organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2,6-bis­­(4-bromo­phen­yl)-1-iso­cyano-4-oxo­cyclo­hexa­ne­carboxyl­ate

aCollege of Agricultural Sciences, Jilin University, Changchun, Jilin Province 130062, People's Republic of China, and bCollege of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang Province 163319, People's Republic of China
*Correspondence e-mail: lijingroea@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 June 2014; accepted 30 June 2014; online 5 July 2014)

In the title compound, C22H19Br2NO3, the central oxo­cyclo­hexane ring is in a twist-boat conformation; all the substituents (one eth­oxy­carbonyl and two aryl groups) are located in equatorial orientations. One of the –CH2– groups and the opposite –CH– group bearing a bromo­benzene substituent form the flagpoles of the twist-boat. The dihedral angle between the aromatic rings is 76.4 (4)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into C(5) chains propagating in the [010] direction. A short Br⋯O contact of 3.254 (4) Å is observed.

Keywords: crystal structure.

Related literature

For further details of the synthesis, see: Tan et al. (2009[Tan, J., Xu, X., Zhang, L., Li, Y. & Liu, Q. (2009). Angew. Chem. Int. Ed. 48, 2868-2872.]); Zhang et al. (2010[Zhang, D. W., Xu, X. X. & Liu, Q. (2010). Synlett, 6, 917-920.]). For more [5 + 1] annulation reactions, see: Bi et al. (2005[Bi, X., Dong, D., Li, Y., Liu, Q. & Zhang, Q. (2005). J. Org. Chem. 70, 10886-10889.]); Dong et al. (2005[Dong, D., Bi, X., Liu, Q. & Cong, F. (2005). Chem. Commun. pp. 3580-3582.]); Hu et al. (2008[Hu, J., Zhang, Q., Yuan, H. & Liu, Q. (2008). J. Org. Chem. 73, 2442-2445.]); Zhao et al. (2006[Zhao, L., Liang, F., Bi, X., Sun, S. & Liu, Q. (2006). J. Org. Chem. 71, 1094-1098.]); Fu et al. (2009[Fu, Z., Wang, M., Dong, Y., Liu, J. & Liu, Q. (2009). J. Org. Chem. 74, 6105-6110.]); Xu et al. (2012[Xu, X., Liu, Y. & Park, C. M. (2012). Angew. Chem. Int. Ed. 51, 9372-9376.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19Br2NO3

  • Mr = 505.20

  • Monoclinic, C 2/c

  • a = 21.9920 (17) Å

  • b = 11.0750 (19) Å

  • c = 17.648 (3) Å

  • β = 103.560 (2)°

  • V = 4178.6 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.90 mm−1

  • T = 293 K

  • 0.17 × 0.16 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.557, Tmax = 0.631

  • 10763 measured reflections

  • 3904 independent reflections

  • 2578 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.03

  • 3904 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O3i 0.98 2.58 3.226 (5) 123
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Experimental top

Synthesis and crystallization top

To a mixture of (1E,4E)-1,5-bis­(4-bromo­phenyl)­penta-1,4-dien-3-one (392 mg, 1.0 mmol) and ethyl iso­cyano­acetate (0.132 mL, 1.2 mmol) in DMF (5 ml) was added 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene (DBU) (0.015 mL, 0.1 mmol) in one portion at room temperature. The reaction mixture was stirred at room temperature, and the reaction mixture was monitored by TLC. After the substrate (1E, 4E)-1,5-bis­(4-bromo­phenyl)­penta-1,4-dien-3-one was consumed, the resulting mixture was poured into ice-water (30 ml) under stirring. The precipitated solid was collected by filtration, washed with water (3 × 10 ml), and dried under vacuum to afford the crude product which was purified by flash chromatography (silica gel, petroleum ether : di­ethyl ether = 3:1, v/v) to give the title compound (460 mg, 91%). The material was recrystallized from a mixture of petroleum ether and di­ethyl ether to provide colourless blocks. For further synthesis details, see: Tan et al. (2009); Zhang et al. (2010).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Hydrogen atoms were generated in idealized positions (according to the sp2 or sp3 geometries of their parent carbon), and then refined using a riding model with fixed C—H distances (C—H = 0.95–1.00 Å) and with Uiso(H) = 1.2Ueq(C).

Results and discussion top

Comment

In the process of strategies developing of [5+1] annulation for the construction of six-membered cyclic compounds, we have found that ethyl iso­cyano­acetate is an active carbon nucleophile that can react with di­vinyl ketone through a tandem double Michael-addition cyclization. This one-step annulation can regiospecificly forms highly constrained cyclo­hexane analogues of phenyl­analine (Phe) which are precursors for the synthesis of peptide analogues with controlled fold in the backbone. The constrained ring systems play important roles in restricting torsional angle χ1 and in peptide receptor recognition processes, thus the [5+1] annulation reactions have drew much attentions and both the five-carbon 1,5-bielectrophiles and the one-atom nucleophiles been explored extensively (Bi et al., 2005; Dong et al., 2005; Hu et al., 2008; Zhao et al., 2006; Fu et al., 2009; Xu et al., 2012).

The title compound, a phenyl substituted highly constrained cyclo­hexane analogue of Phe, is one of the products obtained during the study of [5+1] annulation of di­vinyl ketone and iso­cyano­acetate. In the crystal, the central six-member oxo­cyclo­hexane ring adopts a twist-boat conformation (Fig. 1), and all of the ethoxyl carbonyl and two aryl groups are located in equatorial positions. The aryl groups are trans to each other and the dihedral angle between two aromatic rings is 76.45 (4) °. In this molecular, C11 with axial hydrogen and C8 (CH2) are on the flagpole positions of the boat conformation, which give the least torsional strain. C12 and C7 are on one side of the boat conformation, and their equatorial substituents, ethoxyl carbonyl and aryl groups, fit in with the formation boat conformation of this compound.

Related literature top

For further details of the synthesis, see: Tan et al. (2009); Zhang et al. (2010). For more [5 + 1] annulation reactions, see: Bi et al. (2005); Dong et al. (2005); Hu et al. (2008); Zhao et al. (2006); Fu et al. (2009); Xu et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
Ethyl 2,6-bis(4-bromophenyl)-1-isocyano-4-oxocyclohexanecarboxylate top
Crystal data top
C22H19Br2NO3F(000) = 2016
Mr = 505.20Dx = 1.606 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 78 reflections
a = 21.9920 (17) Åθ = 1.3–26.0°
b = 11.0750 (19) ŵ = 3.90 mm1
c = 17.648 (3) ÅT = 293 K
β = 103.560 (2)°BLOCK, colorless
V = 4178.6 (11) Å30.17 × 0.16 × 0.13 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
3904 independent reflections
Radiation source: fine-focus sealed tube2578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2625
Tmin = 0.557, Tmax = 0.631k = 1313
10763 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0466P)2 + 7.9699P]
where P = (Fo2 + 2Fc2)/3
3904 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
C22H19Br2NO3V = 4178.6 (11) Å3
Mr = 505.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.9920 (17) ŵ = 3.90 mm1
b = 11.0750 (19) ÅT = 293 K
c = 17.648 (3) Å0.17 × 0.16 × 0.13 mm
β = 103.560 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2578 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 0.631Rint = 0.026
10763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 1.11 e Å3
3904 reflectionsΔρmin = 0.92 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.01743 (2)0.57808 (4)0.12001 (3)0.06681 (18)
Br10.59543 (3)0.56713 (6)0.49860 (4)0.0979 (2)
O20.30729 (12)0.7231 (2)0.34697 (15)0.0512 (7)
C170.19183 (17)0.6993 (3)0.1672 (2)0.0406 (9)
C110.25738 (17)0.7509 (3)0.1820 (2)0.0401 (8)
H110.25880.81770.21880.048*
N10.30420 (15)0.5508 (3)0.1772 (2)0.0505 (8)
C100.27366 (18)0.8048 (4)0.1094 (2)0.0468 (9)
H10A0.27980.74020.07490.056*
H10B0.23920.85440.08180.056*
C120.30963 (17)0.6605 (3)0.2217 (2)0.0409 (9)
O30.28934 (16)0.5274 (3)0.32118 (18)0.0754 (10)
C130.30092 (17)0.6265 (4)0.3028 (2)0.0453 (9)
C90.33168 (19)0.8799 (4)0.1308 (2)0.0523 (10)
C70.37673 (17)0.7151 (3)0.2243 (2)0.0443 (9)
H70.38930.67990.17940.053*
O10.34440 (16)0.9555 (3)0.08779 (19)0.0795 (10)
C180.16493 (18)0.6331 (4)0.1019 (2)0.0495 (10)
H180.18850.61400.06610.059*
C220.15553 (18)0.7240 (4)0.2200 (2)0.0521 (10)
H220.17310.76660.26530.062*
C40.42738 (17)0.6782 (4)0.2946 (2)0.0470 (9)
C50.4465 (2)0.5596 (4)0.3050 (3)0.0652 (12)
H50.42610.50130.27030.078*
C10.5261 (2)0.6100 (5)0.4171 (3)0.0622 (12)
C190.10326 (19)0.5942 (4)0.0883 (2)0.0512 (10)
H190.08590.54860.04430.061*
C200.06841 (17)0.6234 (3)0.1403 (2)0.0475 (9)
C140.2992 (2)0.7071 (5)0.4265 (2)0.0679 (13)
H14A0.25740.73200.42900.082*
H14B0.30430.62260.44110.082*
C80.37386 (18)0.8521 (4)0.2093 (2)0.0518 (10)
H8A0.35820.89250.24970.062*
H8B0.41560.88240.21120.062*
C210.09395 (19)0.6872 (4)0.2070 (3)0.0584 (11)
H210.07020.70520.24280.070*
C20.5071 (2)0.7263 (5)0.4093 (3)0.0709 (13)
H20.52720.78390.44480.085*
C30.4580 (2)0.7598 (4)0.3488 (3)0.0653 (12)
H30.44530.84010.34460.078*
C160.3003 (3)0.4647 (5)0.1399 (3)0.0748 (14)
C60.4956 (2)0.5251 (5)0.3664 (3)0.0748 (14)
H60.50760.44450.37270.090*
C150.3453 (3)0.7792 (6)0.4799 (3)0.109 (2)
H15A0.34010.76880.53200.163*
H15B0.33980.86280.46550.163*
H15C0.38660.75370.47750.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0384 (2)0.0767 (3)0.0818 (3)0.0098 (2)0.0069 (2)0.0024 (3)
Br10.0605 (4)0.1272 (5)0.0961 (4)0.0137 (3)0.0018 (3)0.0346 (4)
O20.0579 (18)0.0531 (17)0.0452 (16)0.0035 (13)0.0171 (13)0.0031 (13)
C170.038 (2)0.041 (2)0.042 (2)0.0016 (16)0.0067 (16)0.0005 (17)
C110.040 (2)0.036 (2)0.044 (2)0.0041 (16)0.0086 (16)0.0025 (16)
N10.048 (2)0.0387 (19)0.064 (2)0.0000 (15)0.0124 (16)0.0055 (17)
C100.045 (2)0.049 (2)0.046 (2)0.0029 (18)0.0093 (18)0.0037 (18)
C120.039 (2)0.036 (2)0.049 (2)0.0044 (16)0.0121 (17)0.0028 (17)
O30.105 (3)0.0497 (19)0.079 (2)0.0167 (18)0.037 (2)0.0120 (16)
C130.036 (2)0.047 (2)0.054 (2)0.0041 (17)0.0122 (18)0.004 (2)
C90.056 (3)0.048 (2)0.057 (3)0.006 (2)0.021 (2)0.006 (2)
C70.039 (2)0.045 (2)0.052 (2)0.0061 (17)0.0164 (18)0.0018 (18)
O10.076 (2)0.087 (2)0.073 (2)0.0251 (19)0.0141 (17)0.0293 (19)
C180.046 (2)0.055 (2)0.049 (2)0.0012 (19)0.0135 (19)0.002 (2)
C220.046 (2)0.056 (3)0.054 (2)0.0102 (19)0.0110 (19)0.015 (2)
C40.037 (2)0.050 (2)0.059 (3)0.0004 (18)0.0198 (19)0.005 (2)
C50.064 (3)0.055 (3)0.075 (3)0.002 (2)0.012 (2)0.001 (2)
C10.038 (2)0.080 (3)0.068 (3)0.002 (2)0.012 (2)0.014 (3)
C190.046 (2)0.053 (2)0.050 (2)0.0054 (19)0.0004 (19)0.0075 (19)
C200.036 (2)0.047 (2)0.057 (3)0.0054 (17)0.0056 (18)0.0036 (19)
C140.070 (3)0.086 (3)0.050 (3)0.005 (3)0.019 (2)0.010 (2)
C80.044 (2)0.051 (2)0.060 (3)0.0136 (19)0.0130 (19)0.003 (2)
C210.044 (2)0.072 (3)0.063 (3)0.008 (2)0.021 (2)0.010 (2)
C20.049 (3)0.076 (3)0.078 (3)0.005 (2)0.004 (2)0.007 (3)
C30.052 (3)0.057 (3)0.079 (3)0.004 (2)0.000 (2)0.001 (2)
C160.079 (4)0.055 (3)0.088 (4)0.002 (3)0.015 (3)0.008 (3)
C60.067 (3)0.062 (3)0.094 (4)0.018 (3)0.015 (3)0.017 (3)
C150.137 (6)0.129 (5)0.063 (3)0.042 (5)0.028 (4)0.023 (3)
Geometric parameters (Å, º) top
Br2—C201.904 (4)C22—C211.381 (5)
Br1—C11.896 (4)C22—H220.9300
O2—C131.312 (5)C4—C31.373 (6)
O2—C141.466 (5)C4—C51.378 (6)
C17—C181.378 (5)C5—C61.392 (7)
C17—C221.388 (5)C5—H50.9300
C17—C111.515 (5)C1—C21.351 (7)
C11—C101.530 (5)C1—C61.361 (7)
C11—C121.560 (5)C19—C201.365 (5)
C11—H110.9800C19—H190.9300
N1—C161.150 (5)C20—C211.375 (5)
N1—C121.437 (5)C14—C151.451 (7)
C10—C91.495 (5)C14—H14A0.9700
C10—H10A0.9700C14—H14B0.9700
C10—H10B0.9700C8—H8A0.9700
C12—C131.534 (5)C8—H8B0.9700
C12—C71.585 (5)C21—H210.9300
O3—C131.190 (5)C2—C31.380 (6)
C9—O11.206 (4)C2—H20.9300
C9—C81.507 (6)C3—H30.9300
C7—C41.516 (5)C6—H60.9300
C7—C81.539 (5)C15—H15A0.9600
C7—H70.9800C15—H15B0.9600
C18—C191.389 (5)C15—H15C0.9600
C18—H180.9300
C13—O2—C14116.8 (3)C5—C4—C7120.6 (4)
C18—C17—C22117.7 (3)C4—C5—C6121.5 (5)
C18—C17—C11123.3 (3)C4—C5—H5119.2
C22—C17—C11118.9 (3)C6—C5—H5119.2
C17—C11—C10113.7 (3)C2—C1—C6120.0 (4)
C17—C11—C12114.0 (3)C2—C1—Br1119.3 (4)
C10—C11—C12109.5 (3)C6—C1—Br1120.6 (4)
C17—C11—H11106.3C20—C19—C18119.4 (4)
C10—C11—H11106.3C20—C19—H19120.3
C12—C11—H11106.3C18—C19—H19120.3
C16—N1—C12178.1 (4)C19—C20—C21121.1 (4)
C9—C10—C11111.1 (3)C19—C20—Br2119.9 (3)
C9—C10—H10A109.4C21—C20—Br2119.0 (3)
C11—C10—H10A109.4C15—C14—O2109.4 (4)
C9—C10—H10B109.4C15—C14—H14A109.8
C11—C10—H10B109.4O2—C14—H14A109.8
H10A—C10—H10B108.0C15—C14—H14B109.8
N1—C12—C13106.9 (3)O2—C14—H14B109.8
N1—C12—C11109.8 (3)H14A—C14—H14B108.2
C13—C12—C11109.6 (3)C9—C8—C7110.5 (3)
N1—C12—C7107.2 (3)C9—C8—H8A109.5
C13—C12—C7112.7 (3)C7—C8—H8A109.5
C11—C12—C7110.6 (3)C9—C8—H8B109.5
O3—C13—O2126.2 (4)C7—C8—H8B109.5
O3—C13—C12124.2 (4)H8A—C8—H8B108.1
O2—C13—C12109.6 (3)C20—C21—C22118.8 (4)
O1—C9—C10122.5 (4)C20—C21—H21120.6
O1—C9—C8122.4 (4)C22—C21—H21120.6
C10—C9—C8115.0 (3)C1—C2—C3120.1 (5)
C4—C7—C8113.6 (3)C1—C2—H2119.9
C4—C7—C12114.9 (3)C3—C2—H2119.9
C8—C7—C12111.8 (3)C4—C3—C2122.0 (4)
C4—C7—H7105.2C4—C3—H3119.0
C8—C7—H7105.2C2—C3—H3119.0
C12—C7—H7105.2C1—C6—C5119.6 (5)
C17—C18—C19121.3 (4)C1—C6—H6120.2
C17—C18—H18119.4C5—C6—H6120.2
C19—C18—H18119.4C14—C15—H15A109.5
C21—C22—C17121.8 (4)C14—C15—H15B109.5
C21—C22—H22119.1H15A—C15—H15B109.5
C17—C22—H22119.1C14—C15—H15C109.5
C3—C4—C5116.7 (4)H15A—C15—H15C109.5
C3—C4—C7122.6 (4)H15B—C15—H15C109.5
C18—C17—C11—C1041.2 (5)C11—C12—C7—C816.0 (4)
C22—C17—C11—C10135.7 (4)C22—C17—C18—C191.2 (6)
C18—C17—C11—C1285.3 (4)C11—C17—C18—C19175.8 (4)
C22—C17—C11—C1297.8 (4)C18—C17—C22—C211.9 (6)
C17—C11—C10—C9166.2 (3)C11—C17—C22—C21175.2 (4)
C12—C11—C10—C965.0 (4)C8—C7—C4—C313.6 (5)
C16—N1—C12—C13174 (100)C12—C7—C4—C3116.9 (4)
C16—N1—C12—C1167 (14)C8—C7—C4—C5163.9 (4)
C16—N1—C12—C753 (14)C12—C7—C4—C565.7 (5)
C17—C11—C12—N154.1 (4)C3—C4—C5—C61.7 (7)
C10—C11—C12—N174.6 (4)C7—C4—C5—C6175.9 (4)
C17—C11—C12—C1363.0 (4)C17—C18—C19—C200.8 (6)
C10—C11—C12—C13168.3 (3)C18—C19—C20—C212.2 (6)
C17—C11—C12—C7172.1 (3)C18—C19—C20—Br2176.7 (3)
C10—C11—C12—C743.5 (4)C13—O2—C14—C15140.1 (5)
C14—O2—C13—O30.2 (6)O1—C9—C8—C7139.2 (4)
C14—O2—C13—C12178.9 (3)C10—C9—C8—C739.5 (5)
N1—C12—C13—O32.8 (5)C4—C7—C8—C9168.9 (3)
C11—C12—C13—O3116.1 (4)C12—C7—C8—C959.1 (4)
C7—C12—C13—O3120.3 (4)C19—C20—C21—C221.5 (6)
N1—C12—C13—O2178.1 (3)Br2—C20—C21—C22177.4 (3)
C11—C12—C13—O262.9 (4)C17—C22—C21—C200.6 (7)
C7—C12—C13—O260.6 (4)C6—C1—C2—C31.7 (8)
C11—C10—C9—O1159.9 (4)Br1—C1—C2—C3177.9 (4)
C11—C10—C9—C821.4 (5)C5—C4—C3—C22.4 (7)
N1—C12—C7—C493.0 (4)C7—C4—C3—C2175.2 (4)
C13—C12—C7—C424.3 (4)C1—C2—C3—C40.7 (8)
C11—C12—C7—C4147.3 (3)C2—C1—C6—C52.4 (7)
N1—C12—C7—C8135.7 (3)Br1—C1—C6—C5177.3 (4)
C13—C12—C7—C8107.0 (4)C4—C5—C6—C10.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.982.583.226 (5)123
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.982.583.226 (5)123
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support of this research by the Science and Technology Development Program Foundation of Jilin Province (No. 20140204022NY), the Inter­disciplinary Innovation Fund of Jilin University (No. 450060481143) and the PhD Fund of Jilin University (No. 20140402) is gratefully acknowledged

References

First citationBi, X., Dong, D., Li, Y., Liu, Q. & Zhang, Q. (2005). J. Org. Chem. 70, 10886–10889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, D., Bi, X., Liu, Q. & Cong, F. (2005). Chem. Commun. pp. 3580–3582.  Web of Science CrossRef Google Scholar
First citationFu, Z., Wang, M., Dong, Y., Liu, J. & Liu, Q. (2009). J. Org. Chem. 74, 6105–6110.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, J., Zhang, Q., Yuan, H. & Liu, Q. (2008). J. Org. Chem. 73, 2442–2445.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, J., Xu, X., Zhang, L., Li, Y. & Liu, Q. (2009). Angew. Chem. Int. Ed. 48, 2868–2872.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, X., Liu, Y. & Park, C. M. (2012). Angew. Chem. Int. Ed. 51, 9372–9376.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, D. W., Xu, X. X. & Liu, Q. (2010). Synlett, 6, 917–920.  Google Scholar
First citationZhao, L., Liang, F., Bi, X., Sun, S. & Liu, Q. (2006). J. Org. Chem. 71, 1094–1098.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds