organic compounds
6-Fluoroindan-1-one
aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu
The title compound, C9H7FO, crystallizes with two independent molecules in the in which corresponding bond lengths are the same within experimental error. The five-membered ring in each molecule is almost planar, with r.m.s. deviations of 0.016 and 0.029 Å. In the crystal, molecules form sheets parallel to (1 0 0) via C—H⋯O and C—H⋯F interactions with F⋯F contacts [3.1788 (16) and 3.2490 (16) Å] between the sheets.
Keywords: crystal structure.
CCDC reference: 1010372
Related literature
For the synthesis of 6-fluoroindan-1-one, see: Cui et al. (2004) and for its use in synthesis, see: Musso et al. (2003); Ślusarczyk et al. (2007); Yin et al. (2013). For the structure of the parent comound, 1-indanone, see: Morin et al. (1974) and Ruiz et al. (2004), the later containing a detailed analysis of the hydrogen bonding. For a related isomeric structure, 5-fluoroindan-1-one, see: Garcia et al. (1995). For more information on C—H⋯X interactions, see Desiraju & Steiner (1999) and on fluorine–fluorine interactions in the solid state, see: Baker et al. (2012). For van der Waals radii, see: Bondi (1964).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).
Supporting information
CCDC reference: 1010372
10.1107/S1600536814015049/kj2241sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814015049/kj2241Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814015049/kj2241Isup3.cml
All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 and 0.99 Å and Uiso(H) = 1.2 × Ueq(C) of the aryl and methylene C-atoms, respectively. The extinction parameter (EXTI) refined to zero and was removed from the refinement.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).Fig. 1. A view of the two independent molecules of the title compound, with atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. | |
Fig. 2. A view of the C—H···O and C—H···F interactions in the packing of 6-fluoroindan-1-one forming a sheet parallel to the 1 0 0 plane. Displacement ellipsoids are shown at the 50% probability level. Symmetry codes: (i) -x + 1, -y + 1, -z; (iii) -x + 3/2, y + 1/2, -z + 1/2; (iv) -x + 1/2, y - 1/2, -z + 1/2; (v) x + 1/2, -y + 3/2, z + 1/2; (vi) x + 1/2, -y + 3/2, z - 1/2; (vii) -x + 1, -y + 1, -z + 1. | |
Fig. 3. A view of the intermolecular F···F interactions in the packing of 6-fluoroindan-1-one. Distances F1···F1i 3.1788 (16) Å, F2···F2ii 3.2490 (16) Å. Displacement ellipsoids are shown at the 50% probability level; hydrogen atoms removed for clarity. Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z. |
C9H7FO | F(000) = 624 |
Mr = 150.15 | Dx = 1.420 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1900 (4) Å | Cell parameters from 9796 reflections |
b = 12.4811 (6) Å | θ = 2.6–30.5° |
c = 15.8685 (8) Å | µ = 0.11 mm−1 |
β = 99.453 (1)° | T = 125 K |
V = 1404.69 (13) Å3 | Plate, colourless |
Z = 8 | 0.37 × 0.26 × 0.04 mm |
Bruker APEXII CCD diffractometer | 4298 independent reflections |
Radiation source: fine-focus sealed tube | 3345 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.5°, θmin = 2.1° |
ϕ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker 2007) | k = −17→17 |
Tmin = 0.91, Tmax = 1.00 | l = −22→22 |
22840 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0654P)2 + 0.2949P] where P = (Fo2 + 2Fc2)/3 |
4298 reflections | (Δ/σ)max = 0.001 |
199 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C9H7FO | V = 1404.69 (13) Å3 |
Mr = 150.15 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.1900 (4) Å | µ = 0.11 mm−1 |
b = 12.4811 (6) Å | T = 125 K |
c = 15.8685 (8) Å | 0.37 × 0.26 × 0.04 mm |
β = 99.453 (1)° |
Bruker APEXII CCD diffractometer | 4298 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker 2007) | 3345 reflections with I > 2σ(I) |
Tmin = 0.91, Tmax = 1.00 | Rint = 0.029 |
22840 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.40 e Å−3 |
4298 reflections | Δρmin = −0.21 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.57983 (11) | 0.61035 (7) | 0.04096 (4) | 0.03306 (19) | |
F2 | 0.08173 (11) | 0.60328 (6) | 0.05655 (4) | 0.03227 (19) | |
O1 | 0.58188 (12) | 0.56668 (7) | 0.37571 (5) | 0.02425 (18) | |
O2 | 0.10060 (13) | 0.64991 (7) | 0.39289 (5) | 0.0290 (2) | |
C1 | 0.63562 (14) | 0.65257 (8) | 0.35245 (6) | 0.01661 (19) | |
C2 | 0.69797 (16) | 0.74848 (9) | 0.40858 (7) | 0.0209 (2) | |
H2A | 0.8032 | 0.7285 | 0.4543 | 0.025* | |
H2B | 0.5922 | 0.7756 | 0.4354 | 0.025* | |
C3 | 0.76215 (15) | 0.83443 (8) | 0.35003 (7) | 0.0198 (2) | |
H3A | 0.6904 | 0.9017 | 0.3526 | 0.024* | |
H3B | 0.8983 | 0.8498 | 0.3666 | 0.024* | |
C4 | 0.72154 (14) | 0.78578 (8) | 0.26152 (7) | 0.0170 (2) | |
C5 | 0.74667 (15) | 0.83033 (9) | 0.18320 (7) | 0.0217 (2) | |
H5 | 0.7957 | 0.9007 | 0.1806 | 0.026* | |
C6 | 0.69871 (16) | 0.76990 (10) | 0.10921 (7) | 0.0238 (2) | |
H6 | 0.7148 | 0.7986 | 0.0555 | 0.029* | |
C7 | 0.62701 (15) | 0.66714 (9) | 0.11444 (7) | 0.0218 (2) | |
C8 | 0.60039 (14) | 0.62037 (9) | 0.19016 (7) | 0.0188 (2) | |
H8 | 0.5513 | 0.5499 | 0.1923 | 0.023* | |
C9 | 0.64971 (14) | 0.68253 (8) | 0.26346 (6) | 0.01567 (19) | |
C10 | 0.14218 (14) | 0.56199 (9) | 0.36835 (6) | 0.0184 (2) | |
C11 | 0.19726 (16) | 0.46437 (9) | 0.42394 (7) | 0.0214 (2) | |
H11A | 0.0886 | 0.4385 | 0.4493 | 0.026* | |
H11B | 0.3016 | 0.4821 | 0.4707 | 0.026* | |
C12 | 0.26009 (15) | 0.37845 (9) | 0.36496 (7) | 0.0195 (2) | |
H12A | 0.3964 | 0.363 | 0.381 | 0.023* | |
H12B | 0.1884 | 0.3112 | 0.3678 | 0.023* | |
C13 | 0.21781 (14) | 0.42705 (8) | 0.27662 (6) | 0.01607 (19) | |
C14 | 0.24187 (15) | 0.38210 (9) | 0.19853 (7) | 0.0195 (2) | |
H14 | 0.2889 | 0.3112 | 0.196 | 0.023* | |
C15 | 0.19576 (15) | 0.44297 (9) | 0.12451 (7) | 0.0212 (2) | |
H15 | 0.2117 | 0.4142 | 0.0707 | 0.025* | |
C16 | 0.12627 (15) | 0.54614 (9) | 0.13004 (6) | 0.0204 (2) | |
C17 | 0.10060 (15) | 0.59323 (8) | 0.20572 (7) | 0.0189 (2) | |
H17 | 0.0525 | 0.6639 | 0.2079 | 0.023* | |
C18 | 0.14943 (14) | 0.53097 (8) | 0.27900 (6) | 0.01578 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0391 (4) | 0.0439 (5) | 0.0154 (3) | 0.0011 (3) | 0.0024 (3) | −0.0091 (3) |
F2 | 0.0434 (4) | 0.0365 (4) | 0.0151 (3) | −0.0035 (3) | −0.0006 (3) | 0.0100 (3) |
O1 | 0.0307 (4) | 0.0212 (4) | 0.0204 (4) | −0.0055 (3) | 0.0027 (3) | 0.0036 (3) |
O2 | 0.0401 (5) | 0.0244 (4) | 0.0227 (4) | 0.0082 (4) | 0.0053 (3) | −0.0045 (3) |
C1 | 0.0165 (4) | 0.0173 (5) | 0.0158 (4) | 0.0016 (4) | 0.0022 (3) | −0.0003 (3) |
C2 | 0.0274 (5) | 0.0192 (5) | 0.0165 (5) | −0.0002 (4) | 0.0044 (4) | −0.0029 (4) |
C3 | 0.0217 (5) | 0.0158 (5) | 0.0220 (5) | −0.0010 (4) | 0.0041 (4) | −0.0034 (4) |
C4 | 0.0163 (4) | 0.0160 (5) | 0.0192 (5) | 0.0021 (3) | 0.0039 (4) | 0.0005 (4) |
C5 | 0.0210 (5) | 0.0195 (5) | 0.0254 (5) | 0.0013 (4) | 0.0067 (4) | 0.0051 (4) |
C6 | 0.0224 (5) | 0.0307 (6) | 0.0193 (5) | 0.0050 (4) | 0.0070 (4) | 0.0061 (4) |
C7 | 0.0214 (5) | 0.0287 (6) | 0.0149 (5) | 0.0047 (4) | 0.0018 (4) | −0.0040 (4) |
C8 | 0.0184 (5) | 0.0195 (5) | 0.0179 (5) | 0.0009 (4) | 0.0013 (4) | −0.0024 (4) |
C9 | 0.0166 (4) | 0.0154 (4) | 0.0151 (4) | 0.0010 (3) | 0.0027 (3) | −0.0008 (3) |
C10 | 0.0187 (5) | 0.0205 (5) | 0.0159 (4) | 0.0010 (4) | 0.0026 (3) | −0.0004 (4) |
C11 | 0.0262 (5) | 0.0234 (5) | 0.0147 (4) | 0.0006 (4) | 0.0037 (4) | 0.0026 (4) |
C12 | 0.0214 (5) | 0.0191 (5) | 0.0182 (5) | 0.0026 (4) | 0.0040 (4) | 0.0048 (4) |
C13 | 0.0156 (4) | 0.0166 (5) | 0.0160 (4) | −0.0011 (3) | 0.0027 (3) | 0.0012 (3) |
C14 | 0.0189 (5) | 0.0195 (5) | 0.0206 (5) | −0.0004 (4) | 0.0044 (4) | −0.0027 (4) |
C15 | 0.0212 (5) | 0.0270 (5) | 0.0159 (5) | −0.0047 (4) | 0.0045 (4) | −0.0039 (4) |
C16 | 0.0209 (5) | 0.0258 (5) | 0.0135 (4) | −0.0047 (4) | 0.0003 (4) | 0.0049 (4) |
C17 | 0.0200 (5) | 0.0178 (5) | 0.0178 (5) | 0.0000 (4) | −0.0002 (4) | 0.0029 (4) |
C18 | 0.0157 (4) | 0.0169 (5) | 0.0145 (4) | −0.0007 (3) | 0.0019 (3) | 0.0002 (3) |
F1—C7 | 1.3592 (12) | C7—C8 | 1.3772 (15) |
F1—F1i | 3.1788 (16) | C8—C9 | 1.3947 (14) |
F2—C16 | 1.3596 (11) | C8—H8 | 0.95 |
F2—F2ii | 3.2490 (16) | C10—C18 | 1.4790 (14) |
O1—C1 | 1.2172 (13) | C10—C11 | 1.5181 (15) |
O2—C10 | 1.2179 (13) | C11—C12 | 1.5392 (15) |
C1—C9 | 1.4802 (14) | C11—H11A | 0.99 |
C1—C2 | 1.5152 (14) | C11—H11B | 0.99 |
C2—C3 | 1.5387 (15) | C12—C13 | 1.5118 (14) |
C2—H2A | 0.99 | C12—H12A | 0.99 |
C2—H2B | 0.99 | C12—H12B | 0.99 |
C3—C4 | 1.5140 (14) | C13—C18 | 1.3898 (14) |
C3—H3A | 0.99 | C13—C14 | 1.3967 (14) |
C3—H3B | 0.99 | C14—C15 | 1.3924 (15) |
C4—C9 | 1.3905 (14) | C14—H14 | 0.95 |
C4—C5 | 1.4000 (14) | C15—C16 | 1.3892 (16) |
C5—C6 | 1.3904 (16) | C15—H15 | 0.95 |
C5—H5 | 0.95 | C16—C17 | 1.3764 (15) |
C6—C7 | 1.3898 (17) | C17—C18 | 1.3946 (14) |
C6—H6 | 0.95 | C17—H17 | 0.95 |
F1···F1i | 3.1788 (16) | F2···F2ii | 3.2490 (16) |
C7—F1—F1i | 145.61 (8) | C8—C9—C1 | 127.39 (9) |
C16—F2—F2ii | 94.04 (6) | O2—C10—C18 | 126.26 (10) |
O1—C1—C9 | 125.92 (9) | O2—C10—C11 | 126.27 (10) |
O1—C1—C2 | 126.55 (9) | C18—C10—C11 | 107.46 (9) |
C9—C1—C2 | 107.53 (8) | C10—C11—C12 | 106.29 (8) |
C1—C2—C3 | 106.56 (8) | C10—C11—H11A | 110.5 |
C1—C2—H2A | 110.4 | C12—C11—H11A | 110.5 |
C3—C2—H2A | 110.4 | C10—C11—H11B | 110.5 |
C1—C2—H2B | 110.4 | C12—C11—H11B | 110.5 |
C3—C2—H2B | 110.4 | H11A—C11—H11B | 108.7 |
H2A—C2—H2B | 108.6 | C13—C12—C11 | 104.47 (8) |
C4—C3—C2 | 104.43 (8) | C13—C12—H12A | 110.9 |
C4—C3—H3A | 110.9 | C11—C12—H12A | 110.9 |
C2—C3—H3A | 110.9 | C13—C12—H12B | 110.9 |
C4—C3—H3B | 110.9 | C11—C12—H12B | 110.9 |
C2—C3—H3B | 110.9 | H12A—C12—H12B | 108.9 |
H3A—C3—H3B | 108.9 | C18—C13—C14 | 119.66 (9) |
C9—C4—C5 | 119.36 (10) | C18—C13—C12 | 111.56 (9) |
C9—C4—C3 | 111.52 (9) | C14—C13—C12 | 128.76 (10) |
C5—C4—C3 | 129.12 (10) | C15—C14—C13 | 118.83 (10) |
C6—C5—C4 | 118.94 (10) | C15—C14—H14 | 120.6 |
C6—C5—H5 | 120.5 | C13—C14—H14 | 120.6 |
C4—C5—H5 | 120.5 | C16—C15—C14 | 119.39 (9) |
C7—C6—C5 | 119.55 (10) | C16—C15—H15 | 120.3 |
C7—C6—H6 | 120.2 | C14—C15—H15 | 120.3 |
C5—C6—H6 | 120.2 | F2—C16—C17 | 118.56 (10) |
F1—C7—C8 | 118.46 (10) | F2—C16—C15 | 117.94 (9) |
F1—C7—C6 | 118.21 (10) | C17—C16—C15 | 123.51 (9) |
C8—C7—C6 | 123.32 (10) | C16—C17—C18 | 115.98 (10) |
C7—C8—C9 | 116.05 (10) | C16—C17—H17 | 122.0 |
C7—C8—H8 | 122.0 | C18—C17—H17 | 122.0 |
C9—C8—H8 | 122.0 | C13—C18—C17 | 122.62 (9) |
C4—C9—C8 | 122.78 (9) | C13—C18—C10 | 109.79 (9) |
C4—C9—C1 | 109.83 (9) | C17—C18—C10 | 127.58 (10) |
O2—C10—C18—C17 | −3.94 (18) | C3—C4—C5—C6 | −179.93 (10) |
O2—C10—C18—C13 | 174.94 (11) | C2—C3—C4—C9 | −2.21 (11) |
O2—C10—C11—C12 | −173.07 (11) | C2—C3—C4—C5 | 177.79 (10) |
O1—C1—C9—C8 | 1.81 (17) | C2—C1—C9—C8 | −177.56 (10) |
O1—C1—C9—C4 | −178.32 (10) | C2—C1—C9—C4 | 2.31 (11) |
O1—C1—C2—C3 | 177.04 (10) | C1—C2—C3—C4 | 3.48 (11) |
F2ii—F2—C16—C17 | −142.91 (9) | C18—C13—C14—C15 | −0.21 (15) |
F2ii—F2—C16—C15 | 37.18 (10) | C18—C10—C11—C12 | 6.57 (11) |
F2—C16—C17—C18 | −179.74 (9) | C16—C17—C18—C13 | −0.78 (15) |
F1i—F1—C7—C8 | −1.14 (19) | C16—C17—C18—C10 | 177.97 (10) |
F1i—F1—C7—C6 | 179.25 (9) | C15—C16—C17—C18 | 0.17 (16) |
F1—C7—C8—C9 | −179.49 (9) | C14—C15—C16—F2 | −179.69 (9) |
C9—C4—C5—C6 | 0.07 (15) | C14—C15—C16—C17 | 0.40 (16) |
C9—C1—C2—C3 | −3.60 (11) | C14—C13—C18—C17 | 0.82 (15) |
C7—C8—C9—C4 | 0.06 (15) | C14—C13—C18—C10 | −178.13 (9) |
C7—C8—C9—C1 | 179.91 (10) | C13—C14—C15—C16 | −0.38 (15) |
C6—C7—C8—C9 | 0.10 (16) | C12—C13—C18—C17 | 179.76 (9) |
C5—C6—C7—F1 | 179.42 (9) | C12—C13—C18—C10 | 0.81 (12) |
C5—C6—C7—C8 | −0.16 (17) | C12—C13—C14—C15 | −178.95 (10) |
C5—C4—C9—C8 | −0.14 (15) | C11—C12—C13—C18 | 3.30 (11) |
C5—C4—C9—C1 | 179.98 (9) | C11—C12—C13—C14 | −177.87 (10) |
C4—C5—C6—C7 | 0.07 (16) | C11—C10—C18—C17 | 176.42 (10) |
C3—C4—C9—C8 | 179.86 (9) | C11—C10—C18—C13 | −4.70 (12) |
C3—C4—C9—C1 | −0.02 (12) | C10—C11—C12—C13 | −5.93 (11) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1iii | 0.95 | 2.47 | 3.3873 (14) | 161 |
C14—H14···O2iv | 0.95 | 2.65 | 3.5107 (14) | 150 |
C2—H2B···F2v | 0.99 | 2.46 | 3.2062 (13) | 132 |
C6—H6···O2vi | 0.95 | 2.65 | 3.5338 (14) | 154 |
C11—H11B···O1vii | 0.99 | 2.52 | 3.3348 (13) | 140 |
C15—H15···F1i | 0.95 | 2.52 | 3.3664 (13) | 148 |
Symmetry codes: (i) −x+1, −y+1, −z; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) x+1/2, −y+3/2, z−1/2; (vii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.95 | 2.47 | 3.3873 (14) | 161.1 |
C14—H14···O2ii | 0.95 | 2.65 | 3.5107 (14) | 150.3 |
C2—H2B···F2iii | 0.99 | 2.46 | 3.2062 (13) | 132.2 |
C6—H6···O2iv | 0.95 | 2.65 | 3.5338 (14) | 154.2 |
C11—H11B···O1v | 0.99 | 2.52 | 3.3348 (13) | 139.7 |
C15—H15···F1vi | 0.95 | 2.52 | 3.3664 (13) | 148.3 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x+1/2, −y+3/2, z+1/2; (iv) x+1/2, −y+3/2, z−1/2; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+1, −z. |
Acknowledgements
This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).
References
Baker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, 116, 1435–1444. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cui, D., Zhang, C., Kawamura, M. & Shimada, S. (2004). Tetrahedron Lett. 45, 1741–1745. Web of Science CSD CrossRef CAS Google Scholar
Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garcia, J. G., Enas, J. D., VanBrocklin, H. F. & Fronczek, F. R. (1995). Acta Cryst. C51, 301–304. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Morin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461–469. CSD CrossRef CAS Web of Science Google Scholar
Musso, D. L., Cochran, F. R., Kelley, J. L., McLean, E. W., Selph, J. L., Rigdon, G. C., Orr, G. F., Davis, R. G., Cooper, B. R., Styles, V. L., Thompson, J. B. & Hall, W. R. (2003). J. Med. Chem. 46, 399–408. Web of Science CrossRef PubMed CAS Google Scholar
Ruiz, T. P., Fernández-Gómez, M., González, J. J. L., Koziol, A. E. & Roldán, J. M. G. (2004). J. Mol. Struct. 707, 33–46. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ślusarczyk, M., DeBorggraeve, W. M., Toppet, S. & Hoornaert, G. J. (2007). Eur. J. Org. Chem. 18, 2987–2994. Google Scholar
Yin, H., Liu, M. & Shao, L. (2013). Org. Lett. 15, 6042–6045. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The titular compound 6-fluoroindan-1-one may be synthesized by the Tb(OTf)3-catalyzed cyclization of 3-(4-fluorophenyl)propanoic acid (Cui et al., 2004). The substance has found laboratory applications in the synthesis of α-arylated compounds (Yin et al., 2013), the synthesis of ethyl 2-(6-fluoro-1-hydroxy-1-indanyl)acetate, a potent muscle relaxant derivative (Musso et al., 2003), and in the creation of methylene-bridged biologically active pteridine derivatives for potential hepatitis C treatments (Ślusarczyk et al., 2007). The crystal structure of the parent compound, 1-indanone, has been reported previously (Morin et al., 1974; Ruiz et al., 2004), as has the structure of an isomer of the title compound, 5-fluoroindan-1-one (Garcia et al., 1995).
The titular compound crystallizes with two molecules of 6-fluoroindan-1-one in the asymmetric unit (Figure 1). The carbonyl C—O bond lengths of 1.2172 (13) and 1.2179 (13) Å, as for the other bond lengths, are the same within the experimental error between the two independent molecules. These carbonyl C—O bond lengths are similar to those found in the structure of the parent comound, 1-indanone, 1.217 (2) Å (Ruiz et al., 2004), and in the structure of the isomeric compound 5-fluoroindan-1-one, 1.218 (2) Å (Garcia et al.,1995). The C—F bond lengths in 6-fluoroindan-1-one, 1.3592 (12) and 1.3596 (11) Å, are also very similar to that found in the structure of the isomeric compound 5-fluoroindan-1-one, 1.354 (2) Å.
The molecules pack together in the solid state to form a two-dimensional sheet parallel to the 1 0 0 plane via several intermolecular C—H···O and C—F···H interactions (Figure 2, Table 2) measuring slightly less than the sum of the van der Waals radii (Bondi, 1964). The oxygen atom in each independent molecule forms two C—H···O interactions, while each independent molecule also forms one C—F···H interaction. For a discussion of C—H···X interactions, see Desiraju & Steiner (1999). There are also two long F···F interactions linking the two-dimensional sheets, (Figure 3, Table 1), which are somewhat longer than the sum of the van der Waals radii, 2.94 Å (Bondi, 1964). For a discussion of fluorine-fluorine interactions, which can vary widely in their metrical parameters and strength, see Baker et al. (2012).