organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o833-o834

1-[3-(Morpholin-4-yl)prop­yl]-3-[(naph­tha­len-2-yl)­oxy]-4-(3-nitro­phen­yl)azeti­din-2-one

aIlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 23 June 2014; accepted 25 June 2014; online 2 July 2014)

In the title compound, C26H27N3O5, the β-lactam (azetidin-2-one) ring is nearly planar [maximum deviation = 0.011 (3) Å]. The mean plane formed by the four C atoms of the morpholine ring, which adopts a chair conformation, the benzene ring and the naphthalene ring system form dihedral angles of 72.85 (17), 87.46 (15) and 65.96 (11)°, respectively, with the β-lactam ring. In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming inversion dimers with R22(8).

Keywords: crystal structure.

Related literature

For general background to β-lactams, see: Mehta et al. (2010[Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541-5560.]); Arumugam et al. (2011[Arumugam, N., Periyasami, G., Raghunathan, R., Kamalraj, S. & Muthumary, J. (2011). Eur. J. Med. Chem. 46, 600-607.]); Myangar & Raval (2012[Myangar, K. N. & Raval, J. P. (2012). Med. Chem. Res. 21, 2762-2771.]); Singh & Sudheesh (2014[Singh, G. S. & Sudheesh, S. (2014). Arkivoc, i, 337-385.]); Abdellaoui & Xu (2014[Abdellaoui, H. & Xu, J. (2014). Tetrahedron, 70, 4323-4330.]); Cheng & Cheng (2007[Cheng, L.-Q. & Cheng, Y. (2007). Tetrahedron, 63, 9359-9364.]); Xiang (2013[Xiang, Z. (2013). Comput. Theor. Chem, 1008, 83-89.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27N3O5

  • Mr = 461.51

  • Triclinic, [P \overline 1]

  • a = 9.7068 (8) Å

  • b = 10.3836 (9) Å

  • c = 14.2041 (11) Å

  • α = 73.739 (6)°

  • β = 75.922 (6)°

  • γ = 63.107 (6)°

  • V = 1214.33 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.51 × 0.39 × 0.25 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.967, Tmax = 0.985

  • 10059 measured reflections

  • 4486 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.176

  • S = 0.95

  • 4486 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.98 2.46 3.229 (4) 135
Symmetry code: (i) -x+2, -y+2, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The β-lactam ring is part of the core structure of most widely used antibiotics such as penicillins, cephalosporins, carbapenems, nocardicins and monobactam. Almost all of these antibiotics work by inhibiting bacterial cell wall biosynthesis (Mehta et al., 2010; Arumugam et al., 2011; Xiang, 2013; Myangar & Raval, 2012; Singh & Sudheesh, 2014). Functionalized β-lactams have attracted continued interests not only for their diverse and antibiotic activity, but also for their utility as versatile synthetic intermediates in organic synthesis as well as many other interesting biological properties (Cheng & Cheng, 2007; Abdellaoui & Xu, 2014). Therefore, there has been renewed interest in the synthesis of such interesting β-lactam based heterocycles with potential applications.

In the title compound (I, Fig. 1), the β-lactam ring (N1/C1–C3) is nearly planar, with the maximum deviations of -0.011 (2) Å for N1 and 0.011 (3) Å for C1 from the mean plane. The β-lactam ring makes dihedral angles of 72.85 (17), 87.46 (15) and 65.96 (11)°, respectively, with the least-squares plane formed by the four C atoms of the morpholine ring (N3/O5/C23–C26), the benzene ring (C14–C19), and the naphthalene ring system (C4–C13).

The morpholine ring adopts a chair conformation with puckering parameters: QT = 0.552 (4) Å, θ = 176.9 (4)° and ϕ = 44 (11)° (Cremer & Pople, 1975).

In the crystal structure, molecules are linked by pairs of weak C—H···O hydrogen bonds, forming inversion dimers, forming R22(8) motifs (Bernstein et al., 1995) along the [001] direction (Table 1, Fig. 2).

Related literature top

For general background to β-lactams, see: Mehta et al. (2010); Arumugam et al. (2011); Myangar & Raval (2012); Singh & Sudheesh (2014); Abdellaoui & Xu (2014); Cheng & Cheng (2007); Xiang (2013). For ring-puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of N-(3-nitrobenzylidene)-3-morpholinopropan-1-amine (1.38 g, 5.00 mmol) and triethylamine (2.53 g, 25.00 mmol), 2-naphthoxyacetic acid (1.54 g, 7.50 mmol) and tosyl chloride (1.43 g, 7.50 mmol) in CH2Cl2 (25 ml) was stirred at room temperature overnight. Then it was washed with HCl 1 M (20 ml), saturated NaHCO3 (20 ml) and brine (20 ml), dried over anhydrous Na2SO4 and the solvent was evaporated to give the crude product which was purified by column chromatography (eluent 10:1 EtOAc/EtOH) as off white crystals (yield 63%). mp: 399 - 401 K. IR (KBr, cm-1): 1759 (CO, β-lactam), 1350, 1527 (NO2). 1H-NMR (CDCl3) δ (p.p.m.): 1.72 (CH2—CH2—CH2–, m, 2H), 2.44 (CH2—CH2—CH2– and CH2—N morpholine ring, m, 6H), 3.02 (CH2—CH2—CH2–, m, 1H), 3.56 (CH2—CH2—CH2– and CH2—O morpholine ring, m, 5H), 5.18 (H-4, d, J = 4.4 Hz, 1H), 5.64 (H-3, d, J = 4.4 Hz, 1H), 8.84 (ArH, d, J = 8.9 Hz, 1H), 7.07 (ArH, s, 1H), 7.31–7.70 (ArH, m, 7H), 8.09 (ArH, d, J = 8.2 Hz, 1H), 8.24 (ArH, s, 1H). 13C-NMR (CDCl3) δ (p.p.m.): 24.4 (CH2—CH2—CH2–), 39.2 (CH2—CH2—CH2–), 53.5 (CH2—N morpholine ring), 56.0 (CH2—CH2—CH2–), 61.4 (C-4), 66.7 (CH2—O morpholine ring), 81.7 (C-3), 108.8, 117.9, 123.4, 123.8, 124.4, 126.6, 126.8, 127.6, 129.3, 129.5, 129.7, 133.8, 134.4, 135.8, 148.1, 154.2 (aromatic carbons), 165.5 (CO, β-lactam). MS m/z = 461 [M+]. Anal. Calcd. for C26H27N3O5: C 67.66, H 5.90, N 9.10%. Found: C 67.74, H 6.02, N 9.13%.

Refinement top

H atoms were positioned geometrically and were refined using a riding model, with C—H = 0.93 - 0.98 Å, and Uiso(H) = 1.2 Ueq(C). Reflections (2 2 0), (2 0 2), (3 2 1) and (1 0 3) were omitted due to the large disagreement between Fobs and Fcalc. Due to weak diffracting ability of the crystal the ratio observed/unique reflections is low (47%). The unit cell contains a pair of voids of 44 Å3 about an inversion centre but the residual electron density (highest peak = 0.28 e Å-3 and deepest hole = -0.17 e Å-3) in the difference Fourier map suggests that no solvent molecule occupies this void.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of (I) viewed along the a axis. Only H atoms involved in H bonding are shown.
1-[3-(Morpholin-4-yl)propyl]-3-[(naphthalen-2-yl)oxy]-4-(3-nitrophenyl)azetidin-2-one top
Crystal data top
C26H27N3O5Z = 2
Mr = 461.51F(000) = 488
Triclinic, P1Dx = 1.262 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7068 (8) ÅCell parameters from 9755 reflections
b = 10.3836 (9) Åθ = 1.5–28.8°
c = 14.2041 (11) ŵ = 0.09 mm1
α = 73.739 (6)°T = 296 K
β = 75.922 (6)°Block, light yellow
γ = 63.107 (6)°0.51 × 0.39 × 0.25 mm
V = 1214.33 (19) Å3
Data collection top
Stoe IPDS 2
diffractometer
4486 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2123 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.088
Detector resolution: 6.67 pixels mm-1θmax = 25.5°, θmin = 2.2°
ω scansh = 1111
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.967, Tmax = 0.985l = 1716
10059 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0805P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
4486 reflectionsΔρmax = 0.28 e Å3
307 parametersΔρmin = 0.17 e Å3
Crystal data top
C26H27N3O5γ = 63.107 (6)°
Mr = 461.51V = 1214.33 (19) Å3
Triclinic, P1Z = 2
a = 9.7068 (8) ÅMo Kα radiation
b = 10.3836 (9) ŵ = 0.09 mm1
c = 14.2041 (11) ÅT = 296 K
α = 73.739 (6)°0.51 × 0.39 × 0.25 mm
β = 75.922 (6)°
Data collection top
Stoe IPDS 2
diffractometer
4486 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2123 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.985Rint = 0.088
10059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 0.95Δρmax = 0.28 e Å3
4486 reflectionsΔρmin = 0.17 e Å3
307 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9297 (3)1.1424 (3)0.07366 (17)0.0961 (10)
O20.7976 (2)0.9168 (2)0.21877 (14)0.0753 (8)
O30.8014 (5)1.0509 (4)0.4976 (2)0.1465 (14)
O40.8408 (5)0.8838 (4)0.6243 (2)0.172 (2)
O51.7676 (3)0.5318 (3)0.1356 (2)0.1070 (11)
N11.1173 (3)0.9410 (3)0.16271 (17)0.0677 (10)
N20.8603 (5)0.9237 (5)0.5366 (2)0.1089 (15)
N31.5567 (3)0.7649 (3)0.03474 (17)0.0658 (9)
C10.9845 (4)1.0180 (4)0.1211 (2)0.0716 (11)
C20.9402 (4)0.8877 (4)0.1546 (2)0.0711 (11)
C31.0932 (4)0.8057 (3)0.2041 (2)0.0657 (11)
C40.7483 (4)0.8039 (4)0.2538 (2)0.0679 (11)
C50.6102 (4)0.8383 (4)0.3220 (2)0.0810 (11)
C60.5486 (4)0.7382 (5)0.3597 (2)0.0852 (14)
C70.6183 (4)0.5988 (4)0.3316 (2)0.0779 (13)
C80.5543 (5)0.4935 (6)0.3687 (3)0.0995 (18)
C90.6232 (6)0.3623 (6)0.3379 (4)0.114 (2)
C100.7574 (6)0.3308 (5)0.2710 (3)0.1057 (19)
C110.8243 (5)0.4271 (4)0.2350 (3)0.0871 (16)
C120.7571 (4)0.5656 (4)0.2643 (2)0.0723 (11)
C130.8214 (4)0.6705 (4)0.2268 (2)0.0715 (11)
C141.0772 (3)0.7610 (3)0.3149 (2)0.0618 (10)
C150.9834 (4)0.8625 (3)0.3742 (2)0.0703 (11)
C160.9656 (4)0.8152 (4)0.4753 (2)0.0739 (11)
C171.0402 (5)0.6725 (4)0.5206 (3)0.0847 (15)
C181.1351 (4)0.5718 (4)0.4615 (3)0.0848 (14)
C191.1519 (4)0.6162 (4)0.3600 (2)0.0763 (12)
C201.2491 (4)0.9733 (4)0.1582 (2)0.0791 (14)
C211.4021 (4)0.8613 (4)0.1168 (2)0.0746 (11)
C221.4024 (4)0.8513 (4)0.0131 (2)0.0718 (11)
C231.6225 (4)0.6141 (4)0.0167 (3)0.0847 (14)
C241.7765 (5)0.5274 (4)0.0364 (3)0.1093 (17)
C251.7052 (5)0.6771 (4)0.1862 (3)0.1020 (16)
C261.5468 (4)0.7661 (4)0.1358 (2)0.0847 (13)
H20.945100.845800.099400.0850*
H31.170700.724200.172200.0790*
H50.562000.929300.340800.0970*
H60.458200.761000.405200.1030*
H80.464200.513800.414500.1190*
H90.579500.294100.362100.1370*
H100.803000.241300.250300.1270*
H110.915500.402500.190300.1040*
H130.914100.648300.183400.0860*
H150.932900.961500.346300.0850*
H171.027200.644100.589100.1010*
H181.188000.473600.490100.1020*
H191.215300.546600.321000.0910*
H20A1.256900.976400.224300.0950*
H20B1.231301.070000.117200.0950*
H21A1.485900.887800.117100.0890*
H21B1.422400.765300.159400.0890*
H22A1.332200.807300.014900.0860*
H22B1.362700.950000.026500.0860*
H23A1.551200.569300.022800.1020*
H23B1.635400.611600.082900.1020*
H24A1.850500.566200.036300.1310*
H24B1.814800.425800.001200.1310*
H25A1.696300.678500.253000.1220*
H25B1.775500.722200.190500.1220*
H26A1.507900.866800.172500.1010*
H26B1.474300.725000.134800.1010*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.112 (2)0.0782 (16)0.0649 (14)0.0169 (14)0.0123 (13)0.0032 (12)
O20.0629 (14)0.0846 (15)0.0576 (12)0.0106 (12)0.0013 (10)0.0233 (11)
O30.178 (3)0.114 (2)0.082 (2)0.006 (2)0.015 (2)0.0443 (18)
O40.246 (5)0.162 (3)0.0539 (17)0.057 (3)0.026 (2)0.0303 (17)
O50.124 (2)0.0752 (17)0.0928 (19)0.0129 (15)0.0003 (16)0.0356 (14)
N10.0710 (19)0.0701 (16)0.0528 (14)0.0232 (15)0.0043 (13)0.0197 (12)
N20.136 (3)0.110 (3)0.0547 (19)0.033 (2)0.0065 (18)0.0251 (17)
N30.0670 (17)0.0656 (16)0.0528 (13)0.0176 (12)0.0016 (12)0.0164 (11)
C10.084 (2)0.074 (2)0.0428 (15)0.0215 (19)0.0004 (16)0.0171 (15)
C20.071 (2)0.086 (2)0.0449 (15)0.0215 (17)0.0014 (15)0.0230 (15)
C30.065 (2)0.0658 (19)0.0536 (16)0.0155 (15)0.0038 (14)0.0231 (14)
C40.058 (2)0.084 (2)0.0472 (15)0.0167 (18)0.0084 (14)0.0122 (15)
C50.062 (2)0.092 (2)0.0609 (19)0.0081 (19)0.0021 (16)0.0233 (17)
C60.059 (2)0.115 (3)0.0569 (19)0.020 (2)0.0055 (16)0.0194 (19)
C70.060 (2)0.105 (3)0.0532 (18)0.022 (2)0.0069 (16)0.0142 (18)
C80.080 (3)0.129 (4)0.080 (2)0.040 (3)0.005 (2)0.017 (3)
C90.123 (4)0.126 (4)0.099 (3)0.059 (3)0.021 (3)0.012 (3)
C100.118 (4)0.099 (3)0.093 (3)0.039 (3)0.017 (3)0.016 (2)
C110.085 (3)0.090 (3)0.068 (2)0.019 (2)0.0080 (18)0.0204 (19)
C120.060 (2)0.091 (2)0.0507 (16)0.0171 (18)0.0105 (15)0.0134 (16)
C130.0550 (19)0.087 (2)0.0537 (17)0.0114 (18)0.0009 (14)0.0228 (16)
C140.0565 (18)0.0656 (19)0.0569 (16)0.0184 (15)0.0073 (14)0.0149 (14)
C150.082 (2)0.0648 (19)0.0496 (16)0.0171 (16)0.0044 (15)0.0167 (13)
C160.088 (2)0.081 (2)0.0501 (17)0.0328 (19)0.0065 (16)0.0150 (16)
C170.100 (3)0.096 (3)0.0556 (18)0.043 (2)0.0189 (19)0.0003 (19)
C180.090 (3)0.072 (2)0.082 (2)0.029 (2)0.029 (2)0.0073 (19)
C190.073 (2)0.069 (2)0.075 (2)0.0176 (17)0.0127 (17)0.0144 (16)
C200.092 (3)0.086 (2)0.0628 (19)0.036 (2)0.0025 (17)0.0324 (16)
C210.074 (2)0.097 (2)0.0592 (18)0.0372 (19)0.0003 (16)0.0291 (16)
C220.065 (2)0.086 (2)0.0564 (17)0.0224 (17)0.0041 (15)0.0211 (15)
C230.094 (3)0.076 (2)0.070 (2)0.022 (2)0.0124 (19)0.0149 (17)
C240.108 (3)0.080 (3)0.103 (3)0.003 (2)0.017 (2)0.023 (2)
C250.123 (3)0.085 (3)0.071 (2)0.024 (2)0.013 (2)0.0307 (19)
C260.095 (3)0.082 (2)0.0551 (18)0.0142 (19)0.0082 (17)0.0212 (15)
Geometric parameters (Å, º) top
O1—C11.213 (4)C18—C191.378 (5)
O2—C21.414 (4)C20—C211.516 (5)
O2—C41.384 (4)C21—C221.505 (4)
O3—N21.200 (6)C23—C241.493 (6)
O4—N21.194 (4)C25—C261.510 (6)
O5—C241.419 (5)C2—H20.9800
O5—C251.392 (5)C3—H30.9800
N1—C11.351 (5)C5—H50.9300
N1—C31.464 (4)C6—H60.9300
N1—C201.446 (5)C8—H80.9300
N2—C161.465 (5)C9—H90.9300
N3—C221.463 (5)C10—H100.9300
N3—C231.441 (5)C11—H110.9300
N3—C261.458 (4)C13—H130.9300
C1—C21.519 (6)C15—H150.9300
C2—C31.566 (6)C17—H170.9300
C3—C141.501 (4)C18—H180.9300
C4—C51.411 (5)C19—H190.9300
C4—C131.358 (5)C20—H20A0.9700
C5—C61.349 (6)C20—H20B0.9700
C6—C71.421 (6)C21—H21A0.9700
C7—C81.411 (7)C21—H21B0.9700
C7—C121.409 (5)C22—H22A0.9700
C8—C91.365 (8)C22—H22B0.9700
C9—C101.376 (8)C23—H23A0.9700
C10—C111.350 (7)C23—H23B0.9700
C11—C121.422 (5)C24—H24A0.9700
C12—C131.410 (6)C24—H24B0.9700
C14—C151.380 (4)C25—H25A0.9700
C14—C191.377 (5)C25—H25B0.9700
C15—C161.376 (4)C26—H26A0.9700
C16—C171.362 (5)C26—H26B0.9700
C17—C181.375 (6)
C2—O2—C4117.4 (3)C14—C3—H3112.00
C24—O5—C25110.2 (3)C4—C5—H5120.00
C1—N1—C396.4 (3)C6—C5—H5120.00
C1—N1—C20132.1 (3)C5—C6—H6119.00
C3—N1—C20131.1 (3)C7—C6—H6119.00
O3—N2—O4121.9 (4)C7—C8—H8120.00
O3—N2—C16119.0 (3)C9—C8—H8120.00
O4—N2—C16119.0 (4)C8—C9—H9120.00
C22—N3—C23112.9 (3)C10—C9—H9120.00
C22—N3—C26109.7 (3)C9—C10—H10119.00
C23—N3—C26108.5 (3)C11—C10—H10119.00
O1—C1—N1131.9 (4)C10—C11—H11119.00
O1—C1—C2136.2 (4)C12—C11—H11120.00
N1—C1—C291.9 (3)C4—C13—H13120.00
O2—C2—C1113.2 (3)C12—C13—H13120.00
O2—C2—C3116.9 (2)C14—C15—H15121.00
C1—C2—C385.7 (3)C16—C15—H15120.00
N1—C3—C285.9 (2)C16—C17—H17121.00
N1—C3—C14115.7 (3)C18—C17—H17121.00
C2—C3—C14117.7 (3)C17—C18—H18120.00
O2—C4—C5114.0 (3)C19—C18—H18120.00
O2—C4—C13125.1 (3)C14—C19—H19119.00
C5—C4—C13120.9 (4)C18—C19—H19119.00
C4—C5—C6119.6 (4)N1—C20—H20A109.00
C5—C6—C7121.6 (4)N1—C20—H20B109.00
C6—C7—C8122.6 (4)C21—C20—H20A109.00
C6—C7—C12118.1 (4)C21—C20—H20B109.00
C8—C7—C12119.3 (4)H20A—C20—H20B108.00
C7—C8—C9120.6 (5)C20—C21—H21A109.00
C8—C9—C10120.1 (5)C20—C21—H21B109.00
C9—C10—C11121.4 (5)C22—C21—H21A109.00
C10—C11—C12120.9 (4)C22—C21—H21B109.00
C7—C12—C11117.7 (4)H21A—C21—H21B108.00
C7—C12—C13119.6 (3)N3—C22—H22A109.00
C11—C12—C13122.7 (4)N3—C22—H22B109.00
C4—C13—C12120.2 (3)C21—C22—H22A109.00
C3—C14—C15121.1 (3)C21—C22—H22B109.00
C3—C14—C19120.7 (3)H22A—C22—H22B108.00
C15—C14—C19118.2 (3)N3—C23—H23A109.00
C14—C15—C16119.1 (3)N3—C23—H23B109.00
N2—C16—C15118.2 (3)C24—C23—H23A109.00
N2—C16—C17118.8 (3)C24—C23—H23B109.00
C15—C16—C17123.1 (3)H23A—C23—H23B108.00
C16—C17—C18117.8 (4)O5—C24—H24A109.00
C17—C18—C19120.1 (4)O5—C24—H24B109.00
C14—C19—C18121.7 (3)C23—C24—H24A109.00
N1—C20—C21113.1 (3)C23—C24—H24B109.00
C20—C21—C22112.8 (3)H24A—C24—H24B108.00
N3—C22—C21113.6 (3)O5—C25—H25A109.00
N3—C23—C24111.5 (3)O5—C25—H25B109.00
O5—C24—C23112.4 (4)C26—C25—H25A109.00
O5—C25—C26112.0 (3)C26—C25—H25B109.00
N3—C26—C25110.4 (3)H25A—C25—H25B108.00
O2—C2—H2113.00N3—C26—H26A109.00
C1—C2—H2113.00N3—C26—H26B110.00
C3—C2—H2113.00C25—C26—H26A110.00
N1—C3—H3112.00C25—C26—H26B110.00
C2—C3—H3112.00H26A—C26—H26B108.00
C2—O2—C4—C5176.4 (3)C2—C3—C14—C1554.0 (5)
C4—O2—C2—C1179.5 (3)N1—C3—C14—C19136.8 (4)
C4—O2—C2—C382.2 (4)O2—C4—C13—C12177.4 (3)
C2—O2—C4—C134.1 (5)C5—C4—C13—C122.1 (5)
C25—O5—C24—C2355.7 (5)C13—C4—C5—C61.1 (5)
C24—O5—C25—C2656.8 (5)O2—C4—C5—C6178.5 (3)
C20—N1—C1—C2171.6 (3)C4—C5—C6—C70.8 (5)
C3—N1—C1—O1179.9 (4)C5—C6—C7—C121.5 (5)
C20—N1—C1—O16.8 (6)C5—C6—C7—C8178.8 (4)
C3—N1—C20—C2150.6 (4)C12—C7—C8—C91.8 (7)
C20—N1—C3—C1469.3 (4)C8—C7—C12—C13179.9 (4)
C1—N1—C3—C21.7 (2)C6—C7—C8—C9178.5 (4)
C1—N1—C20—C21120.6 (4)C6—C7—C12—C11178.7 (3)
C3—N1—C1—C21.7 (2)C6—C7—C12—C130.4 (5)
C1—N1—C3—C14117.2 (3)C8—C7—C12—C111.5 (5)
C20—N1—C3—C2171.8 (3)C7—C8—C9—C100.8 (8)
O3—N2—C16—C17175.7 (5)C8—C9—C10—C110.5 (8)
O4—N2—C16—C171.2 (8)C9—C10—C11—C120.7 (7)
O3—N2—C16—C154.8 (7)C10—C11—C12—C70.3 (6)
O4—N2—C16—C15178.3 (5)C10—C11—C12—C13178.6 (4)
C26—N3—C22—C21177.8 (3)C7—C12—C13—C41.4 (5)
C23—N3—C26—C2556.2 (4)C11—C12—C13—C4176.9 (4)
C22—N3—C26—C25179.9 (3)C3—C14—C19—C18178.0 (4)
C22—N3—C23—C24177.4 (3)C19—C14—C15—C161.3 (6)
C26—N3—C23—C2455.6 (4)C3—C14—C15—C16176.5 (4)
C23—N3—C22—C2161.1 (4)C15—C14—C19—C180.1 (6)
O1—C1—C2—O262.7 (5)C14—C15—C16—C172.0 (7)
N1—C1—C2—O2119.1 (3)C14—C15—C16—N2177.4 (4)
N1—C1—C2—C31.6 (2)N2—C16—C17—C18178.2 (4)
O1—C1—C2—C3179.8 (4)C15—C16—C17—C181.2 (7)
O2—C2—C3—C141.6 (4)C16—C17—C18—C190.3 (7)
C1—C2—C3—C14115.5 (3)C17—C18—C19—C140.9 (7)
O2—C2—C3—N1115.4 (3)N1—C20—C21—C2260.0 (4)
C1—C2—C3—N11.5 (2)C20—C21—C22—N3169.3 (3)
C2—C3—C14—C19123.8 (4)N3—C23—C24—O556.3 (5)
N1—C3—C14—C1545.4 (5)O5—C25—C26—N358.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.463.229 (4)135
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.463.229 (4)135
Symmetry code: (i) x+2, y+2, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAbdellaoui, H. & Xu, J. (2014). Tetrahedron, 70, 4323–4330.  Web of Science CrossRef CAS Google Scholar
First citationArumugam, N., Periyasami, G., Raghunathan, R., Kamalraj, S. & Muthumary, J. (2011). Eur. J. Med. Chem. 46, 600–607.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCheng, L.-Q. & Cheng, Y. (2007). Tetrahedron, 63, 9359–9364.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541–5560.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMyangar, K. N. & Raval, J. P. (2012). Med. Chem. Res. 21, 2762–2771.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G. S. & Sudheesh, S. (2014). Arkivoc, i, 337–385.  Web of Science CrossRef Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXiang, Z. (2013). Comput. Theor. Chem, 1008, 83–89.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o833-o834
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds