organic compounds
Allylammonium hydrogen oxalate hemihydrate
aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: eismont@uni.opole.pl
In the title hydrated molecular salt, C3H8N+·C2HO4−·0.5H2O, the water O atom lies on a crystallographic twofold axis. The C=C—C—N torsion angle in the cation is 2.8 (3)° and the dihedral angle between the CO2 and CO2H planes in the anion is 1.0 (4)°. In the crystal, the hydrogen oxalate ions are linked by O—H⋯O hydrogen bonds, generating [010] chains. The allylammonium cations bond to the chains through N—H⋯O and N—H⋯(O,O) hydrogen bonds. The water molecule accepts two N—H⋯O hydrogen bonds and makes two O—H⋯O hydrogen bonds. Together, the hydrogen bonds generate (100) sheets.
Keywords: crystal structure.
CCDC reference: 1010915
Related literature
For the crystal structures of oxalic acid salts with aliphatic ), (2007); Ejsmont & Zaleski (2006a,b); Vaidhyanathan et al. (2001, 2002); MacDonald et al. (2001) For information on the Cambridge Database, see: Allen (2002).
see: Ejsmont (2006Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1010915
10.1107/S1600536814015190/hb7243sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814015190/hb7243Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814015190/hb7243Isup3.cml
Colourless prisms of (I) were grown at room temperature by slow evaporation of an aqueous solution of allylamine and oxalic acid in a 1:1 stoichiometric ratio.
All H atoms were positioned geometrically and their parameters are refined independently.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Hydrogen bonds are shown as dotted lines. | |
Fig. 2. The packing diagram of (I), viewed along the b axis, showing the intermolecular hydrogen-bonding scheme (dashed lines). |
C3H8N+·C2HO4−·0.5H2O | F(000) = 664 |
Mr = 156.14 | Dx = 1.395 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 4525 reflections |
a = 21.578 (3) Å | θ = 3.3–25.5° |
b = 5.6521 (4) Å | µ = 0.12 mm−1 |
c = 13.8629 (17) Å | T = 100 K |
β = 118.415 (17)° | Prism, colourless |
V = 1487.0 (3) Å3 | 0.33 × 0.18 × 0.14 mm |
Z = 8 |
Oxford Diffraction Xcalibur diffractometer | 958 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.045 |
Graphite monochromator | θmax = 25.5°, θmin = 3.3° |
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1 | h = −26→26 |
ω–scan | k = −6→5 |
4525 measured reflections | l = −16→16 |
1376 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | All H-atom parameters refined |
S = 0.90 | w = 1/[σ2(Fo2) + (0.0628P)2] where P = (Fo2 + 2Fc2)/3 |
1376 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C3H8N+·C2HO4−·0.5H2O | V = 1487.0 (3) Å3 |
Mr = 156.14 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 21.578 (3) Å | µ = 0.12 mm−1 |
b = 5.6521 (4) Å | T = 100 K |
c = 13.8629 (17) Å | 0.33 × 0.18 × 0.14 mm |
β = 118.415 (17)° |
Oxford Diffraction Xcalibur diffractometer | 958 reflections with I > 2σ(I) |
4525 measured reflections | Rint = 0.045 |
1376 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.098 | All H-atom parameters refined |
S = 0.90 | Δρmax = 0.26 e Å−3 |
1376 reflections | Δρmin = −0.27 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.40092 (10) | 0.2394 (3) | 0.23240 (15) | 0.0196 (4) | |
H1A | 0.4411 (13) | 0.348 (4) | 0.2556 (19) | 0.033 (6)* | |
H1B | 0.4018 (14) | 0.132 (5) | 0.177 (2) | 0.050 (8)* | |
H1C | 0.4052 (14) | 0.154 (5) | 0.291 (2) | 0.046 (8)* | |
C2 | 0.33560 (12) | 0.3802 (4) | 0.18227 (19) | 0.0231 (5) | |
H2A | 0.3367 (11) | 0.466 (4) | 0.1271 (18) | 0.021 (5)* | |
H2B | 0.3376 (12) | 0.486 (4) | 0.233 (2) | 0.032 (6)* | |
C3 | 0.27053 (13) | 0.2364 (4) | 0.13940 (19) | 0.0284 (5) | |
H3 | 0.2311 (12) | 0.325 (4) | 0.1035 (18) | 0.026 (6)* | |
C4 | 0.26561 (15) | 0.0080 (5) | 0.1452 (2) | 0.0327 (6) | |
H4A | 0.2203 (14) | −0.075 (4) | 0.111 (2) | 0.042 (7)* | |
H4B | 0.3053 (13) | −0.085 (4) | 0.1769 (19) | 0.028 (6)* | |
C5 | 0.41682 (10) | 0.1591 (3) | −0.03835 (16) | 0.0167 (5) | |
C6 | 0.41572 (10) | −0.0892 (3) | 0.00740 (16) | 0.0177 (5) | |
O7 | 0.41788 (8) | 0.3311 (2) | 0.02573 (11) | 0.0211 (4) | |
H7 | 0.4173 (16) | 0.482 (6) | −0.002 (3) | 0.077 (10)* | |
O8 | 0.41599 (8) | 0.1838 (2) | −0.12581 (11) | 0.0228 (4) | |
O9 | 0.41549 (8) | −0.1043 (2) | 0.09658 (11) | 0.0231 (4) | |
O10 | 0.41539 (8) | −0.2570 (2) | −0.05214 (11) | 0.0221 (4) | |
O11 | 0.5000 | 0.5720 (4) | 0.2500 | 0.0199 (5) | |
H11 | 0.5269 (14) | 0.672 (5) | 0.302 (2) | 0.055 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0289 (11) | 0.0222 (10) | 0.0119 (8) | −0.0017 (8) | 0.0133 (8) | 0.0000 (8) |
C2 | 0.0356 (13) | 0.0234 (12) | 0.0166 (11) | 0.0039 (10) | 0.0175 (10) | 0.0007 (10) |
C3 | 0.0273 (14) | 0.0331 (14) | 0.0255 (12) | 0.0051 (11) | 0.0132 (11) | 0.0020 (10) |
C4 | 0.0290 (14) | 0.0362 (15) | 0.0294 (13) | −0.0024 (12) | 0.0110 (11) | 0.0021 (12) |
C5 | 0.0189 (11) | 0.0201 (10) | 0.0113 (10) | −0.0001 (8) | 0.0073 (8) | −0.0027 (8) |
C6 | 0.0202 (11) | 0.0194 (10) | 0.0136 (10) | 0.0009 (8) | 0.0082 (9) | −0.0002 (8) |
O7 | 0.0383 (9) | 0.0158 (7) | 0.0148 (7) | −0.0003 (7) | 0.0172 (7) | 0.0003 (6) |
O8 | 0.0394 (9) | 0.0224 (8) | 0.0128 (7) | −0.0011 (6) | 0.0173 (7) | 0.0005 (6) |
O9 | 0.0416 (9) | 0.0222 (8) | 0.0145 (8) | 0.0049 (6) | 0.0206 (7) | 0.0037 (6) |
O10 | 0.0395 (9) | 0.0172 (7) | 0.0148 (7) | −0.0003 (6) | 0.0170 (7) | −0.0014 (6) |
O11 | 0.0283 (12) | 0.0207 (11) | 0.0119 (10) | 0.000 | 0.0107 (9) | 0.000 |
N1—C2 | 1.473 (3) | C4—H4A | 0.98 (3) |
N1—H1A | 0.98 (3) | C4—H4B | 0.92 (2) |
N1—H1B | 0.98 (3) | C5—O8 | 1.212 (2) |
N1—H1C | 0.91 (3) | C5—O7 | 1.309 (2) |
C2—C3 | 1.480 (3) | C5—C6 | 1.545 (3) |
C2—H2A | 0.92 (2) | C6—O9 | 1.242 (2) |
C2—H2B | 0.91 (2) | C6—O10 | 1.255 (2) |
C3—C4 | 1.301 (3) | O7—H7 | 0.94 (3) |
C3—H3 | 0.91 (2) | O11—H11 | 0.88 (3) |
C2—N1—H1A | 108.3 (13) | C4—C3—H3 | 120.1 (14) |
C2—N1—H1B | 109.5 (15) | C2—C3—H3 | 112.3 (14) |
H1A—N1—H1B | 108 (2) | C3—C4—H4A | 122.4 (14) |
C2—N1—H1C | 112.2 (17) | C3—C4—H4B | 120.8 (14) |
H1A—N1—H1C | 110 (2) | H4A—C4—H4B | 116.6 (19) |
H1B—N1—H1C | 109 (2) | O8—C5—O7 | 125.49 (18) |
N1—C2—C3 | 113.87 (18) | O8—C5—C6 | 121.27 (17) |
N1—C2—H2A | 106.4 (13) | O7—C5—C6 | 113.24 (15) |
C3—C2—H2A | 110.6 (13) | O9—C6—O10 | 126.98 (18) |
N1—C2—H2B | 108.0 (14) | O9—C6—C5 | 118.63 (16) |
C3—C2—H2B | 111.1 (15) | O10—C6—C5 | 114.39 (16) |
H2A—C2—H2B | 106.5 (19) | C5—O7—H7 | 113.9 (19) |
C4—C3—C2 | 127.6 (2) | ||
N1—C2—C3—C4 | 2.8 (3) | O8—C5—C6—O10 | 1.4 (3) |
O8—C5—C6—O9 | −178.8 (2) | O7—C5—C6—O10 | −179.34 (17) |
O7—C5—C6—O9 | 0.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O9 | 0.98 (3) | 1.86 (3) | 2.825 (2) | 169 (2) |
N1—H1A···O11 | 0.98 (3) | 1.82 (3) | 2.769 (2) | 161 (2) |
N1—H1C···O8i | 0.91 (3) | 2.19 (3) | 3.014 (2) | 151 (2) |
N1—H1C···O10i | 0.91 (3) | 2.16 (3) | 2.853 (2) | 132 (2) |
O7—H7···O10ii | 0.94 (3) | 1.62 (3) | 2.5563 (19) | 179 (4) |
O11—H11···O9iii | 0.88 (3) | 1.86 (3) | 2.739 (2) | 176 (3) |
Symmetry codes: (i) x, −y, z+1/2; (ii) x, y+1, z; (iii) −x+1, y+1, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O9 | 0.98 (3) | 1.86 (3) | 2.825 (2) | 169 (2) |
N1—H1A···O11 | 0.98 (3) | 1.82 (3) | 2.769 (2) | 161 (2) |
N1—H1C···O8i | 0.91 (3) | 2.19 (3) | 3.014 (2) | 151 (2) |
N1—H1C···O10i | 0.91 (3) | 2.16 (3) | 2.853 (2) | 132 (2) |
O7—H7···O10ii | 0.94 (3) | 1.62 (3) | 2.5563 (19) | 179 (4) |
O11—H11···O9iii | 0.88 (3) | 1.86 (3) | 2.739 (2) | 176 (3) |
Symmetry codes: (i) x, −y, z+1/2; (ii) x, y+1, z; (iii) −x+1, y+1, −z+1/2. |
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ejsmont, K. (2006). Acta Cryst. E62, o5852–o5854. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ejsmont, K. (2007). Acta Cryst. E63, o107–o109. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ejsmont, K. & Zaleski, J. (2006a). Acta Cryst. E62, o2512–o2513. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ejsmont, K. & Zaleski, J. (2006b). Acta Cryst. E62, o3879–o3880. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
MacDonald, J. C., Doeewstein, C. P. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29–38. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699–706. Web of Science CSD CrossRef Google Scholar
Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxalic acid, together with its anions, is one of the best building blocks for the construction of supramolecular structures based on hydrogen bonds. The adducts of oxalic acid and aliphatic amines have been examined by single-crystal X-ray diffraction and other techniques. Three types of characteristic structural motifs are present: (i) linear chains of dicarboxylic acids formed by strong hydrogen bonds; (ii) dimers of dicarboxylic acid molecules; (iii) isolated oxalate monoanions or dianion units (MacDonald et al., 2001; Vaidhyanathan et al., 2001, 2002); Ejsmont, 2006, 2007; Ejsmont & Zaleski 2006a, 2006b).
The crystal structure of the title salt, (I), consists of allyloammonium cations, hydrogen oxalate anions and water molecules (Fig. 1). A search of the Cambridge Structural Database (CSD; CONQUEST Version 1.16; Allen, 2002) afforded that the geometrical parameters of the allyloammonium cation (Table 1) compare well with those found in other crystal structures which include this cation (Allen, 2002). The oxalate monoanions are nearly planar and are connected to each other by strong O—H···O hydrogen bonds along the b axis. The allyloammonium cations form N—H···O H atoms bonds to the anions and water molecules (Fig. 2 and Table 2).