13) | −0.0023 (13) | −0.0024 (13) |
C34 | 0.0219 (16) | 0.0287 (19) | 0.0234 (17) | −0.0007 (14) | −0.0016 (13) | −0.0015 (13) |
C35 | 0.0166 (15) | 0.0294 (19) | 0.0235 (16) | −0.0003 (13) | −0.0005 (12) | −0.0030 (13) |
C36 | 0.0202 (16) | 0.0283 (19) | 0.0308 (18) | −0.0004 (14) | −0.0029 (14) | −0.0030 (14) |
O7 | 0.0229 (13) | 0.0441 (16) | 0.0223 (12) | 0.0019 (11) | 0.0013 (10) | −0.0010 (11) |
O8 | 0.0280 (14) | 0.0488 (17) | 0.0250 (12) | 0.0057 (12) | −0.0100 (10) | −0.0051 (12) |
N10 | 0.0183 (14) | 0.0281 (16) | 0.0188 (14) | 0.0020 (12) | 0.0015 (11) | −0.0013 (12) |
N11 | 0.0232 (15) | 0.0319 (18) | 0.0234 (15) | 0.0020 (12) | 0.0031 (12) | 0.0040 (12) |
N12 | 0.0223 (14) | 0.0296 (16) | 0.0205 (14) | 0.0038 (12) | −0.0053 (11) | 0.0000 (12) |
C37 | 0.0210 (17) | 0.0237 (18) | 0.0235 (16) | −0.0001 (14) | 0.0001 (13) | −0.0014 (14) |
C38 | 0.0227 (17) | 0.040 (2) | 0.0230 (17) | 0.0004 (14) | 0.0057 (13) | 0.0000 (15) |
C39 | 0.0203 (17) | 0.035 (2) | 0.035 (2) | −0.0006 (14) | 0.0059 (15) | 0.0015 (15) |
C40 | 0.0197 (17) | 0.0306 (19) | 0.0277 (17) | −0.0011 (14) | −0.0049 (13) | −0.0017 (14) |
C41 | 0.0221 (16) | 0.0254 (18) | 0.0239 (17) | −0.0006 (13) | 0.0006 (13) | 0.0004 (13) |
C42 | 0.0185 (17) | 0.0231 (18) | 0.0247 (17) | −0.0008 (13) | −0.0006 (13) | 0.0002 (13) |
C43 | 0.0214 (17) | 0.0276 (19) | 0.0239 (17) | 0.0012 (13) | 0.0020 (14) | 0.0002 (13) |
C44 | 0.0209 (17) | 0.0276 (18) | 0.0270 (17) | 0.0004 (13) | 0.0024 (13) | −0.0002 (13) |
C45 | 0.0213 (17) | 0.0199 (17) | 0.0288 (19) | 0.0007 (12) | −0.0032 (15) | 0.0015 (14) |
C46 | 0.0228 (17) | 0.0277 (18) | 0.0199 (16) | −0.0010 (13) | −0.0030 (13) | 0.0021 (13) |
C47 | 0.0242 (17) | 0.0286 (19) | 0.0245 (17) | −0.0020 (15) | 0.0011 (14) | 0.0002 (14) |
C48 | 0.0230 (18) | 0.031 (2) | 0.0315 (19) | −0.0004 (14) | −0.0068 (15) | 0.0011 (15) |
O1—N3 | 1.249 (4) | O5—N9 | 1.241 (4) |
O2—N3 | 1.239 (4) | O6—N9 | 1.239 (4) |
N1—C1 | 1.345 (4) | N7—C25 | 1.351 (4) |
N1—C6 | 1.416 (4) | N7—C30 | 1.411 (4) |
N1—H1N | 0.882 (10) | N7—H7N | 0.880 (10) |
N2—C2 | 1.322 (5) | N8—C26 | 1.339 (4) |
N2—C1 | 1.353 (5) | N8—C25 | 1.353 (4) |
N3—C5 | 1.442 (4) | N9—C29 | 1.450 (4) |
C1—C5 | 1.435 (5) | C25—C29 | 1.433 (5) |
C2—C3 | 1.393 (5) | C26—C27 | 1.394 (5) |
C2—H2 | 0.9500 | C26—H26 | 0.9500 |
C3—C4 | 1.374 (5) | C27—C28 | 1.375 (5) |
C3—H3 | 0.9500 | C27—H27 | 0.9500 |
C4—C5 | 1.392 (4) | C28—C29 | 1.380 (5) |
C4—H4 | 0.9500 | C28—H28 | 0.9500 |
C6—C11 | 1.393 (5) | C30—C31 | 1.393 (4) |
C6—C7 | 1.400 (5) | C30—C35 | 1.397 (5) |
C7—C8 | 1.384 (5) | C31—C32 | 1.386 (5) |
C7—H7 | 0.9500 | C31—H31 | 0.9500 |
C8—C9 | 1.397 (5) | C32—C33 | 1.393 (5) |
C8—H8 | 0.9500 | C32—H32 | 0.9500 |
C9—C10 | 1.391 (5) | C33—C34 | 1.390 (4) |
C9—C12 | 1.510 (4) | C33—C36 | 1.505 (4) |
C10—C11 | 1.392 (5) | C34—C35 | 1.398 (4) |
C10—H10 | 0.9500 | C34—H34 | 0.9500 |
C11—H11 | 0.9500 | C35—H35 | 0.9500 |
C12—H12A | 0.9800 | C36—H36A | 0.9800 |
C12—H12B | 0.9800 | C36—H36B | 0.9800 |
C12—H12C | 0.9800 | C36—H36C | 0.9800 |
O3—N6 | 1.245 (4) | O7—N12 | 1.240 (4) |
O4—N6 | 1.238 (4) | O8—N12 | 1.234 (4) |
N4—C13 | 1.347 (5) | N10—C37 | 1.356 (4) |
N4—C18 | 1.421 (4) | N10—C42 | 1.412 (4) |
N4—H4N | 0.880 (10) | N10—H10N | 0.888 (10) |
N5—C14 | 1.331 (5) | N11—C38 | 1.325 (4) |
N5—C13 | 1.349 (5) | N11—C37 | 1.343 (4) |
N6—C17 | 1.445 (5) | N12—C41 | 1.455 (4) |
C13—C17 | 1.434 (5) | C37—C41 | 1.432 (5) |
C14—C15 | 1.394 (6) | C38—C39 | 1.387 (5) |
C14—H14 | 0.9500 | C38—H38 | 0.9500 |
C15—C16 | 1.368 (6) | C39—C40 | 1.375 (5) |
C15—H15 | 0.9500 | C39—H39 | 0.9500 |
C16—C17 | 1.385 (5) | C40—C41 | 1.385 (5) |
C16—H16 | 0.9500 | C40—H40 | 0.9500 |
C18—C19 | 1.390 (5) | C42—C47 | 1.395 (5) |
C18—C23 | 1.396 (5) | C42—C43 | 1.405 (5) |
C19—C20 | 1.383 (5) | C43—C44 | 1.380 (5) |
C19—H19 | 0.9500 | C43—H43 | 0.9500 |
C20—C21 | 1.395 (5) | C44—C45 | 1.402 (5) |
C20—H20 | 0.9500 | C44—H44 | 0.9500 |
C21—C22 | 1.390 (5) | C45—C46 | 1.388 (5) |
C21—C24 | 1.503 (4) | C45—C48 | 1.510 (4) |
C22—C23 | 1.391 (5) | C46—C47 | 1.396 (5) |
C22—H22 | 0.9500 | C46—H46 | 0.9500 |
C23—H23 | 0.9500 | C47—H47 | 0.9500 |
C24—H24A | 0.9800 | C48—H48A | 0.9800 |
C24—H24B | 0.9800 | C48—H48B | 0.9800 |
C24—H24C | 0.9800 | C48—H48C | 0.9800 |
C1—N1—C6 | 130.5 (3) | C25—N7—C30 | 132.1 (3) |
C1—N1—H1N | 115 (3) | C25—N7—H7N | 114 (3) |
C6—N1—H1N | 114 (3) | C30—N7—H7N | 114 (3) |
C2—N2—C1 | 119.0 (3) | C26—N8—C25 | 118.5 (3) |
O2—N3—O1 | 121.7 (3) | O6—N9—O5 | 122.0 (3) |
O2—N3—C5 | 119.0 (3) | O6—N9—C29 | 118.6 (3) |
O1—N3—C5 | 119.3 (3) | O5—N9—C29 | 119.5 (3) |
N1—C1—N2 | 118.1 (3) | N7—C25—N8 | 118.0 (3) |
N1—C1—C5 | 122.8 (3) | N7—C25—C29 | 122.6 (3) |
N2—C1—C5 | 119.0 (3) | N8—C25—C29 | 119.4 (3) |
N2—C2—C3 | 125.4 (4) | N8—C26—C27 | 124.7 (3) |
N2—C2—H2 | 117.3 | N8—C26—H26 | 117.7 |
C3—C2—H2 | 117.3 | C27—C26—H26 | 117.7 |
C4—C3—C2 | 117.2 (3) | C28—C27—C26 | 117.6 (3) |
C4—C3—H3 | 121.4 | C28—C27—H27 | 121.2 |
C2—C3—H3 | 121.4 | C26—C27—H27 | 121.2 |
C3—C4—C5 | 119.3 (3) | C27—C28—C29 | 119.4 (3) |
C3—C4—H4 | 120.3 | C27—C28—H28 | 120.3 |
C5—C4—H4 | 120.3 | C29—C28—H28 | 120.3 |
C4—C5—C1 | 120.1 (3) | C28—C29—C25 | 120.3 (3) |
C4—C5—N3 | 117.4 (3) | C28—C29—N9 | 117.6 (3) |
C1—C5—N3 | 122.4 (3) | C25—C29—N9 | 122.0 (3) |
C11—C6—C7 | 119.1 (3) | C31—C30—C35 | 118.6 (3) |
C11—C6—N1 | 125.2 (3) | C31—C30—N7 | 115.3 (3) |
C7—C6—N1 | 115.6 (3) | C35—C30—N7 | 126.1 (3) |
C8—C7—C6 | 120.3 (3) | C32—C31—C30 | 120.8 (3) |
C8—C7—H7 | 119.9 | C32—C31—H31 | 119.6 |
C6—C7—H7 | 119.9 | C30—C31—H31 | 119.6 |
C7—C8—C9 | 121.4 (3) | C31—C32—C33 | 121.5 (3) |
C7—C8—H8 | 119.3 | C31—C32—H32 | 119.3 |
C9—C8—H8 | 119.3 | C33—C32—H32 | 119.3 |
C10—C9—C8 | 117.6 (3) | C34—C33—C32 | 117.4 (3) |
C10—C9—C12 | 121.3 (3) | C34—C33—C36 | 121.3 (3) |
C8—C9—C12 | 121.1 (3) | C32—C33—C36 | 121.3 (3) |
C9—C10—C11 | 122.0 (3) | C33—C34—C35 | 122.0 (3) |
C9—C10—H10 | 119.0 | C33—C34—H34 | 119.0 |
C11—C10—H10 | 119.0 | C35—C34—H34 | 119.0 |
C10—C11—C6 | 119.7 (3) | C30—C35—C34 | 119.7 (3) |
C10—C11—H11 | 120.2 | C30—C35—H35 | 120.2 |
C6—C11—H11 | 120.2 | C34—C35—H35 | 120.2 |
C9—C12—H12A | 109.5 | C33—C36—H36A | 109.5 |
C9—C12—H12B | 109.5 | C33—C36—H36B | 109.5 |
H12A—C12—H12B | 109.5 | H36A—C36—H36B | 109.5 |
C9—C12—H12C | 109.5 | C33—C36—H36C | 109.5 |
H12A—C12—H12C | 109.5 | H36A—C36—H36C | 109.5 |
H12B—C12—H12C | 109.5 | H36B—C36—H36C | 109.5 |
C13—N4—C18 | 130.5 (3) | C37—N10—C42 | 131.1 (3) |
C13—N4—H4N | 113 (3) | C37—N10—H10N | 118 (3) |
C18—N4—H4N | 115 (3) | C42—N10—H10N | 111 (3) |
C14—N5—C13 | 119.1 (3) | C38—N11—C37 | 118.8 (3) |
O4—N6—O3 | 121.8 (3) | O8—N12—O7 | 122.0 (3) |
O4—N6—C17 | 118.5 (3) | O8—N12—C41 | 119.0 (3) |
O3—N6—C17 | 119.7 (3) | O7—N12—C41 | 119.0 (3) |
N4—C13—N5 | 118.2 (3) | N11—C37—N10 | 118.5 (3) |
N4—C13—C17 | 122.4 (3) | N11—C37—C41 | 119.4 (3) |
N5—C13—C17 | 119.4 (3) | N10—C37—C41 | 122.1 (3) |
N5—C14—C15 | 124.3 (4) | N11—C38—C39 | 124.9 (3) |
N5—C14—H14 | 117.9 | N11—C38—H38 | 117.5 |
C15—C14—H14 | 117.9 | C39—C38—H38 | 117.5 |
C16—C15—C14 | 117.9 (4) | C40—C39—C38 | 117.9 (3) |
C16—C15—H15 | 121.1 | C40—C39—H39 | 121.1 |
C14—C15—H15 | 121.1 | C38—C39—H39 | 121.1 |
C15—C16—C17 | 119.4 (4) | C39—C40—C41 | 118.6 (3) |
C15—C16—H16 | 120.3 | C39—C40—H40 | 120.7 |
C17—C16—H16 | 120.3 | C41—C40—H40 | 120.7 |
C16—C17—C13 | 119.9 (4) | C40—C41—C37 | 120.3 (3) |
C16—C17—N6 | 117.6 (3) | C40—C41—N12 | 116.9 (3) |
C13—C17—N6 | 122.4 (3) | C37—C41—N12 | 122.7 (3) |
C19—C18—C23 | 119.6 (3) | C47—C42—C43 | 118.8 (3) |
C19—C18—N4 | 115.8 (3) | C47—C42—N10 | 126.3 (3) |
C23—C18—N4 | 124.6 (3) | C43—C42—N10 | 115.0 (3) |
C20—C19—C18 | 120.0 (3) | C44—C43—C42 | 120.7 (3) |
C20—C19—H19 | 120.0 | C44—C43—H43 | 119.7 |
C18—C19—H19 | 120.0 | C42—C43—H43 | 119.7 |
C19—C20—C21 | 121.8 (3) | C43—C44—C45 | 121.3 (3) |
C19—C20—H20 | 119.1 | C43—C44—H44 | 119.3 |
C21—C20—H20 | 119.1 | C45—C44—H44 | 119.3 |
C22—C21—C20 | 117.2 (3) | C46—C45—C44 | 117.3 (3) |
C22—C21—C24 | 121.4 (3) | C46—C45—C48 | 121.7 (3) |
C20—C21—C24 | 121.4 (3) | C44—C45—C48 | 120.9 (3) |
C21—C22—C23 | 122.3 (3) | C45—C46—C47 | 122.4 (3) |
C21—C22—H22 | 118.9 | C45—C46—H46 | 118.8 |
C23—C22—H22 | 118.9 | C47—C46—H46 | 118.8 |
C22—C23—C18 | 119.1 (3) | C46—C47—C42 | 119.5 (3) |
C22—C23—H23 | 120.4 | C46—C47—H47 | 120.2 |
C18—C23—H23 | 120.4 | C42—C47—H47 | 120.2 |
C21—C24—H24A | 109.5 | C45—C48—H48A | 109.5 |
C21—C24—H24B | 109.5 | C45—C48—H48B | 109.5 |
H24A—C24—H24B | 109.5 | H48A—C48—H48B | 109.5 |
C21—C24—H24C | 109.5 | C45—C48—H48C | 109.5 |
H24A—C24—H24C | 109.5 | H48A—C48—H48C | 109.5 |
H24B—C24—H24C | 109.5 | H48B—C48—H48C | 109.5 |
C6—N1—C1—N2 | 0.1 (6) | C30—N7—C25—N8 | 6.6 (6) |
C6—N1—C1—C5 | −179.8 (3) | C30—N7—C25—C29 | −173.1 (3) |
C2—N2—C1—N1 | −179.9 (3) | C26—N8—C25—N7 | 178.8 (3) |
C2—N2—C1—C5 | −0.1 (5) | C26—N8—C25—C29 | −1.4 (5) |
C1—N2—C2—C3 | −0.2 (6) | C25—N8—C26—C27 | −1.0 (6) |
N2—C2—C3—C4 | 0.2 (6) | N8—C26—C27—C28 | 2.3 (6) |
C2—C3—C4—C5 | 0.2 (6) | C26—C27—C28—C29 | −1.3 (6) |
C3—C4—C5—C1 | −0.5 (6) | C27—C28—C29—C25 | −1.0 (6) |
C3—C4—C5—N3 | 176.5 (3) | C27—C28—C29—N9 | 177.6 (4) |
N1—C1—C5—C4 | −179.7 (3) | N7—C25—C29—C28 | −177.9 (4) |
N2—C1—C5—C4 | 0.4 (5) | N8—C25—C29—C28 | 2.4 (6) |
N1—C1—C5—N3 | 3.5 (6) | N7—C25—C29—N9 | 3.7 (6) |
N2—C1—C5—N3 | −176.4 (3) | N8—C25—C29—N9 | −176.1 (3) |
O2—N3—C5—C4 | 4.3 (5) | O6—N9—C29—C28 | 0.0 (5) |
O1—N3—C5—C4 | −175.0 (3) | O5—N9—C29—C28 | −178.8 (4) |
O2—N3—C5—C1 | −178.8 (3) | O6—N9—C29—C25 | 178.5 (3) |
O1—N3—C5—C1 | 1.9 (5) | O5—N9—C29—C25 | −0.3 (5) |
C1—N1—C6—C11 | −25.8 (7) | C25—N7—C30—C31 | 169.7 (4) |
C1—N1—C6—C7 | 157.6 (4) | C25—N7—C30—C35 | −9.7 (6) |
C11—C6—C7—C8 | 0.6 (6) | C35—C30—C31—C32 | 0.0 (5) |
N1—C6—C7—C8 | 177.5 (3) | N7—C30—C31—C32 | −179.5 (3) |
C6—C7—C8—C9 | −0.2 (6) | C30—C31—C32—C33 | 1.3 (6) |
C7—C8—C9—C10 | −0.1 (5) | C31—C32—C33—C34 | −1.7 (5) |
C7—C8—C9—C12 | 179.0 (3) | C31—C32—C33—C36 | 177.7 (3) |
C8—C9—C10—C11 | 0.0 (5) | C32—C33—C34—C35 | 0.9 (5) |
C12—C9—C10—C11 | −179.2 (3) | C36—C33—C34—C35 | −178.5 (3) |
C9—C10—C11—C6 | 0.5 (6) | C31—C30—C35—C34 | −0.8 (5) |
C7—C6—C11—C10 | −0.8 (5) | N7—C30—C35—C34 | 178.7 (3) |
N1—C6—C11—C10 | −177.3 (3) | C33—C34—C35—C30 | 0.3 (5) |
C18—N4—C13—N5 | −2.2 (6) | C38—N11—C37—N10 | −176.4 (4) |
C18—N4—C13—C17 | 176.0 (3) | C38—N11—C37—C41 | 3.6 (6) |
C14—N5—C13—N4 | 179.0 (3) | C42—N10—C37—N11 | 0.9 (6) |
C14—N5—C13—C17 | 0.7 (6) | C42—N10—C37—C41 | −179.1 (4) |
C13—N5—C14—C15 | −0.2 (6) | C37—N11—C38—C39 | −1.0 (6) |
N5—C14—C15—C16 | 0.5 (6) | N11—C38—C39—C40 | −1.2 (6) |
C14—C15—C16—C17 | −1.4 (6) | C38—C39—C40—C41 | 0.6 (6) |
C15—C16—C17—C13 | 1.9 (6) | C39—C40—C41—C37 | 2.1 (6) |
C15—C16—C17—N6 | −176.8 (4) | C39—C40—C41—N12 | −176.3 (3) |
N4—C13—C17—C16 | −179.8 (3) | N11—C37—C41—C40 | −4.2 (6) |
N5—C13—C17—C16 | −1.6 (6) | N10—C37—C41—C40 | 175.8 (3) |
N4—C13—C17—N6 | −1.2 (6) | N11—C37—C41—N12 | 174.0 (3) |
N5—C13—C17—N6 | 177.0 (3) | N10—C37—C41—N12 | −6.0 (6) |
O4—N6—C17—C16 | 0.6 (5) | O8—N12—C41—C40 | −2.9 (5) |
O3—N6—C17—C16 | 179.9 (3) | O7—N12—C41—C40 | 176.1 (3) |
O4—N6—C17—C13 | −178.0 (3) | O8—N12—C41—C37 | 178.8 (3) |
O3—N6—C17—C13 | 1.3 (5) | O7—N12—C41—C37 | −2.1 (5) |
C13—N4—C18—C19 | −153.3 (4) | C37—N10—C42—C47 | 3.7 (7) |
C13—N4—C18—C23 | 29.0 (6) | C37—N10—C42—C43 | −176.3 (4) |
C23—C18—C19—C20 | −0.3 (6) | C47—C42—C43—C44 | −0.7 (6) |
N4—C18—C19—C20 | −178.1 (3) | N10—C42—C43—C44 | 179.3 (3) |
C18—C19—C20—C21 | −1.0 (6) | C42—C43—C44—C45 | 0.2 (6) |
C19—C20—C21—C22 | 1.5 (5) | C43—C44—C45—C46 | 0.4 (5) |
C19—C20—C21—C24 | −177.6 (3) | C43—C44—C45—C48 | −178.2 (3) |
C20—C21—C22—C23 | −0.6 (5) | C44—C45—C46—C47 | −0.5 (5) |
C24—C21—C22—C23 | 178.5 (3) | C48—C45—C46—C47 | 178.0 (3) |
C21—C22—C23—C18 | −0.6 (5) | C45—C46—C47—C42 | 0.0 (6) |
C19—C18—C23—C22 | 1.1 (5) | C43—C42—C47—C46 | 0.6 (5) |
N4—C18—C23—C22 | 178.7 (3) | N10—C42—C47—C46 | −179.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.88 (2) | 1.93 (2) | 2.632 (4) | 135 (3) |
N4—H4N···O3 | 0.88 (2) | 1.92 (3) | 2.630 (4) | 137 (4) |
N7—H7N···O5 | 0.88 (2) | 1.92 (3) | 2.622 (4) | 136 (4) |
N10—H10N···O7 | 0.89 (2) | 1.96 (2) | 2.636 (4) | 132 (3) |
C31—H31···O1i | 0.95 | 2.50 | 3.444 (4) | 173 |
C28—H28···O2ii | 0.95 | 2.59 | 3.414 (4) | 145 |
C4—H4···O6iii | 0.95 | 2.55 | 3.440 (4) | 157 |
C7—H7···O5iv | 0.95 | 2.38 | 3.331 (4) | 174 |
C43—H43···O3ii | 0.95 | 2.49 | 3.436 (4) | 172 |
C40—H40···O4v | 0.95 | 2.64 | 3.489 (5) | 149 |
C19—H19···O7iii | 0.95 | 2.42 | 3.364 (4) | 176 |
C16—H16···O8vi | 0.95 | 2.52 | 3.398 (4) | 153 |
N3—O3···Cg(N5,C13–C17)vii | 1.24 (1) | 3.55 (1) | 3.449 (3) | 75 (1) |
N6—O4···Cg(N2,C1–C5)viii | 1.24 (1) | 3.46 (1) | 3.469 (3) | 80 (1) |
C36—H36C···Cg(C42–C47)ix | 0.98 | 2.72 | 3.698 (4) | 174 |
C48—H48B···Cg(C30–C35)x | 0.98 | 2.95 | 3.868 (4) | 156 |
Symmetry codes: (i) x+1, y, z−1; (ii) x, y, z−1; (iii) x, y, z+1; (iv) x−1, y, z+1; (v) x−1, y, z−1; (vi) x+1, y, z+1; (vii) −x+1, y−1/2, −z+2; (viii) −x+1, y+1/2, −z+2; (ix) −x+2, y−1/2, −z+1; (x) −x+2, y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.881 (19) | 1.93 (2) | 2.632 (4) | 135 (3) |
N4—H4N···O3 | 0.88 (2) | 1.92 (3) | 2.630 (4) | 137 (4) |
N7—H7N···O5 | 0.88 (2) | 1.92 (3) | 2.622 (4) | 136 (4) |
N10—H10N···O7 | 0.89 (2) | 1.96 (2) | 2.636 (4) | 132 (3) |
C31—H31···O1i | 0.95 | 2.50 | 3.444 (4) | 173 |
C28—H28···O2ii | 0.95 | 2.59 | 3.414 (4) | 145 |
C4—H4···O6iii | 0.95 | 2.55 | 3.440 (4) | 157 |
C7—H7···O5iv | 0.95 | 2.38 | 3.331 (4) | 174 |
C43—H43···O3ii | 0.95 | 2.49 | 3.436 (4) | 172 |
C40—H40···O4v | 0.95 | 2.64 | 3.489 (5) | 149 |
C19—H19···O7iii | 0.95 | 2.42 | 3.364 (4) | 176 |
C16—H16···O8vi | 0.95 | 2.52 | 3.398 (4) | 153 |
N3—O3···Cg(N5,C13–C17)vii | 1.239 (4) | 3.551 (3) | 3.449 (3) | 75.19 (17) |
N6—O4···Cg(N2,C1–C5)viii | 1.238 (4) | 3.463 (3) | 3.469 (3) | 79.99 (18) |
C36—H36C···Cg(C42–C47)ix | 0.98 | 2.72 | 3.698 (4) | 174 |
C48—H48B···Cg(C30–C35)x | 0.98 | 2.95 | 3.868 (4) | 156 |
Symmetry codes: (i) x+1, y, z−1; (ii) x, y, z−1; (iii) x, y, z+1; (iv) x−1, y, z+1; (v) x−1, y, z−1; (vi) x+1, y, z+1; (vii) −x+1, y−1/2, −z+2; (viii) −x+1, y+1/2, −z+2; (ix) −x+2, y−1/2, −z+1; (x) −x+2, y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C12H11N3O2 |
Mr | 229.24 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 11.4079 (6), 13.1968 (8), 14.3681 (7) |
β (°) | 96.387 (5) |
V (Å3) | 2149.7 (2) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.82 |
Crystal size (mm) | 0.20 × 0.20 × 0.04 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2013) |
Tmin, Tmax | 0.206, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24994, 4623, 3633 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.124, 1.01 |
No. of reflections | 4623 |
No. of parameters | 629 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.27 |
Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Footnotes
‡Additional correspondence author, e-mail: zana@um.edu.my.
Acknowledgements
Intensity data were provided by the University of Malaya Crystallographic Laboratory. This research is supported by the University of Malaya Research Grant Scheme (RG125/AFC10R).
References
Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9–15. CAS Google Scholar
Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Akhmad Aznan, A. M., Fairuz, Z. A., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 295–302. CAS Google Scholar
Arman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. 228, 289–294. Web of Science CSD CrossRef CAS Google Scholar
Arora, K. K. & Zaworotko, M. J. (2009). Polymorphism in Pharmaceutical Solids, Vol. 2, edited by H. G. Brittain, p. 281. London: Informa Healthcare. Google Scholar
Aznan Akhmad, M. A., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2400. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cao, S.-L., Zhao, J., Zhang, N., Wang, Y., Jiang, Y.-Y. & Feng, Y.-P. (2011). J. Chem. Crystallogr. 41, 1456–1460. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559. Web of Science CrossRef PubMed CAS Google Scholar
Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23–32. Web of Science CrossRef CAS Google Scholar
McWilliam, S. A., Skakle, J. M. S., Wardell, J. L., Low, J. N. & Glidewell, C. (2001). Acta Cryst. C57, 946–948. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Shattock, T., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vishweshwar, P., McMahon, J. A., Oliveira, M., Peterson, M. L. & Zaworotko, M. J. (2005). J. Am. Chem. Soc. 127, 16802–16803. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.