metal-organic compounds
Potassium 4-azidobenzenesulfonate†
aFachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
*Correspondence e-mail: mueller@chemie.uni-marburg.de
In, K+·SO3–p-C6H4–N3−, the conformation angle of the azido group with respect to the benzene ring is 19.1 (3)°, so that the anion is chiral within the In addition, the is also chiral (Sohncke space group). The potassium ion is coordinated by three closer O atoms from three different sulfonyl groups [K⋯O 2.6486 (17) to 2.7787 (17) Å], three more distant O atoms [K⋯O 2.959 (2) to 3.206 (2) Å] and three N atoms at 3.073 (2) to 3.268 (2) Å. The anions are packed into layers perpendicular to b, only O and N atoms being at the surface of the layers. The K+ ions are located between the layers.
Keywords: crystal structure.
CCDC reference: 1012203
Related literature
For the synthesis, see: Biesemeier et al. (2003). For the crystal structures of the same anion with different cations, see: Biesemeier et al. (2004a,b,c).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL2013.
Supporting information
CCDC reference: 1012203
10.1107/S1600536814015669/hp2068sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814015669/hp2068Isup2.hkl
Zur Synthese siehe Biesemeier et al. (2003). Beim letzten Schritt, der Kristallisation von K[O3S–C6H4–N3] aus Methanol, wurden die Kristalle aber nicht durch Abkühlen der Lösung erhalten, sondern durch partielle Verdunstung des Methanols bei Zimmertemperatur. Nach ihren Röntgendiagrammen haben die erhaltenen Kristalle die gleiche Struktur bei Zimmertemperatur und bei 193 K.
Elementaranalyse: C 30,30 % (ber. 30,37 %), H 1,92 % (ber. 1,70 %), N 17,68 % (ber. 17,71 %).
Infrarot-Spektrum (KBr-Pressling und Nujol-Verreibung, Absorptionsmaxima in cm–1): 2142 (νas N3), 1591, 1493, 1272 (νs N3), 1207 (νas SO3), 1143, 1117 (νs SO3), 1041, 1005, 831, 729, 711 (ν CS), 650 (δ N3), 569 (δ SO3), 524.
Die Kristalldaten und Angaben zur Messung und Strukturverfeinerung sind in Tabelle 1 zusammengestellt.
Die Titelverbindung wurde neben Kalium-4-pentazolylbenzolsulfonat (K+[O3S–C6H4–N5]–) wie beschrieben hergestellt (Biesemeier et al., 2003), aus 4-Diazoniumbenzolsulfonat und Natriumazid und anschließender Fällung mit KOH aus methanolischer Lösung bei –50°C. Das [O3S–C6H4N3]– -Ion eignet sich um K+ von Na+ durch Fällungsreaktion aus methanolischer Lösung zu trennen. Durch Extraktion mit Aceton, Eindampfen der Lösung und Umkristallisation aus Methanol wurden Kristalle der Titelverbindung erhalten. Wird das Umkristallisieren durch Abkühlen der methanolischen Lösung auf –45°C bewirkt, so entstehen Kristalle, die Satellitenreflexe zeigen. Lässt man dagegen das Methanol bei Zimmertemperatur verdunsten, treten keine Satellitenreflexe auf.
Das [O3S–C6H4–N3]– -Ion hat dieselbe Struktur, wie sie schon bei [THF-K-18-Krone-8][O3S–C6H4–N3] (Biesemeier et al., 2003) und mit weiteren Kationen (Biesemeier et al., 2004a,b,c) gefunden wurde (Fig. 1). Die Azidogruppe ist leicht geknickt (Winkel N–N–N 174,3°). Der Konformationswinkel der Azidogruppe relativ zum aromatischen Ring beträgt 19,1°. Damit ist das Molekül im Kristall chiral; im Kristall liegt kein Racemat vor (Sohncke-Raumgruppe P212121).
Ein Kalium-Ion ist von drei nähergelegenen O-Atomen aus drei verschiedenen Sulfonylgruppen koordiniert (S···O-Abstände 2,65 bis 2,78 Å). Dazu kommen drei etwas längere S···O-Kontakte zu drei weiteren O-Atomen. Von den insgesamt vier koordinierten Sulfonylgruppen sind zwei chelatartig an das K+ -Ion koordiniert. Etwas entfernter befinden sich Stickstoff-Atome (3,07, 3,10, 3,27 Å und weitere). Rechnet man nur die drei nächsten N-Atome zur Koordinationssphäre, so ist das Koordinationspolyeder ein 4-5-Polyeder, d.h. es hat ein verzerrtes Quadrat und ein gegenüberliegendes verzerrtes Fünfeck als Deckflächen (Fig. 2). Im Gegensatz dazu haben die N-Atome des [O3S–C6H4–N3]– -Ions im Na[O3S–C6H4–N3] keine Kontakte mit einem Na+ -Ion (Biesemeier et al., 2004a,b,c, Seite 37), ebensowenig wie mit den stark abgeschirmten Kalium-Atomen im [K-18-Krone-6-THF][O3S–C6H4–N3] (Biesemeier et al., 2003).
Die [O3S–C6H4–N3]– -Ionen sind zu Schichten senkrecht zur b-Achse gepackt. Auf den Außenseiten der Schichten befinden sich nur N- und O-Atome. Die K+ -Ionen befinden sich zwischen den Schichten (Fig. 3).
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).K(C6H4N3O3S) | Dx = 1.887 Mg m−3 |
Mr = 237.28 | Mo Kα radiation, λ = 0.71069 Å |
Orthorhombic, P212121 | Cell parameters from 10459 reflections |
a = 5.4220 (5) Å | θ = 2.1–26.1° |
b = 7.9937 (7) Å | µ = 0.87 mm−1 |
c = 19.267 (2) Å | T = 193 K |
V = 835.08 (15) Å3 | Prism, yellow |
Z = 4 | 0.55 × 0.33 × 0.25 mm |
F(000) = 480 |
STOE IPDS2 diffractometer | 1639 independent reflections |
Radiation source: sealed X-ray tube | 1591 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω scans | θmax = 26.1°, θmin = 2.1° |
Absorption correction: integration (XPREP; Bruker, 2012) | h = −6→6 |
Tmin = 0.740, Tmax = 0.841 | k = −9→9 |
6140 measured reflections | l = −23→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | All H-atom parameters refined |
wR(F2) = 0.048 | w = 1/[σ2(Fo2) + (0.0214P)2 + 0.2034P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
1639 reflections | Δρmax = 0.32 e Å−3 |
143 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 636 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.004 (16) |
K(C6H4N3O3S) | V = 835.08 (15) Å3 |
Mr = 237.28 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.4220 (5) Å | µ = 0.87 mm−1 |
b = 7.9937 (7) Å | T = 193 K |
c = 19.267 (2) Å | 0.55 × 0.33 × 0.25 mm |
STOE IPDS2 diffractometer | 1639 independent reflections |
Absorption correction: integration (XPREP; Bruker, 2012) | 1591 reflections with I > 2σ(I) |
Tmin = 0.740, Tmax = 0.841 | Rint = 0.038 |
6140 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | All H-atom parameters refined |
wR(F2) = 0.048 | Δρmax = 0.32 e Å−3 |
S = 1.09 | Δρmin = −0.25 e Å−3 |
1639 reflections | Absolute structure: Flack x determined using 636 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
143 parameters | Absolute structure parameter: 0.004 (16) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
K | −0.01018 (9) | 0.67980 (6) | 0.26487 (2) | 0.02287 (13) | |
S | 0.49304 (10) | −0.10392 (6) | 0.33927 (2) | 0.01569 (12) | |
O1 | 0.5157 (4) | −0.28483 (18) | 0.33948 (8) | 0.0325 (4) | |
O2 | 0.2819 (3) | −0.0487 (2) | 0.29887 (7) | 0.0216 (3) | |
O3 | 0.7217 (3) | −0.0217 (2) | 0.32010 (8) | 0.0274 (4) | |
N1 | 0.3166 (3) | 0.0942 (2) | 0.63445 (9) | 0.0211 (4) | |
N2 | 0.1000 (3) | 0.1318 (2) | 0.65003 (9) | 0.0186 (4) | |
N3 | −0.0882 (3) | 0.1672 (3) | 0.66954 (10) | 0.0253 (4) | |
C1 | 0.4320 (4) | −0.0448 (3) | 0.42651 (10) | 0.0170 (4) | |
C2 | 0.2204 (4) | 0.0433 (3) | 0.44334 (10) | 0.0193 (4) | |
C3 | 0.1787 (4) | 0.0909 (3) | 0.51178 (10) | 0.0195 (4) | |
C4 | 0.3477 (4) | 0.0485 (3) | 0.56286 (10) | 0.0179 (4) | |
C5 | 0.5598 (4) | −0.0410 (3) | 0.54628 (11) | 0.0203 (4) | |
C6 | 0.6009 (4) | −0.0873 (3) | 0.47797 (11) | 0.0196 (4) | |
H2 | 0.095 (4) | 0.065 (3) | 0.4069 (12) | 0.020 (6)* | |
H3 | 0.047 (5) | 0.153 (3) | 0.5228 (12) | 0.019 (6)* | |
H5 | 0.665 (5) | −0.074 (3) | 0.5797 (13) | 0.021 (6)* | |
H6 | 0.730 (5) | −0.150 (3) | 0.4652 (13) | 0.023 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
K | 0.0214 (2) | 0.0205 (2) | 0.0268 (2) | −0.0031 (2) | 0.0020 (2) | −0.00356 (16) |
S | 0.0137 (2) | 0.0174 (2) | 0.0159 (2) | 0.0008 (2) | 0.0016 (2) | −0.00066 (16) |
O1 | 0.0519 (10) | 0.0183 (8) | 0.0275 (8) | 0.0083 (8) | 0.0062 (10) | −0.0005 (6) |
O2 | 0.0165 (7) | 0.0300 (8) | 0.0183 (7) | 0.0033 (7) | −0.0023 (6) | −0.0031 (6) |
O3 | 0.0159 (7) | 0.0446 (10) | 0.0217 (7) | −0.0074 (7) | 0.0043 (6) | −0.0003 (7) |
N1 | 0.0184 (8) | 0.0264 (9) | 0.0185 (8) | −0.0001 (8) | 0.0012 (7) | −0.0022 (8) |
N2 | 0.0228 (9) | 0.0187 (9) | 0.0144 (8) | −0.0008 (7) | −0.0018 (7) | −0.0022 (6) |
N3 | 0.0252 (10) | 0.0290 (10) | 0.0218 (9) | 0.0045 (8) | 0.0000 (7) | −0.0027 (8) |
C1 | 0.0177 (10) | 0.0166 (9) | 0.0167 (8) | −0.0022 (8) | 0.0020 (7) | −0.0003 (7) |
C2 | 0.0162 (10) | 0.0234 (10) | 0.0182 (10) | 0.0014 (9) | −0.0010 (7) | 0.0024 (8) |
C3 | 0.0165 (9) | 0.0213 (10) | 0.0208 (9) | 0.0024 (9) | 0.0032 (8) | −0.0001 (8) |
C4 | 0.0178 (10) | 0.0181 (10) | 0.0177 (9) | −0.0044 (8) | 0.0014 (7) | 0.0002 (8) |
C5 | 0.0173 (10) | 0.0228 (10) | 0.0207 (9) | 0.0002 (8) | −0.0035 (7) | 0.0014 (8) |
C6 | 0.0147 (9) | 0.0214 (11) | 0.0228 (10) | 0.0020 (9) | 0.0012 (8) | −0.0011 (8) |
K—O1i | 3.206 (2) | N1—C4 | 1.437 (3) |
K—O1ii | 2.959 (2) | N1—N2 | 1.249 (2) |
K—O2iii | 2.6486 (17) | N2—N3 | 1.124 (3) |
K—O2i | 2.7652 (18) | C1—C2 | 1.385 (3) |
K—O3iv | 2.7787 (17) | C1—C6 | 1.392 (3) |
K—O3ii | 2.9900 (19) | C2—C3 | 1.391 (3) |
K—N1v | 3.0731 (19) | C3—C4 | 1.387 (3) |
K—N3vi | 3.1001 (19) | C4—C5 | 1.391 (3) |
K—N1vii | 3.2680 (18) | C5—C6 | 1.385 (3) |
S—O1 | 1.4514 (15) | C2—H2 | 0.99 (2) |
S—O2 | 1.4530 (15) | C3—H3 | 0.90 (3) |
S—O3 | 1.4510 (16) | C5—H5 | 0.90 (3) |
S—C1 | 1.7772 (19) | C6—H6 | 0.90 (3) |
O2iii—K—O2i | 165.85 (3) | N3vi—K—N1vii | 63.38 (5) |
O2iii—K—O3iv | 68.91 (5) | O1i—K—N1vii | 90.59 (4) |
O2i—K—O3iv | 105.79 (5) | O3—S—O1 | 112.31 (12) |
O2iii—K—O1ii | 78.93 (5) | O3—S—O2 | 113.54 (9) |
O2i—K—O1ii | 107.90 (5) | O1—S—O2 | 111.77 (11) |
O3iv—K—O1ii | 146.17 (5) | O1—S—C1 | 106.14 (9) |
O2iii—K—O3ii | 116.42 (5) | O2—S—C1 | 106.21 (9) |
O2i—K—O3ii | 64.39 (4) | O3—S—C1 | 106.23 (9) |
O3iv—K—O3ii | 161.09 (5) | S—O1—Kviii | 99.64 (10) |
O1ii—K—O3ii | 47.81 (4) | S—O1—Kix | 90.64 (9) |
O2iii—K—N1v | 68.35 (5) | S—O2—Kx | 153.64 (10) |
O2i—K—N1v | 125.79 (5) | S—O2—Kix | 109.87 (9) |
O3iv—K—N1v | 97.52 (5) | S—O3—Kxi | 153.32 (10) |
O1ii—K—N1v | 59.72 (5) | S—O3—Kviii | 98.31 (9) |
O3ii—K—N1v | 101.27 (5) | N2—N1—C4 | 113.74 (17) |
O2iii—K—N3vi | 66.84 (5) | N1—N2—N3 | 174.3 (2) |
O2i—K—N3vi | 103.47 (5) | C2—C1—C6 | 120.18 (18) |
O3iv—K—N3vi | 105.97 (5) | C2—C1—S | 120.73 (15) |
O1ii—K—N3vi | 68.90 (5) | C6—C1—S | 119.09 (16) |
O3ii—K—N3vi | 63.54 (5) | C1—C2—C3 | 119.72 (19) |
N1v—K—N3vi | 116.14 (5) | C1—C2—H2 | 119.5 (14) |
O2iii—K—O1i | 139.77 (5) | C3—C2—H2 | 120.7 (14) |
O2i—K—O1i | 46.78 (4) | C4—C3—C2 | 119.89 (19) |
O3iv—K—O1i | 79.32 (5) | C4—C3—H3 | 119.6 (15) |
O1ii—K—O1i | 123.12 (5) | C2—C3—H3 | 120.5 (15) |
O3ii—K—O1i | 101.68 (4) | C3—C4—C5 | 120.59 (19) |
N1v—K—O1i | 92.96 (5) | C3—C4—N1 | 122.77 (19) |
N3vi—K—O1i | 148.83 (5) | C5—C4—N1 | 116.64 (18) |
O2iii—K—N1vii | 101.73 (5) | C6—C5—C4 | 119.3 (2) |
O2i—K—N1vii | 64.18 (4) | C6—C5—H5 | 119.9 (16) |
O3iv—K—N1vii | 71.73 (5) | C4—C5—H5 | 120.8 (16) |
O1ii—K—N1vii | 126.86 (5) | C5—C6—C1 | 120.4 (2) |
O3ii—K—N1vii | 89.35 (5) | C5—C6—H6 | 122.5 (16) |
N1v—K—N1vii | 167.85 (5) | C1—C6—H6 | 117.0 (16) |
N2—N1—C4—C3 | 19.1 (3) | O1—S—C1—C2 | −121.7 (2) |
N2—N1—C4—C5 | −161.41 (19) | O2—S—C1—C2 | −2.6 (2) |
C3—C4—C5—C6 | 0.1 (3) | O1—S—C1—C6 | 58.7 (2) |
N1—C4—C5—C6 | −179.5 (2) | O2—S—C1—C6 | 177.77 (17) |
C5—C4—C3—C2 | 0.3 (3) | O3—S—C1—C2 | 118.55 (19) |
N1—C4—C3—C2 | 179.8 (2) | O3—S—C1—C6 | −61.1 (2) |
C1—C2—C3—C4 | −0.7 (3) | C4—C5—C6—C1 | 0.0 (3) |
C3—C2—C1—C6 | 0.8 (3) | C2—C1—C6—C5 | −0.5 (3) |
C3—C2—C1—S | −178.80 (17) | S—C1—C6—C5 | 179.14 (18) |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y+1, z; (iii) −x, y+1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2; (v) x−1/2, −y+1/2, −z+1; (vi) −x−1/2, −y+1, z−1/2; (vii) −x+1/2, −y+1, z−1/2; (viii) x+1, y−1, z; (ix) x, y−1, z; (x) −x, y−1/2, −z+1/2; (xi) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | K(C6H4N3O3S) |
Mr | 237.28 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 193 |
a, b, c (Å) | 5.4220 (5), 7.9937 (7), 19.267 (2) |
V (Å3) | 835.08 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.87 |
Crystal size (mm) | 0.55 × 0.33 × 0.25 |
Data collection | |
Diffractometer | STOE IPDS2 diffractometer |
Absorption correction | Integration (XPREP; Bruker, 2012) |
Tmin, Tmax | 0.740, 0.841 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6140, 1639, 1591 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.619 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.048, 1.09 |
No. of reflections | 1639 |
No. of parameters | 143 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.32, −0.25 |
Absolute structure | Flack x determined using 636 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
Absolute structure parameter | 0.004 (16) |
Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).
Footnotes
†This paper is dedicated to Professor Dr Werner Massa on his 70th birthday.
References
Biesemeier, F., Harms, K. & Müller, U. (2003). Z. Anorg. Allg. Chem. 630, 787–793. Web of Science CSD CrossRef Google Scholar
Biesemeier, F., Harms, K. & Müller, U. (2004a). Z. Kristallogr. New Cryst. Struct. 219, 37–38. CAS Google Scholar
Biesemeier, F., Harms, K. & Müller, U. (2004b). Z. Kristallogr. New Cryst. Struct. 219, 39–40. CAS Google Scholar
Biesemeier, F., Harms, K. & Müller, U. (2004c). Z. Kristallogr. New Cryst. Struct. 219, 41–43. CAS Google Scholar
Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2012). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2005). X-AREA und X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.