organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Fluoro­indan-1-one

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

(Received 6 June 2014; accepted 26 June 2014; online 2 July 2014)

The title compound, C9H7FO, crystallizes with two independent mol­ecules in the asymmetric unit, in which corresponding bond lengths are the same within experimental error. The five-membered ring in each molecule is almost planar, with r.m.s. deviations of 0.016 and 0.029 Å. In the crystal, mol­ecules form sheets parallel to (1 0 0) via C—H⋯O and C—H⋯F inter­actions with F⋯F contacts [3.1788 (16) and 3.2490 (16) Å] between the sheets.

Keywords: crystal structure.

Related literature

For the synthesis of 6-fluoroindan-1-one, see: Cui et al. (2004[Cui, D., Zhang, C., Kawamura, M. & Shimada, S. (2004). Tetrahedron Lett. 45, 1741-1745.]) and for its use in synthesis, see: Musso et al. (2003[Musso, D. L., Cochran, F. R., Kelley, J. L., McLean, E. W., Selph, J. L., Rigdon, G. C., Orr, G. F., Davis, R. G., Cooper, B. R., Styles, V. L., Thompson, J. B. & Hall, W. R. (2003). J. Med. Chem. 46, 399-408.]); Ślusarczyk et al. (2007[Ślusarczyk, M., DeBorggraeve, W. M., Toppet, S. & Hoornaert, G. J. (2007). Eur. J. Org. Chem. 18, 2987-2994.]); Yin et al. (2013[Yin, H., Liu, M. & Shao, L. (2013). Org. Lett. 15, 6042-6045.]). For the structure of the parent comound, 1-indanone, see: Morin et al. (1974[Morin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461-469.]) and Ruiz et al. (2004[Ruiz, T. P., Fernández-Gómez, M., González, J. J. L., Koziol, A. E. & Roldán, J. M. G. (2004). J. Mol. Struct. 707, 33-46.]), the later containing a detailed analysis of the hydrogen bonding. For a related isomeric structure, 5-fluoroindan-1-one, see: Garcia et al. (1995[Garcia, J. G., Enas, J. D., VanBrocklin, H. F. & Fronczek, F. R. (1995). Acta Cryst. C51, 301-304.]). For more information on C—H⋯X inter­actions, see Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]) and on fluorine–fluorine inter­actions in the solid state, see: Baker et al. (2012[Baker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, 116, 1435-1444.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7FO

  • Mr = 150.15

  • Monoclinic, P 21 /n

  • a = 7.1900 (4) Å

  • b = 12.4811 (6) Å

  • c = 15.8685 (8) Å

  • β = 99.453 (1)°

  • V = 1404.69 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 125 K

  • 0.37 × 0.26 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.91, Tmax = 1.00

  • 22840 measured reflections

  • 4298 independent reflections

  • 3345 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.03

  • 4298 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.47 3.3873 (14) 161
C14—H14⋯O2ii 0.95 2.65 3.5107 (14) 150
C2—H2B⋯F2iii 0.99 2.46 3.2062 (13) 132
C6—H6⋯O2iv 0.95 2.65 3.5338 (14) 154
C11—H11B⋯O1v 0.99 2.52 3.3348 (13) 140
C15—H15⋯F1vi 0.95 2.52 3.3664 (13) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

The titular compound 6-fluoroindan-1-one may be synthesized by the Tb(OTf)3-catalyzed cyclization of 3-(4-fluorophenyl)propanoic acid (Cui et al., 2004). The substance has found laboratory applications in the synthesis of α-arylated compounds (Yin et al., 2013), the synthesis of ethyl 2-(6-fluoro-1-hydroxy-1-indanyl)acetate, a potent muscle relaxant derivative (Musso et al., 2003), and in the creation of methylene-bridged biologically active pteridine derivatives for potential hepatitis C treatments (Ślusarczyk et al., 2007). The crystal structure of the parent compound, 1-indanone, has been reported previously (Morin et al., 1974; Ruiz et al., 2004), as has the structure of an isomer of the title compound, 5-fluoroindan-1-one (Garcia et al., 1995).

The titular compound crystallizes with two molecules of 6-fluoroindan-1-one in the asymmetric unit (Figure 1). The carbonyl C—O bond lengths of 1.2172 (13) and 1.2179 (13) Å, as for the other bond lengths, are the same within the experimental error between the two independent molecules. These carbonyl C—O bond lengths are similar to those found in the structure of the parent comound, 1-indanone, 1.217 (2) Å (Ruiz et al., 2004), and in the structure of the isomeric compound 5-fluoroindan-1-one, 1.218 (2) Å (Garcia et al.,1995). The C—F bond lengths in 6-fluoroindan-1-one, 1.3592 (12) and 1.3596 (11) Å, are also very similar to that found in the structure of the isomeric compound 5-fluoroindan-1-one, 1.354 (2) Å.

The molecules pack together in the solid state to form a two-dimensional sheet parallel to the 1 0 0 plane via several intermolecular C—H···O and C—F···H interactions (Figure 2, Table 2) measuring slightly less than the sum of the van der Waals radii (Bondi, 1964). The oxygen atom in each independent molecule forms two C—H···O interactions, while each independent molecule also forms one C—F···H interaction. For a discussion of C—H···X interactions, see Desiraju & Steiner (1999). There are also two long F···F interactions linking the two-dimensional sheets, (Figure 3, Table 1), which are somewhat longer than the sum of the van der Waals radii, 2.94 Å (Bondi, 1964). For a discussion of fluorine-fluorine interactions, which can vary widely in their metrical parameters and strength, see Baker et al. (2012).

Related literature top

For the synthesis of 6-fluoroindan-1-one, see: Cui et al. (2004) and for its use in synthesis, see: Musso et al. (2003); Ślusarczyk et al. (2007); Yin et al. (2013). For the structure of the parent comound, 1-indanone, see: Morin et al. (1974) and Ruiz et al. (2004), the later containing a detailed analysis of the hydrogen bonding. For a related isomeric structure, 5-fluoroindan-1-one, see: Garcia et al. (1995). For more information on C—H···X interactions, see Desiraju & Steiner (1999) and on fluorine–fluorine interactions in the solid state, see: Baker et al. (2012). For van der Waals radii, see: Bondi (1964).

Experimental top

Crystalline 6-fluoroindan-1-one (I) was purchased from Aldrich Chemical Company, USA.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 and 0.99 Å and Uiso(H) = 1.2 × Ueq(C) of the aryl and methylene C-atoms, respectively. The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules of the title compound, with atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the C—H···O and C—H···F interactions in the packing of 6-fluoroindan-1-one forming a sheet parallel to the 1 0 0 plane. Displacement ellipsoids are shown at the 50% probability level. Symmetry codes: (i) -x + 1, -y + 1, -z; (iii) -x + 3/2, y + 1/2, -z + 1/2; (iv) -x + 1/2, y - 1/2, -z + 1/2; (v) x + 1/2, -y + 3/2, z + 1/2; (vi) x + 1/2, -y + 3/2, z - 1/2; (vii) -x + 1, -y + 1, -z + 1.
[Figure 3] Fig. 3. A view of the intermolecular F···F interactions in the packing of 6-fluoroindan-1-one. Distances F1···F1i 3.1788 (16) Å, F2···F2ii 3.2490 (16) Å. Displacement ellipsoids are shown at the 50% probability level; hydrogen atoms removed for clarity. Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z.
6-Fluoroindan-1-one top
Crystal data top
C9H7FOF(000) = 624
Mr = 150.15Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.1900 (4) ÅCell parameters from 9796 reflections
b = 12.4811 (6) Åθ = 2.6–30.5°
c = 15.8685 (8) ŵ = 0.11 mm1
β = 99.453 (1)°T = 125 K
V = 1404.69 (13) Å3Plate, colourless
Z = 80.37 × 0.26 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
4298 independent reflections
Radiation source: fine-focus sealed tube3345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 2.1°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker 2007)
k = 1717
Tmin = 0.91, Tmax = 1.00l = 2222
22840 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.2949P]
where P = (Fo2 + 2Fc2)/3
4298 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H7FOV = 1404.69 (13) Å3
Mr = 150.15Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.1900 (4) ŵ = 0.11 mm1
b = 12.4811 (6) ÅT = 125 K
c = 15.8685 (8) Å0.37 × 0.26 × 0.04 mm
β = 99.453 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4298 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2007)
3345 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 1.00Rint = 0.029
22840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
4298 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.57983 (11)0.61035 (7)0.04096 (4)0.03306 (19)
F20.08173 (11)0.60328 (6)0.05655 (4)0.03227 (19)
O10.58188 (12)0.56668 (7)0.37571 (5)0.02425 (18)
O20.10060 (13)0.64991 (7)0.39289 (5)0.0290 (2)
C10.63562 (14)0.65257 (8)0.35245 (6)0.01661 (19)
C20.69797 (16)0.74848 (9)0.40858 (7)0.0209 (2)
H2A0.80320.72850.45430.025*
H2B0.59220.77560.43540.025*
C30.76215 (15)0.83443 (8)0.35003 (7)0.0198 (2)
H3A0.69040.90170.35260.024*
H3B0.89830.84980.36660.024*
C40.72154 (14)0.78578 (8)0.26152 (7)0.0170 (2)
C50.74667 (15)0.83033 (9)0.18320 (7)0.0217 (2)
H50.79570.90070.18060.026*
C60.69871 (16)0.76990 (10)0.10921 (7)0.0238 (2)
H60.71480.79860.05550.029*
C70.62701 (15)0.66714 (9)0.11444 (7)0.0218 (2)
C80.60039 (14)0.62037 (9)0.19016 (7)0.0188 (2)
H80.55130.54990.19230.023*
C90.64971 (14)0.68253 (8)0.26346 (6)0.01567 (19)
C100.14218 (14)0.56199 (9)0.36835 (6)0.0184 (2)
C110.19726 (16)0.46437 (9)0.42394 (7)0.0214 (2)
H11A0.08860.43850.44930.026*
H11B0.30160.48210.47070.026*
C120.26009 (15)0.37845 (9)0.36496 (7)0.0195 (2)
H12A0.39640.3630.3810.023*
H12B0.18840.31120.36780.023*
C130.21781 (14)0.42705 (8)0.27662 (6)0.01607 (19)
C140.24187 (15)0.38210 (9)0.19853 (7)0.0195 (2)
H140.28890.31120.1960.023*
C150.19576 (15)0.44297 (9)0.12451 (7)0.0212 (2)
H150.21170.41420.07070.025*
C160.12627 (15)0.54614 (9)0.13004 (6)0.0204 (2)
C170.10060 (15)0.59323 (8)0.20572 (7)0.0189 (2)
H170.05250.66390.20790.023*
C180.14943 (14)0.53097 (8)0.27900 (6)0.01578 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0391 (4)0.0439 (5)0.0154 (3)0.0011 (3)0.0024 (3)0.0091 (3)
F20.0434 (4)0.0365 (4)0.0151 (3)0.0035 (3)0.0006 (3)0.0100 (3)
O10.0307 (4)0.0212 (4)0.0204 (4)0.0055 (3)0.0027 (3)0.0036 (3)
O20.0401 (5)0.0244 (4)0.0227 (4)0.0082 (4)0.0053 (3)0.0045 (3)
C10.0165 (4)0.0173 (5)0.0158 (4)0.0016 (4)0.0022 (3)0.0003 (3)
C20.0274 (5)0.0192 (5)0.0165 (5)0.0002 (4)0.0044 (4)0.0029 (4)
C30.0217 (5)0.0158 (5)0.0220 (5)0.0010 (4)0.0041 (4)0.0034 (4)
C40.0163 (4)0.0160 (5)0.0192 (5)0.0021 (3)0.0039 (4)0.0005 (4)
C50.0210 (5)0.0195 (5)0.0254 (5)0.0013 (4)0.0067 (4)0.0051 (4)
C60.0224 (5)0.0307 (6)0.0193 (5)0.0050 (4)0.0070 (4)0.0061 (4)
C70.0214 (5)0.0287 (6)0.0149 (5)0.0047 (4)0.0018 (4)0.0040 (4)
C80.0184 (5)0.0195 (5)0.0179 (5)0.0009 (4)0.0013 (4)0.0024 (4)
C90.0166 (4)0.0154 (4)0.0151 (4)0.0010 (3)0.0027 (3)0.0008 (3)
C100.0187 (5)0.0205 (5)0.0159 (4)0.0010 (4)0.0026 (3)0.0004 (4)
C110.0262 (5)0.0234 (5)0.0147 (4)0.0006 (4)0.0037 (4)0.0026 (4)
C120.0214 (5)0.0191 (5)0.0182 (5)0.0026 (4)0.0040 (4)0.0048 (4)
C130.0156 (4)0.0166 (5)0.0160 (4)0.0011 (3)0.0027 (3)0.0012 (3)
C140.0189 (5)0.0195 (5)0.0206 (5)0.0004 (4)0.0044 (4)0.0027 (4)
C150.0212 (5)0.0270 (5)0.0159 (5)0.0047 (4)0.0045 (4)0.0039 (4)
C160.0209 (5)0.0258 (5)0.0135 (4)0.0047 (4)0.0003 (4)0.0049 (4)
C170.0200 (5)0.0178 (5)0.0178 (5)0.0000 (4)0.0002 (4)0.0029 (4)
C180.0157 (4)0.0169 (5)0.0145 (4)0.0007 (3)0.0019 (3)0.0002 (3)
Geometric parameters (Å, º) top
F1—C71.3592 (12)C7—C81.3772 (15)
F1—F1i3.1788 (16)C8—C91.3947 (14)
F2—C161.3596 (11)C8—H80.95
F2—F2ii3.2490 (16)C10—C181.4790 (14)
O1—C11.2172 (13)C10—C111.5181 (15)
O2—C101.2179 (13)C11—C121.5392 (15)
C1—C91.4802 (14)C11—H11A0.99
C1—C21.5152 (14)C11—H11B0.99
C2—C31.5387 (15)C12—C131.5118 (14)
C2—H2A0.99C12—H12A0.99
C2—H2B0.99C12—H12B0.99
C3—C41.5140 (14)C13—C181.3898 (14)
C3—H3A0.99C13—C141.3967 (14)
C3—H3B0.99C14—C151.3924 (15)
C4—C91.3905 (14)C14—H140.95
C4—C51.4000 (14)C15—C161.3892 (16)
C5—C61.3904 (16)C15—H150.95
C5—H50.95C16—C171.3764 (15)
C6—C71.3898 (17)C17—C181.3946 (14)
C6—H60.95C17—H170.95
F1···F1i3.1788 (16)F2···F2ii3.2490 (16)
C7—F1—F1i145.61 (8)C8—C9—C1127.39 (9)
C16—F2—F2ii94.04 (6)O2—C10—C18126.26 (10)
O1—C1—C9125.92 (9)O2—C10—C11126.27 (10)
O1—C1—C2126.55 (9)C18—C10—C11107.46 (9)
C9—C1—C2107.53 (8)C10—C11—C12106.29 (8)
C1—C2—C3106.56 (8)C10—C11—H11A110.5
C1—C2—H2A110.4C12—C11—H11A110.5
C3—C2—H2A110.4C10—C11—H11B110.5
C1—C2—H2B110.4C12—C11—H11B110.5
C3—C2—H2B110.4H11A—C11—H11B108.7
H2A—C2—H2B108.6C13—C12—C11104.47 (8)
C4—C3—C2104.43 (8)C13—C12—H12A110.9
C4—C3—H3A110.9C11—C12—H12A110.9
C2—C3—H3A110.9C13—C12—H12B110.9
C4—C3—H3B110.9C11—C12—H12B110.9
C2—C3—H3B110.9H12A—C12—H12B108.9
H3A—C3—H3B108.9C18—C13—C14119.66 (9)
C9—C4—C5119.36 (10)C18—C13—C12111.56 (9)
C9—C4—C3111.52 (9)C14—C13—C12128.76 (10)
C5—C4—C3129.12 (10)C15—C14—C13118.83 (10)
C6—C5—C4118.94 (10)C15—C14—H14120.6
C6—C5—H5120.5C13—C14—H14120.6
C4—C5—H5120.5C16—C15—C14119.39 (9)
C7—C6—C5119.55 (10)C16—C15—H15120.3
C7—C6—H6120.2C14—C15—H15120.3
C5—C6—H6120.2F2—C16—C17118.56 (10)
F1—C7—C8118.46 (10)F2—C16—C15117.94 (9)
F1—C7—C6118.21 (10)C17—C16—C15123.51 (9)
C8—C7—C6123.32 (10)C16—C17—C18115.98 (10)
C7—C8—C9116.05 (10)C16—C17—H17122.0
C7—C8—H8122.0C18—C17—H17122.0
C9—C8—H8122.0C13—C18—C17122.62 (9)
C4—C9—C8122.78 (9)C13—C18—C10109.79 (9)
C4—C9—C1109.83 (9)C17—C18—C10127.58 (10)
O2—C10—C18—C173.94 (18)C3—C4—C5—C6179.93 (10)
O2—C10—C18—C13174.94 (11)C2—C3—C4—C92.21 (11)
O2—C10—C11—C12173.07 (11)C2—C3—C4—C5177.79 (10)
O1—C1—C9—C81.81 (17)C2—C1—C9—C8177.56 (10)
O1—C1—C9—C4178.32 (10)C2—C1—C9—C42.31 (11)
O1—C1—C2—C3177.04 (10)C1—C2—C3—C43.48 (11)
F2ii—F2—C16—C17142.91 (9)C18—C13—C14—C150.21 (15)
F2ii—F2—C16—C1537.18 (10)C18—C10—C11—C126.57 (11)
F2—C16—C17—C18179.74 (9)C16—C17—C18—C130.78 (15)
F1i—F1—C7—C81.14 (19)C16—C17—C18—C10177.97 (10)
F1i—F1—C7—C6179.25 (9)C15—C16—C17—C180.17 (16)
F1—C7—C8—C9179.49 (9)C14—C15—C16—F2179.69 (9)
C9—C4—C5—C60.07 (15)C14—C15—C16—C170.40 (16)
C9—C1—C2—C33.60 (11)C14—C13—C18—C170.82 (15)
C7—C8—C9—C40.06 (15)C14—C13—C18—C10178.13 (9)
C7—C8—C9—C1179.91 (10)C13—C14—C15—C160.38 (15)
C6—C7—C8—C90.10 (16)C12—C13—C18—C17179.76 (9)
C5—C6—C7—F1179.42 (9)C12—C13—C18—C100.81 (12)
C5—C6—C7—C80.16 (17)C12—C13—C14—C15178.95 (10)
C5—C4—C9—C80.14 (15)C11—C12—C13—C183.30 (11)
C5—C4—C9—C1179.98 (9)C11—C12—C13—C14177.87 (10)
C4—C5—C6—C70.07 (16)C11—C10—C18—C17176.42 (10)
C3—C4—C9—C8179.86 (9)C11—C10—C18—C134.70 (12)
C3—C4—C9—C10.02 (12)C10—C11—C12—C135.93 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1iii0.952.473.3873 (14)161
C14—H14···O2iv0.952.653.5107 (14)150
C2—H2B···F2v0.992.463.2062 (13)132
C6—H6···O2vi0.952.653.5338 (14)154
C11—H11B···O1vii0.992.523.3348 (13)140
C15—H15···F1i0.952.523.3664 (13)148
Symmetry codes: (i) x+1, y+1, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+3/2, z+1/2; (vi) x+1/2, y+3/2, z1/2; (vii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.473.3873 (14)161.1
C14—H14···O2ii0.952.653.5107 (14)150.3
C2—H2B···F2iii0.992.463.2062 (13)132.2
C6—H6···O2iv0.952.653.5338 (14)154.2
C11—H11B···O1v0.992.523.3348 (13)139.7
C15—H15···F1vi0.952.523.3664 (13)148.3
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1, y+1, z+1; (vi) x+1, y+1, z.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationBaker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, 116, 1435–1444.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, D., Zhang, C., Kawamura, M. & Shimada, S. (2004). Tetrahedron Lett. 45, 1741–1745.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcia, J. G., Enas, J. D., VanBrocklin, H. F. & Fronczek, F. R. (1995). Acta Cryst. C51, 301–304.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461–469.  CSD CrossRef CAS Web of Science Google Scholar
First citationMusso, D. L., Cochran, F. R., Kelley, J. L., McLean, E. W., Selph, J. L., Rigdon, G. C., Orr, G. F., Davis, R. G., Cooper, B. R., Styles, V. L., Thompson, J. B. & Hall, W. R. (2003). J. Med. Chem. 46, 399–408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuiz, T. P., Fernández-Gómez, M., González, J. J. L., Koziol, A. E. & Roldán, J. M. G. (2004). J. Mol. Struct. 707, 33–46.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŚlusarczyk, M., DeBorggraeve, W. M., Toppet, S. & Hoornaert, G. J. (2007). Eur. J. Org. Chem. 18, 2987–2994.  Google Scholar
First citationYin, H., Liu, M. & Shao, L. (2013). Org. Lett. 15, 6042–6045.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds