research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new monoclinic polymorph of N-(4-methyl­phen­yl)-3-nitro­pyridin-2-amine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 May 2014; accepted 26 May 2014; online 19 July 2014)

The title compound, C12H11N3O2, is a second monoclinic polymorph (P21, with Z′ = 4) of the previously reported monoclinic (P21/c, with Z′ = 2) form [Akhmad Aznan et al. (2010[Aznan Akhmad, M. A., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2400.]). Acta Cryst. E66, o2400]. Four independent mol­ecules comprise the asymmetric unit, which have the common features of a syn disposition of the pyridine N atom and the toluene ring, and an intra­molecular amine–nitro N—H⋯O hydrogen bond. The differences between mol­ecules relate to the dihedral angles between the rings which range from 2.92 (19) to 26.24 (19)°. The geometry-optimized structure [B3LYP level of theory and 6–311 g+(d,p) basis set] has the same features except that the entire mol­ecule is planar. In the crystal, the three-dimensional architecture is consolidated by a combination of C—H⋯O, C—H⋯π, nitro-N—O⋯π and ππ inter­actions [inter-centroid distances = 3.649 (2)–3.916 (2) Å].

1. Chemical context

Original inter­est in the mol­ecules related to the title compound revolved around their fluorescence properties (Kawai et al., 2001[Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23-32.]; Abdullah, 2005[Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9-15.]). The title compound was isolated during an ongoing study of co-crystals formed between carb­oxy­lic acids and pyridine-containing mol­ecules (Arman & Tiekink, 2013[Arman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. 228, 289-294.]; Arman et al., 2014[Arman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 295-302.]), designed to prove the robustness of the {⋯HOC(=O)⋯N(pyridine)} heterosynthon in co-crystals (Shattock et al., 2008[Shattock, T., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533-4545.]) of functionalized carb­oxy­lic acids with pyridine derivatives. The crystal structure of the title compound has been reported previously as a monoclinic (P21/c, with Z′ = 2) polymorph (Akhmad Aznan et al., 2010[Aznan Akhmad, M. A., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2400.]), and the present polymorph was isolated from a failed co-crystallization experiment as detailed in Section 5. The phenomenon of isolating polymorphs from co-crystallization experiments is gaining increasing prominence, especially since the isolation of a second form of aspirin (Vishweshwar et al., 2005[Vishweshwar, P., McMahon, J. A., Oliveira, M., Peterson, M. L. & Zaworotko, M. J. (2005). J. Am. Chem. Soc. 127, 16802-16803.]), and led Zaworotko to suggest co-crystallization experiments should also be employed in polymorph screening (Arora & Zaworotko, 2009[Arora, K. K. & Zaworotko, M. J. (2009). Polymorphism in Pharmaceutical Solids, Vol. 2, edited by H. G. Brittain, p. 281. London: Informa Healthcare.]).

[Scheme 1]

2. Structural commentary

Four crystallographically independent mol­ecules comprise the asymmetric unit (Fig. 1[link]). Each mol­ecule features a secondary amine linking nitro­benzene and tolyl groups, with the nitropyridyl N atom syn to the toluene ring. An intra­molecular N—H⋯O hydrogen bond closes an S(6) loop in each mol­ecule (Table 1[link]). This feature of the structure confers coplanarity of the nitro group with the pyridyl ring to which it is attached; the maximum deviation from coplanarity is seen in the pyridyl/nitro group dihedral angle of 5.2 (3)°, for the N10-containing mol­ecule. More significant differences are found in the dihedral angles between the two rings, i.e. 23.79 (19), 26.24 (19), 6.57 (18) and 2.92 (19)° for the N1-, N4-, N7- and N10-containing mol­ecules, respectively. Similar conformations were observed for the two independent mol­ecules in the previously reported P21/c polymorph (Aznan Akhmad et al., 2010[Aznan Akhmad, M. A., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2400.]). Here, the dihedral angles between the rings were 17.42 (16) and 34.64 (16)°, resembling the N1- and N4-containing mol­ecules in the present study rather than the almost planar N7- and N10-containing mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.88 (2) 1.93 (2) 2.632 (4) 135 (3)
N4—H4N⋯O3 0.88 (2) 1.92 (3) 2.630 (4) 137 (4)
N7—H7N⋯O5 0.88 (2) 1.92 (3) 2.622 (4) 136 (4)
N10—H10N⋯O7 0.89 (2) 1.96 (2) 2.636 (4) 132 (3)
C31—H31⋯O1i 0.95 2.50 3.444 (4) 173
C28—H28⋯O2ii 0.95 2.59 3.414 (4) 145
C4—H4⋯O6iii 0.95 2.55 3.440 (4) 157
C7—H7⋯O5iv 0.95 2.38 3.331 (4) 174
C43—H43⋯O3ii 0.95 2.49 3.436 (4) 172
C40—H40⋯O4v 0.95 2.64 3.489 (5) 149
C19—H19⋯O7iii 0.95 2.42 3.364 (4) 176
C16—H16⋯O8vi 0.95 2.52 3.398 (4) 153
N3—O3⋯Cg(N5,C13–C17)vii 1.24 (1) 3.55 (1) 3.449 (3) 75 (1)
N6—O4⋯Cg(N2,C1–C5)viii 1.24 (1) 3.46 (1) 3.469 (3) 80 (1)
C36—H36CCg(C42–C47)ix 0.98 2.72 3.698 (4) 174
C48—H48BCg(C30–C35)x 0.98 2.95 3.868 (4) 156
Symmetry codes: (i) x+1, y, z-1; (ii) x, y, z-1; (iii) x, y, z+1; (iv) x-1, y, z+1; (v) x-1, y, z-1; (vi) x+1, y, z+1; (vii) [-x+1, y-{\script{1\over 2}}, -z+2]; (viii) [-x+1, y+{\script{1\over 2}}, -z+2]; (ix) [-x+2, y-{\script{1\over 2}}, -z+1]; (x) [-x+2, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structures of the four independent mol­ecule in the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Geometry optimization calculations were conducted using GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]) with the hybrid B3LYP level of theory and the 6-311g+(d,p) basis set. To confirm that a true minimum had been calculated, a frequency calculation was also performed. The gas-phase-optimized structure is strictly planar. An overlay diagram for the six experimentally determined mol­ecules is shown in Fig. 2[link] and these are superimposed upon the geometry-optimized structure. Clearly, deviations from planarity in the experimentally determined mol­ecules arise from the dictates of crystal packing.

[Figure 2]
Figure 2
Overlay diagram of conformations of the title compound. The N1-, N4-, N7- and N10-containing mol­ecules determined in the present study are shown in red, pink, blue and aqua, respectively; the N1-, N7- and N10-containing mol­ecules were inverted for a better fit. The green and yellow images correspond to the unique mol­ecules in the known polymorph and the black image corresponds to the geometry-optimized structure.

3. Supra­molecular features

Globally, the crystal packing features alternating layers of mol­ecules that stack along the b axis. The first layer comprises N1- and N7-containing mol­ecules that associate via C—H⋯O inter­actions (Table 1[link]). Ten-membered {⋯HC2NO}2 synthons, with no crystallographically imposed symmetry, are formed via pyridine–nitro C—H⋯O inter­actions. Larger, again non-symmetric, 16-membered {⋯HC2NC2NO}2 synthons are formed via toluene–nitro C—H⋯O inter­actions (Fig. 3[link]). These combine to form rows of mol­ecules aligned along the a axis. The second independent layer comprises N4- and N10-containing mol­ecules which associate in a similar fashion. However, it is noted that the C40—H40⋯O(nitro) inter­action to close the 10-membered {⋯HC2NO}2 synthon is a little longer that the standard distance criteria incorporated in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Rows of N1- and N7-containing mol­ecules and rows of N4- and N10-containing mol­ecules are connected into a double chain with an undulating topology via ππ and nitro-O⋯π(pyrid­yl) inter­actions (Fig. 4[link]). The ππ inter­actions occur between toluene C6–C11 and N11-pyridine rings [inter­centroid separation = 3.680 (2) Å; angle of inclination = 4.03 (19)° for symmetry operation (−x, y − [{1\over 2}], −z + 1)], and toluene C18–C23 and N8-pyridine rings [3.649 (2) Å, 3.44 (18)°, −x + 1, y + [{1\over 2}], −z + 1]. As summarized in Table 1[link], the nitro–pyridine O⋯π inter­actions occur between the nitro O2 and O4 atoms and the N5- and N2-containing pyridine rings. Chains are connected into a layer parallel to (010) via meth­yl–toluene C—H⋯π inter­actions, and layers are connected into a three-dimensional architecture (Fig. 5[link]) via weaker ππ inter­actions between pyridine and toluene rings: inter­centroid distance for (N4/C1–C5)⋯(C18–C23) = 3.916 (2) Å, with an angle of inclination of 11.04 (19)°, and inter­centroid distance for (C6–C11)⋯(N5/C13–C17) = 3.913 (2) Å, with an angle of inclination of 13.44 (19)° and symmetry operation (x − 1, y, z).

[Figure 3]
Figure 3
Supra­molecular rows along the a axis involving the N1- and N7-containing mol­ecules. The C—H⋯O inter­actions are shown as orange dashed lines.
[Figure 4]
Figure 4
View of the double chain with an undulating topology. The C—H⋯O, N—O⋯π and ππ contacts are shown as orange, blue and purple dashed lines, respectively.
[Figure 5]
Figure 5
Unit-cell contents shown in projection down the a axis. The C—H⋯O, C—H⋯π, N—O⋯π and ππ contacts are shown as orange, brown, blue and purple dashed lines, respectively.

4. Database survey

The most closely related structures in the literature are N-(3-chloro­phen­yl)-3-nitro­pyridin-2-amine (Akhmad Aznan et al., 2011[Akhmad Aznan, A. M., Fairuz, Z. A., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3176.]) and 4-[(3-nitro­pyridin-2-yl)amino]­phenol (Cao et al., 2011[Cao, S.-L., Zhao, J., Zhang, N., Wang, Y., Jiang, Y.-Y. & Feng, Y.-P. (2011). J. Chem. Crystallogr. 41, 1456-1460.]). Similar features are evident in these mol­ecules, i.e. the intra­molecular N—H⋯O(nitro) hydrogen bond, the coplanarity of the nitro group and pyridine ring, and a conrotatory twist of the two rings, i.e. dihedral angles of 9.88 (5) and 84.77 (10)°, respectively. Finally, the structure of the all-phenyl analogue, 2-nitro­diphenyl­amine, has been reported (McWilliam et al., 2001[McWilliam, S. A., Skakle, J. M. S., Wardell, J. L., Low, J. N. & Glidewell, C. (2001). Acta Cryst. C57, 946-948.]). Again, the same features are evident and the comparable dihedral angle is 44.45 (7)°.

5. Synthesis and crystallization

N-(4-Methyl­phen­yl)-3-nitro­pyridin-2-amine (0.05 g, 0.22 mmol), prepared according to the literature procedure of Akhmad Aznan et al. (2010[Aznan Akhmad, M. A., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2400.]), was mixed with 3-nitro­benzoic acid (Merck; 0.03 g, 0.22 mmol) in a 1:1 solution of ethanol and ether (10 ml). The solution was refluxed for 4 h at 350 K. The mixture was then left for slow evaporation and red crystals formed after 3–4 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set at 1.2Ueq(C). N-bound H atoms were located in a difference Fourier map but were refined with a distance restraint of N—H = 0.88±0.01 Å and with Uiso(H) set at 1.2Ueq(N). In the absence of significant anomalous scattering effects, 4208 Friedel pairs were averaged in the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C12H11N3O2
Mr 229.24
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 11.4079 (6), 13.1968 (8), 14.3681 (7)
β (°) 96.387 (5)
V3) 2149.7 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.82
Crystal size (mm) 0.20 × 0.20 × 0.04
 
Data collection
Diffractometer Agilent SuperNova Dual with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.206, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24994, 4623, 3633
Rint 0.064
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.01
No. of reflections 4623
No. of parameters 629
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.27
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Original inter­est in the molecules related to the title compound revolved around their fluorescence properties (Kawai et al., 2001; Abdullah, 2005). The title compound was isolated during an ongoing study of co-crystals formed between carb­oxy­lic acids and pyridine-containing molecules (Arman & Tiekink, 2013; Arman et al., 2014), designed to prove the robustness of the {···HOC(O)···N(pyridine)} heterosynthon in co-crystals (Shattock et al., 2008) of functionalized carb­oxy­lic acids with pyridine derivatives. The crystal structure of the title compound has been reported previously as a monoclinic (P21/c, with Z' = 2) polymorph (Akhmad Aznan et al., 2010), and the present polymorph was isolated from a failed co-crystallization experiment as detailed in Section 5. The phenomenon of isolating polymorphs from co-crystallization experiments is gaining increasing prominence, especially since the isolation of a second form of aspirin (Vishweshwar et al., 2005), and led Zaworotko to suggest co-crystallization experiments should also be employed in polymorph screening (Arora & Zaworotko, 2009).

Structural commentary top

Four crystallographically independent molecules comprise the asymmetric unit (Fig. 1). Each molecule features a secondary amine linking nitro­benzene and tolyl groups, with the pyridine N atom syn to the toluene ring. An intra­molecular N—H···O hydrogen bond closes an S(6) loop in each molecule (Table 2). This feature of the structure confers coplanarity of the nitro group with the benzene ring to which it is attached; the maximum deviation from coplanarity is seen in the benzene/nitro group dihedral angle of 5.2 (3)°, for the N10-containing molecule. More significant differences are found in the dihedral angles between the two rings, i.e. 23.79 (19), 26.24 (19), 6.57 (18) and 2.92 (19)° for the N1-, N4-, N7- and N10-containing molecules, respectively. Similar conformations were observed for the two independent molecules in the previously reported P21/c polymorph (Aznan Akhmad et al., 2010). Here, the dihedral angles between the rings were 17.42 (16) and 34.64 (16)°, resembling the N1- and N4-containing molecules in the present study rather than the almost planar N7- and N10-containing molecules.

Geometry optimization calculations were conducted using GAUSSIAN09 (Frisch et al., 2009) with the hybrid B3LYP level of theory and the 6-311g+(d,p) basis set. To confirm that a true minimum had been calculated, a frequency calculation was also performed. The gas-phase-optimized structure is strictly planar. An overlay diagram for the six experimentally determined molecules is shown in Fig. 2 and these are superimposed upon the geometry optimized structure. Clearly, deviations from planarity in the experimentally determined molecules arise from the di­cta­tes of crystal packing.

Supra­molecular features top

Globally, the crystal packing features alternating layers of molecules that stack along the b axis. The first layer comprises N1- and N7-containing molecules that associate via C—H···O inter­actions (Table 1). Ten-membered {···HC2NO}2 synthons, with no crystallographically imposed symmetry, are formed via pyridine–nitro C—H···O inter­actions. Larger, again non-symmetric, 16-membered {···HC2NC2NO}2 synthons are formed via toluene–nitro C—H···O inter­actions (Fig. 3). These combine to form rows of molecules aligned along the a axis. The second independent layer comprises N4- and N10-containing molecules which associate in a similar fashion. However, it is noted that the C40—H40···O(nitro) inter­action to close the 10-membered {···HC2NO}2 synthon is a little longer that the standard distance criteria incorporated in PLATON (Spek, 2009). Rows of N1- and N7-containing molecules and rows of N4- and N10-containing molecules are connected into a double chain with an undulating topology via ππ and nitro-O···π(pyridyl) inter­actions (Fig. 4). The ππ inter­actions occur between toluene C6–C11 and N11-pyridine rings [inter­centroid separation = 3.680 (2) Å; angle of inclination = 4.03 (19)° for symmetry operation (-x, y-1/2, -z+1)], and toluene C18–C23 and N8-pyridine rings [3.649 (2), 3.44 (18) Å; -x+1, y+1/2, -z+1]. As summarized in Table 1, the nitro–pyridine O···π inter­actions occur between the nitro O2 and O4 atoms and the N5- and N2-containing pyridine rings. Chains are connected into a layer parallel to (010) via methyl–toluene C—H···π inter­actions, and layers are connected into a three-dimensional architecture (Fig. 5) via weaker ππ inter­actions between pyridine and toluene rings: inter­centroid distance for (N4/C1–C5)···(C18–C23) = 3.916 (2) Å, with an angle of inclination of 11.04 (19)°, and inter­centroid distance for (C6–C11)···(N5/C13–C17) = 3.913 (2) Å, with an angle of inclination of 13.44 (19)° and symmetry operation (x-1, y, z).

Database survey top

The most closely related structures in the literature are N-(3-chloro­phenyl)-3-nitro­pyridin-2-amine (Akhmad Aznan et al., 2011) and 4-[(3-nitro­pyridin-2-yl)amino]­phenol (Cao et al., 2011). Similar features are evident in these molecules, i.e. the intra­molecular N—H···O(nitro) hydrogen bond, the coplanarity of the nitro group and pyridine ring, and a conrotatory twist of the two rings, i.e. dihedral angles of 9.88 (5) and 84.77 (10)°, respectively. Finally, the structure of the all-phenyl analogue, 2-nitro­diphenyl­amine, has been reported (McWilliam et al., 2001). Again, the same features are evident and the comparable dihedral angle is 44.45 (7)°.

Synthesis and crystallization top

N-(4-Methyl­phenyl)-3-nitro­pyridin-2-amine (0.05 g, 0.22 mmol), prepared according to the literature procedure of Akhmad Aznan et al., 2010), was mixed with 3-nitro­benzoic acid (Merck; 0.03 g, 0.22 mmol) in a 1:1 solution of ethanol and ether (10 ml). The solution was refluxed for 4 h at 350 K. The mixture was then left for slow evaporation and red crystals formed after 3–4 d.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set at 1.2Ueq(C). N-bound H atoms were located in a difference Fourier map but were refined with a distance restraint of N—H = 0.88±0.01 Å and with Uiso(H) set at 1.2Ueq(N). In the absence of significant anomalous scattering effects, 4208 Friedel pairs were averaged in the final refinement.

Related literature top

For related literature, see: Abdullah (2005); Akhmad Aznan, Fairuz, Abdullah, Ng & Tiekink (2011); Arman & Tiekink (2013); Arman et al. (2014); Arora & Zaworotko (2009); Aznan Akhmad, Abdullah, Fairuz, Ng & Tiekink (2010); Cao et al. (2011); Frisch (2009); Kawai et al. (2001); McWilliam et al. (2001); Shattock et al. (2008); Spek (2009); Vishweshwar et al. (2005).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the four independent molecule in the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of conformations of the title compound. The N1-, N4-, N7- and N10-containing molecules determined in the present study are shown in red, pink, blue and aqua, respectively; the N1-, N7- and N10-containing molecules were inverted for a better fit. The green and yellow images correspond to the unique molecules in the known polymorph and the black image corresponds to the geometry-optimized structure.
[Figure 3] Fig. 3. Supramolecular rows along the a axis involving the N1- and N7-containing molecules. The C—H···O interactions are shown as orange dashed lines.
[Figure 4] Fig. 4. View of the double chain with an undulating topology. The C—H···O, N—O···π and ππ contacts are shown as orange, blue and purple dashed lines, respectively.
[Figure 5] Fig. 5. Unit-cell contents shown in projection down the a axis. The C—H···O, C—H···π, N—O···π and ππ contacts are shown as orange, brown, blue and purple dashed lines, respectively.
N-(4-methylphenyl)-3-nitropyridin-2-amine top
Crystal data top
C12H11N3O2F(000) = 960
Mr = 229.24Dx = 1.417 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 4609 reflections
a = 11.4079 (6) Åθ = 3.1–76.4°
b = 13.1968 (8) ŵ = 0.82 mm1
c = 14.3681 (7) ÅT = 100 K
β = 96.387 (5)°Plate, red
V = 2149.7 (2) Å30.20 × 0.20 × 0.04 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4623 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3633 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.064
Detector resolution: 10.4041 pixels mm-1θmax = 75.0°, θmin = 3.1°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1616
Tmin = 0.206, Tmax = 1.000l = 1417
24994 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.0456P]
where P = (Fo2 + 2Fc2)/3
4623 reflections(Δ/σ)max < 0.001
629 parametersΔρmax = 0.27 e Å3
5 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H11N3O2V = 2149.7 (2) Å3
Mr = 229.24Z = 8
Monoclinic, P21Cu Kα radiation
a = 11.4079 (6) ŵ = 0.82 mm1
b = 13.1968 (8) ÅT = 100 K
c = 14.3681 (7) Å0.20 × 0.20 × 0.04 mm
β = 96.387 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4623 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3633 reflections with I > 2σ(I)
Tmin = 0.206, Tmax = 1.000Rint = 0.064
24994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0435 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.27 e Å3
4623 reflectionsΔρmin = 0.27 e Å3
629 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1693 (2)0.4996 (2)1.11071 (17)0.0305 (6)
O20.3584 (2)0.4890 (2)1.14982 (19)0.0406 (7)
N10.0806 (3)0.4751 (3)0.9351 (2)0.0244 (7)
H1N0.069 (3)0.486 (3)0.9939 (11)0.029*
N20.2143 (3)0.4208 (3)0.8357 (2)0.0260 (7)
N30.2712 (3)0.4837 (2)1.0903 (2)0.0278 (6)
C10.1923 (3)0.4515 (3)0.9220 (2)0.0218 (7)
C20.3235 (3)0.3972 (3)0.8216 (3)0.0305 (8)
H20.33640.37560.76050.037*
C30.4211 (3)0.4013 (3)0.8889 (3)0.0321 (8)
H30.49770.38340.87430.039*
C40.4021 (3)0.4322 (3)0.9773 (3)0.0281 (8)
H40.46600.43651.02560.034*
C50.2883 (3)0.4573 (3)0.9954 (2)0.0244 (7)
C60.0239 (3)0.4736 (3)0.8718 (2)0.0214 (7)
C70.1293 (3)0.4664 (3)0.9128 (2)0.0250 (7)
H70.12710.46020.97890.030*
C80.2366 (3)0.4684 (3)0.8576 (2)0.0245 (7)
H80.30740.46330.88640.029*
C90.2432 (3)0.4777 (3)0.7603 (3)0.0242 (7)
C100.1377 (3)0.4853 (3)0.7207 (2)0.0243 (7)
H100.14010.49160.65470.029*
C110.0288 (3)0.4837 (3)0.7750 (2)0.0236 (7)
H110.04190.48960.74610.028*
C120.3607 (3)0.4781 (3)0.7003 (2)0.0282 (7)
H12A0.35490.51940.64440.042*
H12B0.42110.50660.73620.042*
H12C0.38230.40860.68160.042*
O30.5598 (2)0.6453 (2)1.07113 (18)0.0350 (6)
O40.7456 (3)0.6690 (2)1.1166 (2)0.0416 (7)
N40.4768 (3)0.6770 (2)0.8954 (2)0.0246 (6)
H4N0.465 (4)0.666 (3)0.9539 (12)0.030*
N50.6142 (3)0.7310 (3)0.7993 (2)0.0301 (7)
N60.6613 (3)0.6682 (2)1.0544 (2)0.0303 (7)
C130.5895 (3)0.7002 (3)0.8844 (3)0.0252 (8)
C140.7248 (3)0.7557 (3)0.7875 (3)0.0326 (8)
H140.74060.77700.72700.039*
C150.8189 (3)0.7523 (3)0.8582 (3)0.0357 (10)
H150.89620.77130.84630.043*
C160.7964 (3)0.7208 (3)0.9452 (3)0.0327 (9)
H160.85870.71610.99470.039*
C170.6822 (3)0.6959 (3)0.9604 (3)0.0263 (8)
C180.3730 (3)0.6821 (3)0.8309 (3)0.0223 (7)
C190.2680 (3)0.6955 (3)0.8700 (2)0.0229 (7)
H190.26910.70270.93590.027*
C200.1620 (3)0.6984 (3)0.8131 (2)0.0241 (7)
H200.09090.70650.84090.029*
C210.1568 (3)0.6898 (3)0.7160 (2)0.0230 (7)
C220.2628 (3)0.6757 (3)0.6785 (2)0.0237 (7)
H220.26160.66890.61250.028*
C230.3706 (3)0.6712 (3)0.7341 (2)0.0233 (7)
H230.44160.66080.70650.028*
C240.0417 (3)0.6970 (3)0.6543 (2)0.0268 (7)
H24A0.03700.64240.60780.040*
H24B0.03680.76270.62230.040*
H24C0.02380.69060.69270.040*
O50.8659 (2)0.4620 (2)0.14411 (17)0.0357 (6)
O60.6805 (2)0.4394 (2)0.09688 (17)0.0326 (6)
N70.9406 (3)0.4660 (2)0.3234 (2)0.0250 (6)
H7N0.953 (4)0.478 (3)0.2651 (12)0.030*
N80.7985 (2)0.4312 (2)0.42218 (19)0.0242 (6)
N90.7626 (3)0.4480 (2)0.1605 (2)0.0266 (6)
C250.8268 (3)0.4458 (3)0.3342 (2)0.0217 (7)
C260.6856 (3)0.4129 (3)0.4340 (3)0.0277 (7)
H260.66710.40170.49600.033*
C270.5933 (3)0.4092 (3)0.3618 (3)0.0278 (8)
H270.51430.39840.37440.033*
C280.6209 (3)0.4218 (3)0.2718 (3)0.0263 (8)
H280.56100.41840.22040.032*
C290.7366 (3)0.4392 (3)0.2567 (2)0.0241 (7)
C301.0440 (3)0.4666 (3)0.3872 (2)0.0220 (7)
C311.1492 (3)0.4748 (3)0.3470 (2)0.0232 (7)
H311.14720.48010.28090.028*
C321.2568 (3)0.4754 (3)0.4023 (2)0.0256 (7)
H321.32730.48250.37340.031*
C331.2639 (3)0.4659 (3)0.4994 (2)0.0225 (7)
C341.1585 (3)0.4584 (3)0.5390 (2)0.0250 (7)
H341.16100.45280.60510.030*
C351.0491 (3)0.4589 (3)0.4846 (2)0.0234 (7)
H350.97840.45400.51360.028*
C361.3811 (3)0.4627 (3)0.5588 (2)0.0269 (7)
H36A1.37430.49660.61870.040*
H36B1.44050.49740.52610.040*
H36C1.40480.39200.57030.040*
O70.2612 (2)0.7100 (2)0.10311 (17)0.0298 (6)
O80.0735 (2)0.7151 (2)0.05973 (17)0.0349 (6)
N100.3413 (3)0.7031 (2)0.2823 (2)0.0218 (6)
H10N0.358 (3)0.695 (3)0.2239 (12)0.026*
N110.2005 (3)0.7369 (3)0.3827 (2)0.0261 (7)
N120.1578 (2)0.7149 (2)0.12156 (19)0.0247 (6)
C370.2271 (3)0.7206 (3)0.2953 (2)0.0229 (7)
C380.0884 (3)0.7487 (3)0.3965 (2)0.0283 (8)
H380.07120.75910.45900.034*
C390.0058 (3)0.7470 (3)0.3266 (3)0.0300 (8)
H390.08460.75460.34110.036*
C400.0185 (3)0.7339 (3)0.2358 (2)0.0266 (7)
H400.04320.73280.18570.032*
C410.1350 (3)0.7223 (3)0.2190 (2)0.0239 (7)
C420.4438 (3)0.6970 (3)0.3468 (2)0.0223 (7)
C430.5494 (3)0.6836 (3)0.3066 (2)0.0243 (7)
H430.54740.67850.24040.029*
C440.6560 (3)0.6777 (3)0.3620 (2)0.0252 (7)
H440.72640.66880.33340.030*
C450.6625 (3)0.6846 (3)0.4598 (3)0.0238 (8)
C460.5573 (3)0.6970 (3)0.4987 (2)0.0239 (7)
H460.55950.70130.56490.029*
C470.4485 (3)0.7033 (3)0.4441 (2)0.0259 (7)
H470.37810.71170.47290.031*
C480.7799 (3)0.6812 (3)0.5197 (3)0.0293 (8)
H48A0.76750.66390.58420.044*
H48B0.81810.74770.51880.044*
H48C0.83030.62990.49500.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0286 (14)0.0374 (15)0.0249 (13)0.0041 (11)0.0009 (10)0.0004 (11)
O20.0310 (14)0.0523 (18)0.0343 (14)0.0054 (13)0.0150 (11)0.0031 (13)
N10.0190 (14)0.0333 (17)0.0202 (14)0.0008 (12)0.0008 (11)0.0027 (13)
N20.0210 (14)0.0302 (17)0.0265 (15)0.0023 (12)0.0003 (12)0.0023 (12)
N30.0255 (15)0.0267 (16)0.0289 (15)0.0002 (12)0.0063 (12)0.0009 (12)
C10.0182 (16)0.0207 (17)0.0256 (17)0.0017 (13)0.0016 (13)0.0000 (13)
C20.0231 (17)0.034 (2)0.0352 (19)0.0009 (14)0.0061 (14)0.0036 (15)
C30.0212 (17)0.033 (2)0.043 (2)0.0008 (15)0.0045 (16)0.0011 (16)
C40.0186 (16)0.0265 (19)0.0375 (19)0.0030 (13)0.0052 (14)0.0069 (15)
C50.0219 (16)0.0230 (18)0.0275 (17)0.0004 (13)0.0004 (13)0.0012 (13)
C60.0162 (16)0.0233 (17)0.0236 (17)0.0003 (12)0.0033 (13)0.0003 (13)
C70.0256 (17)0.0284 (19)0.0208 (16)0.0031 (14)0.0021 (13)0.0014 (13)
C80.0170 (15)0.0293 (19)0.0273 (18)0.0010 (13)0.0034 (13)0.0029 (14)
C90.0205 (16)0.0212 (17)0.0297 (19)0.0008 (13)0.0018 (14)0.0008 (14)
C100.0255 (18)0.0260 (18)0.0207 (16)0.0010 (14)0.0010 (13)0.0008 (13)
C110.0201 (16)0.0277 (18)0.0231 (16)0.0004 (13)0.0027 (13)0.0019 (14)
C120.0249 (17)0.0316 (19)0.0267 (18)0.0011 (14)0.0039 (14)0.0014 (14)
O30.0304 (14)0.0431 (16)0.0297 (13)0.0026 (12)0.0052 (11)0.0014 (11)
O40.0379 (16)0.0442 (18)0.0375 (16)0.0008 (13)0.0194 (13)0.0036 (13)
N40.0200 (14)0.0316 (17)0.0215 (14)0.0030 (12)0.0008 (11)0.0005 (12)
N50.0216 (15)0.0338 (18)0.0345 (17)0.0002 (13)0.0018 (12)0.0002 (14)
N60.0310 (17)0.0281 (16)0.0289 (16)0.0009 (13)0.0089 (13)0.0034 (13)
C130.0202 (17)0.0234 (19)0.0308 (19)0.0044 (14)0.0022 (14)0.0033 (15)
C140.0247 (18)0.037 (2)0.037 (2)0.0022 (15)0.0057 (15)0.0036 (16)
C150.0179 (18)0.033 (2)0.057 (3)0.0013 (15)0.0061 (17)0.0118 (18)
C160.0225 (19)0.030 (2)0.044 (2)0.0050 (15)0.0055 (16)0.0085 (17)
C170.0220 (17)0.0215 (18)0.034 (2)0.0033 (14)0.0048 (15)0.0064 (14)
C180.0202 (17)0.0210 (17)0.0251 (18)0.0008 (13)0.0002 (14)0.0010 (13)
C190.0218 (16)0.0268 (18)0.0199 (15)0.0026 (13)0.0013 (13)0.0005 (13)
C200.0185 (16)0.0264 (17)0.0277 (17)0.0019 (13)0.0040 (13)0.0004 (14)
C210.0205 (16)0.0223 (17)0.0250 (17)0.0011 (13)0.0022 (13)0.0025 (13)
C220.0234 (17)0.0279 (18)0.0193 (16)0.0028 (14)0.0002 (13)0.0010 (13)
C230.0175 (16)0.0270 (18)0.0252 (17)0.0009 (13)0.0015 (13)0.0022 (13)
C240.0217 (17)0.0321 (19)0.0257 (17)0.0004 (14)0.0018 (14)0.0022 (14)
O50.0248 (13)0.0582 (19)0.0236 (12)0.0023 (12)0.0006 (10)0.0065 (12)
O60.0304 (14)0.0401 (16)0.0245 (13)0.0015 (12)0.0096 (10)0.0010 (11)
N70.0208 (14)0.0342 (17)0.0192 (14)0.0009 (12)0.0014 (11)0.0030 (12)
N80.0190 (14)0.0295 (16)0.0235 (14)0.0007 (12)0.0003 (11)0.0001 (12)
N90.0246 (14)0.0298 (16)0.0238 (14)0.0025 (12)0.0048 (11)0.0020 (12)
C250.0203 (16)0.0202 (17)0.0237 (17)0.0014 (13)0.0016 (13)0.0008 (13)
C260.0215 (16)0.0310 (19)0.0313 (18)0.0006 (14)0.0056 (14)0.0013 (15)
C270.0164 (16)0.033 (2)0.0334 (19)0.0003 (14)0.0017 (14)0.0011 (15)
C280.0194 (17)0.0278 (19)0.0299 (19)0.0021 (14)0.0050 (14)0.0026 (15)
C290.0250 (17)0.0234 (18)0.0232 (17)0.0018 (14)0.0002 (14)0.0017 (14)
C300.0202 (16)0.0230 (18)0.0219 (17)0.0002 (13)0.0017 (13)0.0018 (13)
C310.0223 (16)0.0275 (18)0.0197 (16)0.0022 (13)0.0015 (13)0.0026 (13)
C320.0189 (16)0.0282 (19)0.0301 (18)0.0020 (13)0.0044 (13)0.0011 (14)
C330.0180 (16)0.0213 (17)0.0271 (17)0.0005 (13)0.0023 (13)0.0024 (13)
C340.0219 (16)0.0287 (19)0.0234 (17)0.0007 (14)0.0016 (13)0.0015 (13)
C350.0166 (15)0.0294 (19)0.0235 (16)0.0003 (13)0.0005 (12)0.0030 (13)
C360.0202 (16)0.0283 (19)0.0308 (18)0.0004 (14)0.0029 (14)0.0030 (14)
O70.0229 (13)0.0441 (16)0.0223 (12)0.0019 (11)0.0013 (10)0.0010 (11)
O80.0280 (14)0.0488 (17)0.0250 (12)0.0057 (12)0.0100 (10)0.0051 (12)
N100.0183 (14)0.0281 (16)0.0188 (14)0.0020 (12)0.0015 (11)0.0013 (12)
N110.0232 (15)0.0319 (18)0.0234 (15)0.0020 (12)0.0031 (12)0.0040 (12)
N120.0223 (14)0.0296 (16)0.0205 (14)0.0038 (12)0.0053 (11)0.0000 (12)
C370.0210 (17)0.0237 (18)0.0235 (16)0.0001 (14)0.0001 (13)0.0014 (14)
C380.0227 (17)0.040 (2)0.0230 (17)0.0004 (14)0.0057 (13)0.0000 (15)
C390.0203 (17)0.035 (2)0.035 (2)0.0006 (14)0.0059 (15)0.0015 (15)
C400.0197 (17)0.0306 (19)0.0277 (17)0.0011 (14)0.0049 (13)0.0017 (14)
C410.0221 (16)0.0254 (18)0.0239 (17)0.0006 (13)0.0006 (13)0.0004 (13)
C420.0185 (17)0.0231 (18)0.0247 (17)0.0008 (13)0.0006 (13)0.0002 (13)
C430.0214 (17)0.0276 (19)0.0239 (17)0.0012 (13)0.0020 (14)0.0002 (13)
C440.0209 (17)0.0276 (18)0.0270 (17)0.0004 (13)0.0024 (13)0.0002 (13)
C450.0213 (17)0.0199 (17)0.0288 (19)0.0007 (12)0.0032 (15)0.0015 (14)
C460.0228 (17)0.0277 (18)0.0199 (16)0.0010 (13)0.0030 (13)0.0021 (13)
C470.0242 (17)0.0286 (19)0.0245 (17)0.0020 (15)0.0011 (14)0.0002 (14)
C480.0230 (18)0.031 (2)0.0315 (19)0.0004 (14)0.0068 (15)0.0011 (15)
Geometric parameters (Å, º) top
O1—N31.249 (4)O5—N91.241 (4)
O2—N31.239 (4)O6—N91.239 (4)
N1—C11.345 (4)N7—C251.351 (4)
N1—C61.416 (4)N7—C301.411 (4)
N1—H1N0.882 (10)N7—H7N0.880 (10)
N2—C21.322 (5)N8—C261.339 (4)
N2—C11.353 (5)N8—C251.353 (4)
N3—C51.442 (4)N9—C291.450 (4)
C1—C51.435 (5)C25—C291.433 (5)
C2—C31.393 (5)C26—C271.394 (5)
C2—H20.9500C26—H260.9500
C3—C41.374 (5)C27—C281.375 (5)
C3—H30.9500C27—H270.9500
C4—C51.392 (4)C28—C291.380 (5)
C4—H40.9500C28—H280.9500
C6—C111.393 (5)C30—C311.393 (4)
C6—C71.400 (5)C30—C351.397 (5)
C7—C81.384 (5)C31—C321.386 (5)
C7—H70.9500C31—H310.9500
C8—C91.397 (5)C32—C331.393 (5)
C8—H80.9500C32—H320.9500
C9—C101.391 (5)C33—C341.390 (4)
C9—C121.510 (4)C33—C361.505 (4)
C10—C111.392 (5)C34—C351.398 (4)
C10—H100.9500C34—H340.9500
C11—H110.9500C35—H350.9500
C12—H12A0.9800C36—H36A0.9800
C12—H12B0.9800C36—H36B0.9800
C12—H12C0.9800C36—H36C0.9800
O3—N61.245 (4)O7—N121.240 (4)
O4—N61.238 (4)O8—N121.234 (4)
N4—C131.347 (5)N10—C371.356 (4)
N4—C181.421 (4)N10—C421.412 (4)
N4—H4N0.880 (10)N10—H10N0.888 (10)
N5—C141.331 (5)N11—C381.325 (4)
N5—C131.349 (5)N11—C371.343 (4)
N6—C171.445 (5)N12—C411.455 (4)
C13—C171.434 (5)C37—C411.432 (5)
C14—C151.394 (6)C38—C391.387 (5)
C14—H140.9500C38—H380.9500
C15—C161.368 (6)C39—C401.375 (5)
C15—H150.9500C39—H390.9500
C16—C171.385 (5)C40—C411.385 (5)
C16—H160.9500C40—H400.9500
C18—C191.390 (5)C42—C471.395 (5)
C18—C231.396 (5)C42—C431.405 (5)
C19—C201.383 (5)C43—C441.380 (5)
C19—H190.9500C43—H430.9500
C20—C211.395 (5)C44—C451.402 (5)
C20—H200.9500C44—H440.9500
C21—C221.390 (5)C45—C461.388 (5)
C21—C241.503 (4)C45—C481.510 (4)
C22—C231.391 (5)C46—C471.396 (5)
C22—H220.9500C46—H460.9500
C23—H230.9500C47—H470.9500
C24—H24A0.9800C48—H48A0.9800
C24—H24B0.9800C48—H48B0.9800
C24—H24C0.9800C48—H48C0.9800
C1—N1—C6130.5 (3)C25—N7—C30132.1 (3)
C1—N1—H1N115 (3)C25—N7—H7N114 (3)
C6—N1—H1N114 (3)C30—N7—H7N114 (3)
C2—N2—C1119.0 (3)C26—N8—C25118.5 (3)
O2—N3—O1121.7 (3)O6—N9—O5122.0 (3)
O2—N3—C5119.0 (3)O6—N9—C29118.6 (3)
O1—N3—C5119.3 (3)O5—N9—C29119.5 (3)
N1—C1—N2118.1 (3)N7—C25—N8118.0 (3)
N1—C1—C5122.8 (3)N7—C25—C29122.6 (3)
N2—C1—C5119.0 (3)N8—C25—C29119.4 (3)
N2—C2—C3125.4 (4)N8—C26—C27124.7 (3)
N2—C2—H2117.3N8—C26—H26117.7
C3—C2—H2117.3C27—C26—H26117.7
C4—C3—C2117.2 (3)C28—C27—C26117.6 (3)
C4—C3—H3121.4C28—C27—H27121.2
C2—C3—H3121.4C26—C27—H27121.2
C3—C4—C5119.3 (3)C27—C28—C29119.4 (3)
C3—C4—H4120.3C27—C28—H28120.3
C5—C4—H4120.3C29—C28—H28120.3
C4—C5—C1120.1 (3)C28—C29—C25120.3 (3)
C4—C5—N3117.4 (3)C28—C29—N9117.6 (3)
C1—C5—N3122.4 (3)C25—C29—N9122.0 (3)
C11—C6—C7119.1 (3)C31—C30—C35118.6 (3)
C11—C6—N1125.2 (3)C31—C30—N7115.3 (3)
C7—C6—N1115.6 (3)C35—C30—N7126.1 (3)
C8—C7—C6120.3 (3)C32—C31—C30120.8 (3)
C8—C7—H7119.9C32—C31—H31119.6
C6—C7—H7119.9C30—C31—H31119.6
C7—C8—C9121.4 (3)C31—C32—C33121.5 (3)
C7—C8—H8119.3C31—C32—H32119.3
C9—C8—H8119.3C33—C32—H32119.3
C10—C9—C8117.6 (3)C34—C33—C32117.4 (3)
C10—C9—C12121.3 (3)C34—C33—C36121.3 (3)
C8—C9—C12121.1 (3)C32—C33—C36121.3 (3)
C9—C10—C11122.0 (3)C33—C34—C35122.0 (3)
C9—C10—H10119.0C33—C34—H34119.0
C11—C10—H10119.0C35—C34—H34119.0
C10—C11—C6119.7 (3)C30—C35—C34119.7 (3)
C10—C11—H11120.2C30—C35—H35120.2
C6—C11—H11120.2C34—C35—H35120.2
C9—C12—H12A109.5C33—C36—H36A109.5
C9—C12—H12B109.5C33—C36—H36B109.5
H12A—C12—H12B109.5H36A—C36—H36B109.5
C9—C12—H12C109.5C33—C36—H36C109.5
H12A—C12—H12C109.5H36A—C36—H36C109.5
H12B—C12—H12C109.5H36B—C36—H36C109.5
C13—N4—C18130.5 (3)C37—N10—C42131.1 (3)
C13—N4—H4N113 (3)C37—N10—H10N118 (3)
C18—N4—H4N115 (3)C42—N10—H10N111 (3)
C14—N5—C13119.1 (3)C38—N11—C37118.8 (3)
O4—N6—O3121.8 (3)O8—N12—O7122.0 (3)
O4—N6—C17118.5 (3)O8—N12—C41119.0 (3)
O3—N6—C17119.7 (3)O7—N12—C41119.0 (3)
N4—C13—N5118.2 (3)N11—C37—N10118.5 (3)
N4—C13—C17122.4 (3)N11—C37—C41119.4 (3)
N5—C13—C17119.4 (3)N10—C37—C41122.1 (3)
N5—C14—C15124.3 (4)N11—C38—C39124.9 (3)
N5—C14—H14117.9N11—C38—H38117.5
C15—C14—H14117.9C39—C38—H38117.5
C16—C15—C14117.9 (4)C40—C39—C38117.9 (3)
C16—C15—H15121.1C40—C39—H39121.1
C14—C15—H15121.1C38—C39—H39121.1
C15—C16—C17119.4 (4)C39—C40—C41118.6 (3)
C15—C16—H16120.3C39—C40—H40120.7
C17—C16—H16120.3C41—C40—H40120.7
C16—C17—C13119.9 (4)C40—C41—C37120.3 (3)
C16—C17—N6117.6 (3)C40—C41—N12116.9 (3)
C13—C17—N6122.4 (3)C37—C41—N12122.7 (3)
C19—C18—C23119.6 (3)C47—C42—C43118.8 (3)
C19—C18—N4115.8 (3)C47—C42—N10126.3 (3)
C23—C18—N4124.6 (3)C43—C42—N10115.0 (3)
C20—C19—C18120.0 (3)C44—C43—C42120.7 (3)
C20—C19—H19120.0C44—C43—H43119.7
C18—C19—H19120.0C42—C43—H43119.7
C19—C20—C21121.8 (3)C43—C44—C45121.3 (3)
C19—C20—H20119.1C43—C44—H44119.3
C21—C20—H20119.1C45—C44—H44119.3
C22—C21—C20117.2 (3)C46—C45—C44117.3 (3)
C22—C21—C24121.4 (3)C46—C45—C48121.7 (3)
C20—C21—C24121.4 (3)C44—C45—C48120.9 (3)
C21—C22—C23122.3 (3)C45—C46—C47122.4 (3)
C21—C22—H22118.9C45—C46—H46118.8
C23—C22—H22118.9C47—C46—H46118.8
C22—C23—C18119.1 (3)C46—C47—C42119.5 (3)
C22—C23—H23120.4C46—C47—H47120.2
C18—C23—H23120.4C42—C47—H47120.2
C21—C24—H24A109.5C45—C48—H48A109.5
C21—C24—H24B109.5C45—C48—H48B109.5
H24A—C24—H24B109.5H48A—C48—H48B109.5
C21—C24—H24C109.5C45—C48—H48C109.5
H24A—C24—H24C109.5H48A—C48—H48C109.5
H24B—C24—H24C109.5H48B—C48—H48C109.5
C6—N1—C1—N20.1 (6)C30—N7—C25—N86.6 (6)
C6—N1—C1—C5179.8 (3)C30—N7—C25—C29173.1 (3)
C2—N2—C1—N1179.9 (3)C26—N8—C25—N7178.8 (3)
C2—N2—C1—C50.1 (5)C26—N8—C25—C291.4 (5)
C1—N2—C2—C30.2 (6)C25—N8—C26—C271.0 (6)
N2—C2—C3—C40.2 (6)N8—C26—C27—C282.3 (6)
C2—C3—C4—C50.2 (6)C26—C27—C28—C291.3 (6)
C3—C4—C5—C10.5 (6)C27—C28—C29—C251.0 (6)
C3—C4—C5—N3176.5 (3)C27—C28—C29—N9177.6 (4)
N1—C1—C5—C4179.7 (3)N7—C25—C29—C28177.9 (4)
N2—C1—C5—C40.4 (5)N8—C25—C29—C282.4 (6)
N1—C1—C5—N33.5 (6)N7—C25—C29—N93.7 (6)
N2—C1—C5—N3176.4 (3)N8—C25—C29—N9176.1 (3)
O2—N3—C5—C44.3 (5)O6—N9—C29—C280.0 (5)
O1—N3—C5—C4175.0 (3)O5—N9—C29—C28178.8 (4)
O2—N3—C5—C1178.8 (3)O6—N9—C29—C25178.5 (3)
O1—N3—C5—C11.9 (5)O5—N9—C29—C250.3 (5)
C1—N1—C6—C1125.8 (7)C25—N7—C30—C31169.7 (4)
C1—N1—C6—C7157.6 (4)C25—N7—C30—C359.7 (6)
C11—C6—C7—C80.6 (6)C35—C30—C31—C320.0 (5)
N1—C6—C7—C8177.5 (3)N7—C30—C31—C32179.5 (3)
C6—C7—C8—C90.2 (6)C30—C31—C32—C331.3 (6)
C7—C8—C9—C100.1 (5)C31—C32—C33—C341.7 (5)
C7—C8—C9—C12179.0 (3)C31—C32—C33—C36177.7 (3)
C8—C9—C10—C110.0 (5)C32—C33—C34—C350.9 (5)
C12—C9—C10—C11179.2 (3)C36—C33—C34—C35178.5 (3)
C9—C10—C11—C60.5 (6)C31—C30—C35—C340.8 (5)
C7—C6—C11—C100.8 (5)N7—C30—C35—C34178.7 (3)
N1—C6—C11—C10177.3 (3)C33—C34—C35—C300.3 (5)
C18—N4—C13—N52.2 (6)C38—N11—C37—N10176.4 (4)
C18—N4—C13—C17176.0 (3)C38—N11—C37—C413.6 (6)
C14—N5—C13—N4179.0 (3)C42—N10—C37—N110.9 (6)
C14—N5—C13—C170.7 (6)C42—N10—C37—C41179.1 (4)
C13—N5—C14—C150.2 (6)C37—N11—C38—C391.0 (6)
N5—C14—C15—C160.5 (6)N11—C38—C39—C401.2 (6)
C14—C15—C16—C171.4 (6)C38—C39—C40—C410.6 (6)
C15—C16—C17—C131.9 (6)C39—C40—C41—C372.1 (6)
C15—C16—C17—N6176.8 (4)C39—C40—C41—N12176.3 (3)
N4—C13—C17—C16179.8 (3)N11—C37—C41—C404.2 (6)
N5—C13—C17—C161.6 (6)N10—C37—C41—C40175.8 (3)
N4—C13—C17—N61.2 (6)N11—C37—C41—N12174.0 (3)
N5—C13—C17—N6177.0 (3)N10—C37—C41—N126.0 (6)
O4—N6—C17—C160.6 (5)O8—N12—C41—C402.9 (5)
O3—N6—C17—C16179.9 (3)O7—N12—C41—C40176.1 (3)
O4—N6—C17—C13178.0 (3)O8—N12—C41—C37178.8 (3)
O3—N6—C17—C131.3 (5)O7—N12—C41—C372.1 (5)
C13—N4—C18—C19153.3 (4)C37—N10—C42—C473.7 (7)
C13—N4—C18—C2329.0 (6)C37—N10—C42—C43176.3 (4)
C23—C18—C19—C200.3 (6)C47—C42—C43—C440.7 (6)
N4—C18—C19—C20178.1 (3)N10—C42—C43—C44179.3 (3)
C18—C19—C20—C211.0 (6)C42—C43—C44—C450.2 (6)
C19—C20—C21—C221.5 (5)C43—C44—C45—C460.4 (5)
C19—C20—C21—C24177.6 (3)C43—C44—C45—C48178.2 (3)
C20—C21—C22—C230.6 (5)C44—C45—C46—C470.5 (5)
C24—C21—C22—C23178.5 (3)C48—C45—C46—C47178.0 (3)
C21—C22—C23—C180.6 (5)C45—C46—C47—C420.0 (6)
C19—C18—C23—C221.1 (5)C43—C42—C47—C460.6 (5)
N4—C18—C23—C22178.7 (3)N10—C42—C47—C46179.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.88 (2)1.93 (2)2.632 (4)135 (3)
N4—H4N···O30.88 (2)1.92 (3)2.630 (4)137 (4)
N7—H7N···O50.88 (2)1.92 (3)2.622 (4)136 (4)
N10—H10N···O70.89 (2)1.96 (2)2.636 (4)132 (3)
C31—H31···O1i0.952.503.444 (4)173
C28—H28···O2ii0.952.593.414 (4)145
C4—H4···O6iii0.952.553.440 (4)157
C7—H7···O5iv0.952.383.331 (4)174
C43—H43···O3ii0.952.493.436 (4)172
C40—H40···O4v0.952.643.489 (5)149
C19—H19···O7iii0.952.423.364 (4)176
C16—H16···O8vi0.952.523.398 (4)153
N3—O3···Cg(N5,C13–C17)vii1.24 (1)3.55 (1)3.449 (3)75 (1)
N6—O4···Cg(N2,C1–C5)viii1.24 (1)3.46 (1)3.469 (3)80 (1)
C36—H36C···Cg(C42–C47)ix0.982.723.698 (4)174
C48—H48B···Cg(C30–C35)x0.982.953.868 (4)156
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z1; (iii) x, y, z+1; (iv) x1, y, z+1; (v) x1, y, z1; (vi) x+1, y, z+1; (vii) x+1, y1/2, z+2; (viii) x+1, y+1/2, z+2; (ix) x+2, y1/2, z+1; (x) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.881 (19)1.93 (2)2.632 (4)135 (3)
N4—H4N···O30.88 (2)1.92 (3)2.630 (4)137 (4)
N7—H7N···O50.88 (2)1.92 (3)2.622 (4)136 (4)
N10—H10N···O70.89 (2)1.96 (2)2.636 (4)132 (3)
C31—H31···O1i0.952.503.444 (4)173
C28—H28···O2ii0.952.593.414 (4)145
C4—H4···O6iii0.952.553.440 (4)157
C7—H7···O5iv0.952.383.331 (4)174
C43—H43···O3ii0.952.493.436 (4)172
C40—H40···O4v0.952.643.489 (5)149
C19—H19···O7iii0.952.423.364 (4)176
C16—H16···O8vi0.952.523.398 (4)153
N3—O3···Cg(N5,C13–C17)vii1.239 (4)3.551 (3)3.449 (3)75.19 (17)
N6—O4···Cg(N2,C1–C5)viii1.238 (4)3.463 (3)3.469 (3)79.99 (18)
C36—H36C···Cg(C42–C47)ix0.982.723.698 (4)174
C48—H48B···Cg(C30–C35)x0.982.953.868 (4)156
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z1; (iii) x, y, z+1; (iv) x1, y, z+1; (v) x1, y, z1; (vi) x+1, y, z+1; (vii) x+1, y1/2, z+2; (viii) x+1, y+1/2, z+2; (ix) x+2, y1/2, z+1; (x) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H11N3O2
Mr229.24
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)11.4079 (6), 13.1968 (8), 14.3681 (7)
β (°) 96.387 (5)
V3)2149.7 (2)
Z8
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.20 × 0.20 × 0.04
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.206, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24994, 4623, 3633
Rint0.064
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.01
No. of reflections4623
No. of parameters629
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

Intensity data were provided by the University of Malaya Crystallographic Laboratory. This research is supported by the University of Malaya Research Grant Scheme (RG125/AFC10R).

References

First citationAbdullah, Z. (2005). Int. J. Chem. Sci. 3, 9–15.  CAS Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationAkhmad Aznan, A. M., Fairuz, Z. A., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 295–302.  CAS Google Scholar
First citationArman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. 228, 289–294.  Web of Science CSD CrossRef CAS Google Scholar
First citationArora, K. K. & Zaworotko, M. J. (2009). Polymorphism in Pharmaceutical Solids, Vol. 2, edited by H. G. Brittain, p. 281. London: Informa Healthcare.  Google Scholar
First citationAznan Akhmad, M. A., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCao, S.-L., Zhao, J., Zhang, N., Wang, Y., Jiang, Y.-Y. & Feng, Y.-P. (2011). J. Chem. Crystallogr. 41, 1456–1460.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23–32.  Web of Science CrossRef CAS Google Scholar
First citationMcWilliam, S. A., Skakle, J. M. S., Wardell, J. L., Low, J. N. & Glidewell, C. (2001). Acta Cryst. C57, 946–948.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShattock, T., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVishweshwar, P., McMahon, J. A., Oliveira, M., Peterson, M. L. & Zaworotko, M. J. (2005). J. Am. Chem. Soc. 127, 16802–16803.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds