organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Allyl­ammonium hydrogen oxalate hemihydrate

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: eismont@uni.opole.pl

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 June 2014; accepted 27 June 2014; online 5 July 2014)

In the title hydrated mol­ecular salt, C3H8N+·C2HO4·0.5H2O, the water O atom lies on a crystallographic twofold axis. The C=C—C—N torsion angle in the cation is 2.8 (3)° and the dihedral angle between the CO2 and CO2H planes in the anion is 1.0 (4)°. In the crystal, the hydrogen oxalate ions are linked by O—H⋯O hydrogen bonds, generating [010] chains. The allyl­ammonium cations bond to the chains through N—H⋯O and N—H⋯(O,O) hydrogen bonds. The water mol­ecule accepts two N—H⋯O hydrogen bonds and makes two O—H⋯O hydrogen bonds. Together, the hydrogen bonds generate (100) sheets.

Keywords: crystal structure.

Related literature

For the crystal structures of oxalic acid salts with aliphatic amines, see: Ejsmont (2006[Ejsmont, K. (2006). Acta Cryst. E62, o5852-o5854.]), (2007[Ejsmont, K. (2007). Acta Cryst. E63, o107-o109.]); Ejsmont & Zaleski (2006a[Ejsmont, K. & Zaleski, J. (2006a). Acta Cryst. E62, o2512-o2513.],b[Ejsmont, K. & Zaleski, J. (2006b). Acta Cryst. E62, o3879-o3880.]); Vaidhyanathan et al. (2001[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699-706.], 2002[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123-133.]); MacDonald et al. (2001[MacDonald, J. C., Doeewstein, C. P. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29-38.]) For information on the Cambridge Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C3H8N+·C2HO4·0.5H2O

  • Mr = 156.14

  • Monoclinic, C 2/c

  • a = 21.578 (3) Å

  • b = 5.6521 (4) Å

  • c = 13.8629 (17) Å

  • β = 118.415 (17)°

  • V = 1487.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.33 × 0.18 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • 4525 measured reflections

  • 1376 independent reflections

  • 958 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.098

  • S = 0.90

  • 1376 reflections

  • 136 parameters

  • All H-atom parameters refined

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O9 0.98 (3) 1.86 (3) 2.825 (2) 169 (2)
N1—H1A⋯O11 0.98 (3) 1.82 (3) 2.769 (2) 161 (2)
N1—H1C⋯O8i 0.91 (3) 2.19 (3) 3.014 (2) 151 (2)
N1—H1C⋯O10i 0.91 (3) 2.16 (3) 2.853 (2) 132 (2)
O7—H7⋯O10ii 0.94 (3) 1.62 (3) 2.5563 (19) 179 (4)
O11—H11⋯O9iii 0.88 (3) 1.86 (3) 2.739 (2) 176 (3)
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+1, y+1, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxalic acid, together with its anions, is one of the best building blocks for the construction of supramolecular structures based on hydrogen bonds. The adducts of oxalic acid and aliphatic amines have been examined by single-crystal X-ray diffraction and other techniques. Three types of characteristic structural motifs are present: (i) linear chains of dicarboxylic acids formed by strong hydrogen bonds; (ii) dimers of dicarboxylic acid molecules; (iii) isolated oxalate monoanions or dianion units (MacDonald et al., 2001; Vaidhyanathan et al., 2001, 2002); Ejsmont, 2006, 2007; Ejsmont & Zaleski 2006a, 2006b).

The crystal structure of the title salt, (I), consists of allyloammonium cations, hydrogen oxalate anions and water molecules (Fig. 1). A search of the Cambridge Structural Database (CSD; CONQUEST Version 1.16; Allen, 2002) afforded that the geometrical parameters of the allyloammonium cation (Table 1) compare well with those found in other crystal structures which include this cation (Allen, 2002). The oxalate monoanions are nearly planar and are connected to each other by strong O—H···O hydrogen bonds along the b axis. The allyloammonium cations form N—H···O H atoms bonds to the anions and water molecules (Fig. 2 and Table 2).

Related literature top

For the crystal structures of oxalic acid salts with aliphatic amines, see: Ejsmont (2006), (2007); Ejsmont & Zaleski (2006a,b); Vaidhyanathan et al. (2001, 2002); MacDonald et al. (2001) For information on the Cambridge Database, see: Allen (2002).

Experimental top

Colourless prisms of (I) were grown at room temperature by slow evaporation of an aqueous solution of allylamine and oxalic acid in a 1:1 stoichiometric ratio.

Refinement top

All H atoms were positioned geometrically and their parameters are refined independently.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis, showing the intermolecular hydrogen-bonding scheme (dashed lines).
Allylammonium hydrogen oxalate hemihydrate top
Crystal data top
C3H8N+·C2HO4·0.5H2OF(000) = 664
Mr = 156.14Dx = 1.395 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4525 reflections
a = 21.578 (3) Åθ = 3.3–25.5°
b = 5.6521 (4) ŵ = 0.12 mm1
c = 13.8629 (17) ÅT = 100 K
β = 118.415 (17)°Prism, colourless
V = 1487.0 (3) Å30.33 × 0.18 × 0.14 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer
958 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.5°, θmin = 3.3°
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1h = 2626
ω–scank = 65
4525 measured reflectionsl = 1616
1376 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098All H-atom parameters refined
S = 0.90 w = 1/[σ2(Fo2) + (0.0628P)2]
where P = (Fo2 + 2Fc2)/3
1376 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C3H8N+·C2HO4·0.5H2OV = 1487.0 (3) Å3
Mr = 156.14Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.578 (3) ŵ = 0.12 mm1
b = 5.6521 (4) ÅT = 100 K
c = 13.8629 (17) Å0.33 × 0.18 × 0.14 mm
β = 118.415 (17)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
958 reflections with I > 2σ(I)
4525 measured reflectionsRint = 0.045
1376 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.098All H-atom parameters refined
S = 0.90Δρmax = 0.26 e Å3
1376 reflectionsΔρmin = 0.27 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.40092 (10)0.2394 (3)0.23240 (15)0.0196 (4)
H1A0.4411 (13)0.348 (4)0.2556 (19)0.033 (6)*
H1B0.4018 (14)0.132 (5)0.177 (2)0.050 (8)*
H1C0.4052 (14)0.154 (5)0.291 (2)0.046 (8)*
C20.33560 (12)0.3802 (4)0.18227 (19)0.0231 (5)
H2A0.3367 (11)0.466 (4)0.1271 (18)0.021 (5)*
H2B0.3376 (12)0.486 (4)0.233 (2)0.032 (6)*
C30.27053 (13)0.2364 (4)0.13940 (19)0.0284 (5)
H30.2311 (12)0.325 (4)0.1035 (18)0.026 (6)*
C40.26561 (15)0.0080 (5)0.1452 (2)0.0327 (6)
H4A0.2203 (14)0.075 (4)0.111 (2)0.042 (7)*
H4B0.3053 (13)0.085 (4)0.1769 (19)0.028 (6)*
C50.41682 (10)0.1591 (3)0.03835 (16)0.0167 (5)
C60.41572 (10)0.0892 (3)0.00740 (16)0.0177 (5)
O70.41788 (8)0.3311 (2)0.02573 (11)0.0211 (4)
H70.4173 (16)0.482 (6)0.002 (3)0.077 (10)*
O80.41599 (8)0.1838 (2)0.12581 (11)0.0228 (4)
O90.41549 (8)0.1043 (2)0.09658 (11)0.0231 (4)
O100.41539 (8)0.2570 (2)0.05214 (11)0.0221 (4)
O110.50000.5720 (4)0.25000.0199 (5)
H110.5269 (14)0.672 (5)0.302 (2)0.055 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0289 (11)0.0222 (10)0.0119 (8)0.0017 (8)0.0133 (8)0.0000 (8)
C20.0356 (13)0.0234 (12)0.0166 (11)0.0039 (10)0.0175 (10)0.0007 (10)
C30.0273 (14)0.0331 (14)0.0255 (12)0.0051 (11)0.0132 (11)0.0020 (10)
C40.0290 (14)0.0362 (15)0.0294 (13)0.0024 (12)0.0110 (11)0.0021 (12)
C50.0189 (11)0.0201 (10)0.0113 (10)0.0001 (8)0.0073 (8)0.0027 (8)
C60.0202 (11)0.0194 (10)0.0136 (10)0.0009 (8)0.0082 (9)0.0002 (8)
O70.0383 (9)0.0158 (7)0.0148 (7)0.0003 (7)0.0172 (7)0.0003 (6)
O80.0394 (9)0.0224 (8)0.0128 (7)0.0011 (6)0.0173 (7)0.0005 (6)
O90.0416 (9)0.0222 (8)0.0145 (8)0.0049 (6)0.0206 (7)0.0037 (6)
O100.0395 (9)0.0172 (7)0.0148 (7)0.0003 (6)0.0170 (7)0.0014 (6)
O110.0283 (12)0.0207 (11)0.0119 (10)0.0000.0107 (9)0.000
Geometric parameters (Å, º) top
N1—C21.473 (3)C4—H4A0.98 (3)
N1—H1A0.98 (3)C4—H4B0.92 (2)
N1—H1B0.98 (3)C5—O81.212 (2)
N1—H1C0.91 (3)C5—O71.309 (2)
C2—C31.480 (3)C5—C61.545 (3)
C2—H2A0.92 (2)C6—O91.242 (2)
C2—H2B0.91 (2)C6—O101.255 (2)
C3—C41.301 (3)O7—H70.94 (3)
C3—H30.91 (2)O11—H110.88 (3)
C2—N1—H1A108.3 (13)C4—C3—H3120.1 (14)
C2—N1—H1B109.5 (15)C2—C3—H3112.3 (14)
H1A—N1—H1B108 (2)C3—C4—H4A122.4 (14)
C2—N1—H1C112.2 (17)C3—C4—H4B120.8 (14)
H1A—N1—H1C110 (2)H4A—C4—H4B116.6 (19)
H1B—N1—H1C109 (2)O8—C5—O7125.49 (18)
N1—C2—C3113.87 (18)O8—C5—C6121.27 (17)
N1—C2—H2A106.4 (13)O7—C5—C6113.24 (15)
C3—C2—H2A110.6 (13)O9—C6—O10126.98 (18)
N1—C2—H2B108.0 (14)O9—C6—C5118.63 (16)
C3—C2—H2B111.1 (15)O10—C6—C5114.39 (16)
H2A—C2—H2B106.5 (19)C5—O7—H7113.9 (19)
C4—C3—C2127.6 (2)
N1—C2—C3—C42.8 (3)O8—C5—C6—O101.4 (3)
O8—C5—C6—O9178.8 (2)O7—C5—C6—O10179.34 (17)
O7—C5—C6—O90.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O90.98 (3)1.86 (3)2.825 (2)169 (2)
N1—H1A···O110.98 (3)1.82 (3)2.769 (2)161 (2)
N1—H1C···O8i0.91 (3)2.19 (3)3.014 (2)151 (2)
N1—H1C···O10i0.91 (3)2.16 (3)2.853 (2)132 (2)
O7—H7···O10ii0.94 (3)1.62 (3)2.5563 (19)179 (4)
O11—H11···O9iii0.88 (3)1.86 (3)2.739 (2)176 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O90.98 (3)1.86 (3)2.825 (2)169 (2)
N1—H1A···O110.98 (3)1.82 (3)2.769 (2)161 (2)
N1—H1C···O8i0.91 (3)2.19 (3)3.014 (2)151 (2)
N1—H1C···O10i0.91 (3)2.16 (3)2.853 (2)132 (2)
O7—H7···O10ii0.94 (3)1.62 (3)2.5563 (19)179 (4)
O11—H11···O9iii0.88 (3)1.86 (3)2.739 (2)176 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x+1, y+1, z+1/2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEjsmont, K. (2006). Acta Cryst. E62, o5852–o5854.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEjsmont, K. (2007). Acta Cryst. E63, o107–o109.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEjsmont, K. & Zaleski, J. (2006a). Acta Cryst. E62, o2512–o2513.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEjsmont, K. & Zaleski, J. (2006b). Acta Cryst. E62, o3879–o3880.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacDonald, J. C., Doeewstein, C. P. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699–706.  Web of Science CSD CrossRef Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds