organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5R*)-5-[(2S*,5S*)-1-Meth­­oxy-5-phenyl­pyrrolidin-2-yl]-3-methyl­furan-2(5H)-one

aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: oec@a6.keio.jp

(Received 16 June 2014; accepted 25 June 2014; online 2 July 2014)

In the title compound, C16H19NO3, the pyrrolidine ring is in a twist conformation. The dihedral angle between the di­hydro­furan ring [maximum deviation = 0.0016 (11) Å] and the phenyl ring is 47.22 (8)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming helical chains along the b-axis direction. The chains are further linked by C—H⋯π inter­actions to constitute a three-dimensional architecture.

Keywords: crystal structure.

Related literature

For noteworthy mild reactions of N-alk­oxy­amines, see: Hawker et al. (2001[Hawker, C. J., Bosman, A. W. & Harth, E. (2001). Chem. Rev. 101, 3661-3688.]). For the reaction of Weinreb amide, see: Nahm & Weinreb (1981[Nahm, S. & Weinreb, S. M. (1981). Tetrahedron Lett. 22, 3815-3818.]). For the synthesis of the title compound, see: Yoritate et al. (2014[Yoritate, M., Sato, T. & Chida, N. (2014). In preparation.]). For a related article utilizing similar compounds, see: Yanagita et al. (2013[Yanagita, Y., Nakamura, H., Shirokane, K., Kurosaki, Y., Sato, T. & Chida, N. (2013). Chem. Eur. J. 19, 678-684.]). For details of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO3

  • Mr = 273.32

  • Orthorhombic, P 21 21 21

  • a = 6.5427 (3) Å

  • b = 10.8219 (5) Å

  • c = 19.8397 (10) Å

  • V = 1404.74 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.54 × 0.51 × 0.40 mm

Data collection
  • Bruker D8 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.95, Tmax = 0.97

  • 12710 measured reflections

  • 1510 independent reflections

  • 1474 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.075

  • S = 1.04

  • 1510 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the O1/C2–C5 di­hydro­furan and C15–C20 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O6i 1.00 2.51 3.185 (2) 125
C10—H10ACg1ii 0.99 2.89 3.686 (2) 138
C16—H16⋯Cg3iii 0.95 2.99 3.761 (2) 139
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A number of compounds containing oxidized nitrogen functionality have been widely used in organic synthesis. In these substances, the N-alkoxyamines are known as the initiators for the stable free radical polymerization (Hawker et al., 2001), and the N-alkoxyamides are utilized for mild and effective acylating agents (cf. Weinreb amide; Nahm & Weinreb, 1981). We noticed this inert N—O covalent bond, to develop a novel reaction to synthesize the natural alkaloids (Yanagita et al., 2013).

In the title compound, the dihydrofuran ring is planar with a maximum deviation of 0.0016 (11) Å at atom C4, and the pyrrolidine ring is in a twist conformation with puckering parameters of Q(2) = 0.4145 (18) Å and ϕ(2) = 10.6 (3)° (Cremer & Pople, 1975). Atoms N8 and C9 are deviated by –0.4566 (13) and 0.1991 (19) Å, respectively, from the plane of other carbon atoms (C10–C12). Angles of O13—N8—C9, O13—N8—C12 and C9—N8—C12 being 110.28 (13), 108.44 (12) and 106.87 (13)°, respectively, revealed the sp3 configuration of the N8 atom. The relative configurations were confirmed by the X-ray analysis as C5R, C9S and C12S.

The crystal packing iss stabilized by an intermolecular C5—H5···O6 (–x + 1, y + 1/2, –z + 3/2) hydrogen bond (Table 1), forming a helical chain along to the [010] direction (Fig. 2). Further intermolecular C—H···π interactions form a three-dimensional network in the crystal structure (Fig. 3). Distances for C10—H10A···Cg1 (x – 1, y, z) and C16—H···Cg3 (x + 1/2, –y + 1/2, –z + 1) are 3.686 (2) and 3.761 (2) Å, respectively. Cg1 and Cg3 are the centroids of the O1/C2–C5 dihydrofuran and C15–C20 phenyl rings, respectively. Additionally, weak intramolecular interactions, C12—H···O1, C5—H···O13 and C10—H10B···Cg1 being 2.957 (2), 2.791 (2) and 2.963 (2) Å, respectively, adopt the molecule into a sterically hindered conformation. The C5—O1 bond of dihydrofuran is overhanged on the pyrrolidine ring, with torsion angles of O1—C5—C9—N8 and O1—C5—C9—C10 being –69.7 (2) and 46.5 (2)°, respectively (Fig. 4).

Related literature top

For noteworthy mild reactions of N-alkoxyamines, see: Hawker et al. (2001). For the reaction of Weinreb amide, see: Nahm & Weinreb (1981). For the synthesis of the title compound, see: Yoritate et al. (2014). For a related article utilizing similar compounds, see: Yanagita et al. (2013). For details of ring conformations, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized from 4-oxo-4-phenylbutyric acid (Yoritate et al., 2014), and recrystallized from a toluene solution by slow evaporation at ambient temperature; M.p. 358.5–359.9 K (not corrected). 1H NMR (500 MHz, CDCl3) δ (p.p.m.) = 7.41–7.37 (m, 2H, Ph), 7.36–7.31 (m, 2H, Ph), 7.29–7.24 (m, 1H, Ph), 7.13 (qd, J = 1.7, 1.7 Hz, 1H, H4), 5.35–5.31 (m, 1H, H5), 4.33 (dd, J = 8.2, 7.5 Hz, 1H, H12), 3.56 (ddd, J = 8.3, 4.9, 4.9 Hz, 1H, H9), 3.35 (s, 3H, OMe), 2.20 (dddd, J = 12.9, 10.0, 7.5, 4.0 Hz, 1H, H11A), 2.00 (dddd, J = 13.1, 10.3, 8.3, 4.0 Hz, 1H, H10A), 1.95 (dd, J = 1.7, 1.7 Hz, 3H, CMe), 1.93–1.84 (m, 1H, H11B), 1.62 (dddd, J = 13.1, 10.0, 6.6, 4.9 Hz, 1H, H10B); 13C NMR (125 MHz, CDCl3) δ (p.p.m.) = 174.6 (C), 148.1 (CH), 141.1 (C), 130.7 (C), 128.3 (CH), 128.1 (CH), 127.4 (CH), 80.5 (CH), 68.6 (CH), 65.3 (CH), 61.2 (CH2), 28.9 (CH2), 22.6 (CH2), 10.9 (CH3); Anal. calcd. for C16H19NO3: C 70.31, H 7.01, N 5.12%, found: C 70.15, H 7.00, N 5.06%.

Refinement top

C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The Friedel opposites were merged before the final refinement because no significant anomalous dispersion was observed and the Flack parameter was a meaningless value of –1.2 (10) with 1054 Bijvoet pairs. One reflection (7 3 4) has been omitted in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. Dashed lines indicate the intermolecular C5—H···O6 interactions, making helical chains along [010]. Only H atoms involved in hydrogen bonds were shown for clarity. Symmetry codes: (i) –x + 1, y + 1/2, –z + 3/2; (iv) x – 1/2, –y + 1/2, –z + 1; (v) –x + 1/2, –y + 1, z – 1/2; (vi) x – 1/2, –y + 3/2, –z + 1; (vii) –x + 1, y – 1/2, –z + 3/2.
[Figure 3] Fig. 3. A view for the intermolecular C—H···π interactions (dashed lines), showing parallel (C10—H10A···Cg1) and alternated (C16—H16···Cg3) chains along [100]. Cg1 and Cg3 are the centroids of the O1/C2–C5 dihydrofuran and the C15–C20 phenyl rings, respectively. Only H atoms involved in hydrogen bonds were shown for clarity. Symmetry codes: (ii) x – 1, y, z; (iii) x + 1/2, –y + 1/2, –z + 1; (iv) x – 1/2, –y + 1/2, –z + 1; (viii) x + 1, y, z.
[Figure 4] Fig. 4. Molecular conformation indicating intramolecular C—H···O and C—H···π interactions with dashed lines. Cg1 is a centroid of the O1/C2–C5 dihydrofuran ring.
(5R*)-5-[(2S*,5S*)-1-Methoxy-5-phenylpyrrolidin-2-yl]-3-methylfuran-2(5H)-one top
Crystal data top
C16H19NO3Dx = 1.292 Mg m3
Mr = 273.32Melting point: 358.5 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 6.5427 (3) ÅCell parameters from 9968 reflections
b = 10.8219 (5) Åθ = 2.8–25.4°
c = 19.8397 (10) ŵ = 0.09 mm1
V = 1404.74 (12) Å3T = 90 K
Z = 4Prism, colourless
F(000) = 5840.54 × 0.51 × 0.40 mm
Data collection top
Bruker D8
diffractometer
1510 independent reflections
Radiation source: fine-focus sealed tube1474 reflections with I > 2σ(I)
Multilayered confocal mirror monochromatorRint = 0.027
Detector resolution: 8.333 pixels mm-1θmax = 25.4°, θmin = 2.8°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1311
Tmin = 0.95, Tmax = 0.97l = 2322
12710 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.402P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.014
1510 reflectionsΔρmax = 0.21 e Å3
184 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (3)
Crystal data top
C16H19NO3V = 1404.74 (12) Å3
Mr = 273.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.5427 (3) ŵ = 0.09 mm1
b = 10.8219 (5) ÅT = 90 K
c = 19.8397 (10) Å0.54 × 0.51 × 0.40 mm
Data collection top
Bruker D8
diffractometer
1510 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
1474 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.97Rint = 0.027
12710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
1510 reflectionsΔρmin = 0.17 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28934 (19)0.36404 (11)0.70066 (5)0.0197 (3)
C20.3603 (3)0.29777 (16)0.75407 (8)0.0200 (4)
C30.3704 (3)0.37890 (16)0.81354 (8)0.0198 (4)
C40.3059 (3)0.48928 (16)0.79475 (8)0.0198 (4)
H40.29650.5590.82370.024*
C50.2496 (3)0.48950 (17)0.72169 (8)0.0181 (4)
H50.34240.54690.69670.022*
O60.4060 (2)0.19033 (12)0.74867 (6)0.0268 (3)
C70.4522 (3)0.33239 (18)0.87893 (8)0.0272 (4)
H7A0.43460.39590.91370.041*
H7B0.59780.31320.8740.041*
H7C0.37790.25760.89210.041*
N80.0284 (2)0.53897 (13)0.63598 (7)0.0185 (3)
C90.0267 (3)0.52517 (16)0.70776 (8)0.0179 (4)
H90.00380.60450.73160.021*
C100.1287 (3)0.42769 (16)0.73027 (8)0.0209 (4)
H10A0.25690.46720.74570.025*
H10B0.07280.37680.76740.025*
C110.1671 (3)0.34798 (17)0.66697 (8)0.0245 (4)
H11A0.11190.26360.67350.029*
H11B0.31540.34180.65760.029*
C120.0570 (3)0.41297 (15)0.60873 (8)0.0193 (4)
H120.07940.37360.60140.023*
O130.13547 (19)0.59737 (11)0.59960 (6)0.0208 (3)
C140.0574 (3)0.70653 (17)0.56898 (9)0.0251 (4)
H14A0.05730.68510.53940.038*
H14B0.16530.74610.54240.038*
H14C0.01030.76360.6040.038*
C150.1725 (3)0.41689 (16)0.54286 (8)0.0205 (4)
C160.0888 (3)0.36521 (18)0.48516 (8)0.0258 (4)
H160.04110.32620.48730.031*
C170.1934 (4)0.36997 (19)0.42435 (9)0.0358 (5)
H170.13470.33450.3850.043*
C180.3824 (4)0.42609 (19)0.42089 (10)0.0398 (6)
H180.45290.43030.37910.048*
C190.4695 (4)0.47615 (19)0.47816 (11)0.0370 (5)
H190.60060.51360.47580.044*
C200.3655 (3)0.47190 (18)0.53920 (10)0.0276 (4)
H200.42570.50640.57850.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0201 (6)0.0197 (6)0.0194 (5)0.0030 (5)0.0008 (5)0.0022 (5)
C20.0136 (8)0.0222 (9)0.0241 (8)0.0007 (7)0.0023 (7)0.0019 (7)
C30.0147 (8)0.0230 (8)0.0218 (8)0.0029 (8)0.0017 (7)0.0009 (7)
C40.0176 (9)0.0211 (8)0.0208 (8)0.0024 (8)0.0002 (7)0.0018 (7)
C50.0195 (9)0.0159 (8)0.0188 (8)0.0004 (7)0.0000 (7)0.0002 (6)
O60.0274 (7)0.0209 (6)0.0321 (6)0.0070 (6)0.0013 (6)0.0006 (5)
C70.0262 (10)0.0310 (10)0.0243 (8)0.0009 (9)0.0032 (8)0.0054 (8)
N80.0179 (7)0.0181 (7)0.0194 (7)0.0025 (6)0.0022 (6)0.0024 (6)
C90.0182 (9)0.0168 (8)0.0187 (8)0.0017 (7)0.0014 (7)0.0000 (7)
C100.0175 (8)0.0214 (9)0.0237 (8)0.0005 (8)0.0027 (7)0.0025 (7)
C110.0253 (10)0.0231 (9)0.0251 (8)0.0063 (8)0.0019 (8)0.0039 (7)
C120.0198 (9)0.0159 (8)0.0223 (8)0.0000 (7)0.0003 (7)0.0002 (7)
O130.0178 (6)0.0212 (6)0.0235 (6)0.0030 (5)0.0019 (5)0.0052 (5)
C140.0280 (10)0.0247 (9)0.0227 (8)0.0052 (8)0.0044 (8)0.0078 (7)
C150.0238 (9)0.0151 (8)0.0226 (8)0.0051 (8)0.0028 (7)0.0015 (6)
C160.0297 (10)0.0222 (9)0.0254 (8)0.0071 (9)0.0004 (8)0.0003 (7)
C170.0543 (14)0.0300 (10)0.0231 (8)0.0180 (12)0.0020 (9)0.0010 (8)
C180.0557 (15)0.0305 (11)0.0330 (10)0.0178 (11)0.0238 (11)0.0103 (9)
C190.0349 (12)0.0220 (10)0.0541 (13)0.0045 (9)0.0221 (11)0.0069 (9)
C200.0268 (10)0.0198 (9)0.0362 (10)0.0017 (9)0.0062 (9)0.0002 (8)
Geometric parameters (Å, º) top
O1—C21.361 (2)C11—C121.532 (2)
O1—C51.444 (2)C11—H11A0.99
C2—O61.205 (2)C11—H11B0.99
C2—C31.472 (2)C12—C151.510 (2)
C3—C41.321 (3)C12—H121.0
C3—C71.491 (2)O13—C141.423 (2)
C4—C51.495 (2)C14—H14A0.98
C4—H40.95C14—H14B0.98
C5—C91.534 (3)C14—H14C0.98
C5—H51.0C15—C161.387 (2)
C7—H7A0.98C15—C201.398 (3)
C7—H7B0.98C16—C171.388 (3)
C7—H7C0.98C16—H160.95
N8—O131.4385 (19)C17—C181.380 (4)
N8—C91.477 (2)C17—H170.95
N8—C121.479 (2)C18—C191.382 (3)
C9—C101.532 (2)C18—H180.95
C9—H91.0C19—C201.390 (3)
C10—C111.544 (2)C19—H190.95
C10—H10A0.99C20—H200.95
C10—H10B0.99
C2—O1—C5109.38 (12)C12—C11—C10106.28 (14)
O6—C2—O1121.57 (16)C12—C11—H11A110.5
O6—C2—C3129.46 (17)C10—C11—H11A110.5
O1—C2—C3108.97 (14)C12—C11—H11B110.5
C4—C3—C2107.40 (14)C10—C11—H11B110.5
C4—C3—C7131.73 (16)H11A—C11—H11B108.7
C2—C3—C7120.80 (16)N8—C12—C15110.73 (13)
C3—C4—C5110.71 (15)N8—C12—C11101.97 (13)
C3—C4—H4124.6C15—C12—C11115.48 (15)
C5—C4—H4124.6N8—C12—H12109.5
O1—C5—C4103.55 (14)C15—C12—H12109.5
O1—C5—C9110.83 (14)C11—C12—H12109.5
C4—C5—C9114.14 (15)C14—O13—N8108.14 (13)
O1—C5—H5109.4O13—C14—H14A109.5
C4—C5—H5109.4O13—C14—H14B109.5
C9—C5—H5109.4H14A—C14—H14B109.5
C3—C7—H7A109.5O13—C14—H14C109.5
C3—C7—H7B109.5H14A—C14—H14C109.5
H7A—C7—H7B109.5H14B—C14—H14C109.5
C3—C7—H7C109.5C16—C15—C20119.04 (17)
H7A—C7—H7C109.5C16—C15—C12120.38 (17)
H7B—C7—H7C109.5C20—C15—C12120.58 (16)
O13—N8—C9110.28 (13)C15—C16—C17120.55 (19)
O13—N8—C12108.44 (12)C15—C16—H16119.7
C9—N8—C12106.87 (13)C17—C16—H16119.7
N8—C9—C10100.89 (14)C18—C17—C16120.1 (2)
N8—C9—C5115.55 (14)C18—C17—H17120.0
C10—C9—C5113.92 (14)C16—C17—H17120.0
N8—C9—H9108.7C17—C18—C19120.08 (19)
C10—C9—H9108.7C17—C18—H18120.0
C5—C9—H9108.7C19—C18—H18120.0
C9—C10—C11104.81 (13)C18—C19—C20120.1 (2)
C9—C10—H10A110.8C18—C19—H19119.9
C11—C10—H10A110.8C20—C19—H19119.9
C9—C10—H10B110.8C19—C20—C15120.10 (19)
C11—C10—H10B110.8C19—C20—H20120.0
H10A—C10—H10B108.9C15—C20—H20120.0
C5—O1—C2—O6179.35 (17)C9—C10—C11—C127.74 (19)
C5—O1—C2—C30.06 (19)O13—N8—C12—C1577.91 (17)
O6—C2—C3—C4179.44 (19)C9—N8—C12—C15163.22 (14)
O1—C2—C3—C40.2 (2)O13—N8—C12—C11158.69 (13)
O6—C2—C3—C72.1 (3)C9—N8—C12—C1139.81 (18)
O1—C2—C3—C7177.16 (15)C10—C11—C12—N818.38 (18)
C2—C3—C4—C50.3 (2)C10—C11—C12—C15138.50 (15)
C7—C3—C4—C5176.70 (18)C9—N8—O13—C14122.23 (14)
C2—O1—C5—C40.11 (18)C12—N8—O13—C14121.07 (14)
C2—O1—C5—C9122.92 (14)N8—C12—C15—C16123.43 (18)
C3—C4—C5—O10.25 (19)C11—C12—C15—C16121.35 (18)
C3—C4—C5—C9120.85 (17)N8—C12—C15—C2057.0 (2)
O13—N8—C9—C10162.41 (13)C11—C12—C15—C2058.3 (2)
C12—N8—C9—C1044.74 (17)C20—C15—C16—C171.2 (3)
O13—N8—C9—C539.07 (19)C12—C15—C16—C17179.20 (17)
C12—N8—C9—C578.60 (18)C15—C16—C17—C180.2 (3)
O1—C5—C9—N869.67 (17)C16—C17—C18—C190.9 (3)
C4—C5—C9—N8173.89 (15)C17—C18—C19—C201.0 (3)
O1—C5—C9—C1046.50 (18)C18—C19—C20—C150.0 (3)
C4—C5—C9—C1069.9 (2)C16—C15—C20—C191.1 (3)
N8—C9—C10—C1130.75 (17)C12—C15—C20—C19179.31 (17)
C5—C9—C10—C1193.70 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the O1/C2–C5 dihydrofuran and C15–C20 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···O11.002.402.957 (2)114
C5—H5···O131.002.422.791 (2)101
C10—H10B···Cg10.992.562.963 (2)104
C5—H5···O6i1.002.513.185 (2)125
C10—H10A···Cg1ii0.992.893.686 (2)138
C16—H16···Cg3iii0.952.993.761 (2)139
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the O1/C2–C5 dihydrofuran and C15–C20 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···O11.002.402.957 (2)114.2
C5—H5···O131.002.422.791 (2)101.3
C10—H10B···Cg10.992.562.963 (2)104
C5—H5···O6i1.002.513.185 (2)124.7
C10—H10A···Cg1ii0.992.893.686 (2)138
C16—H16···Cg3iii0.952.993.761 (2)139
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

We thank Professor S. Ohba (Keio University, Japan) for his valuable advice.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHawker, C. J., Bosman, A. W. & Harth, E. (2001). Chem. Rev. 101, 3661–3688.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNahm, S. & Weinreb, S. M. (1981). Tetrahedron Lett. 22, 3815–3818.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYanagita, Y., Nakamura, H., Shirokane, K., Kurosaki, Y., Sato, T. & Chida, N. (2013). Chem. Eur. J. 19, 678–684.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYoritate, M., Sato, T. & Chida, N. (2014). In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds