organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o848-o849

(E)-4-[7-(2,3-Di­hydro­thieno[3,4-b][1,4]dioxin-5-yl)-2,1,3-benzo­thia­diazol-4-yl]-2-[(neo­pentyl­imino)­meth­yl]phenol

aDepartment of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin, Texas 78712, USA
*Correspondence e-mail: bholliday@cm.utexas.edu

(Received 20 May 2014; accepted 24 June 2014; online 5 July 2014)

In the title mol­ecule, C24H23N3O3S2, the benzo­thia­diazole ring system is essentially planar, with an r.m.s. deviation of 0.020 (8) Å. The thio­phene and hy­droxy-substitiuted rings form dihedral angles of 23.43 (9) and 35.45 (9)°, respectively, with the benzo­thia­diazole ring system. An intra­molecular O—H⋯N hydrogen bond is observed. In the crystal, weak C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.880 (3) Å] link mol­ecules into chains along [100]. In addition, there are short S⋯S contacts [3.532 (3) Å] which link these chains, forming a two-dimensional network parallel to (010).

Keywords: crystal structure.

Related literature

For related structures, see: Mejía et al. (2010[Mejía, M. L., Rivers, J. H., Swingle, S. F., Lu, Z., Yang, X.-P., Findlater, M., Reeske, G. & Holliday, B. J. (2010). Main Group Chem. 9, 167-191.]); Wong et al. (2008[Wong, W.-Y., Wang, X., Zhang, H.-L., Cheung, K.-Y., Fung, M.-K., Djurišić, A. B. & Chan, W.-K. (2008). J. Organomet. Chem. 693, 3603-3612.]). For the properties of 3,4-ethyl­ene­dioxy­thio­phene and benzo­thia­diazole compounds, see: Sendur et al. (2010[Sendur, M., Balan, A., Baran, D., Karabay, B. & Toppare, L. (2010). Org. Electron. 11, 1877-1885.]); Tanriverdi et al. (2012[Tanriverdi, S., Tuncagil, S. & Toppare, L. (2012). J. Macromol. Sci. Pure Appl. Chem. 49, 185-190.]); Holliday et al. (2006[Holliday, B. J., Stanford, T. B. & Swager, T. M. (2006). Chem. Mater. 18, 5649-5651.]); Ellinger et al. (2011[Ellinger, S., Graham, K. R., Shi, P., Farley, R. T., Steckler, T. T., Brookins, R. N., Taranekar, P., Mei, J., Padiha, L. A., Ensley, T. R., Hu, H., Webster, S., Hagan, D. J., Van Stryland, E. W., Schanze, K. S. & Reynolds, J. R. (2011). Chem. Mater. 23, 3805-3817.]). For the synthesis of the starting material 5-(7-(2,3-di­hydro­thieno[3,4-b][1,4]dioxin-5-yl)benzo[c][1,2,5]thia­diazol-4-yl)-2-hy­droxy­benzaldehyde, see: Dinser (2013[Dinser, J. A. (2013). MA thesis, The University of Texas at Austin, USA.]). For previous reports of S⋯S inter­actions, see: Chen et al. (2009[Chen, H.-F., Fang, Q., Yu, W.-T., Batsanov, A. S. & Howard, J. A. K. (2009). Acta Cryst. C65, o198-o201.]); Reinheimer et al. (2009[Reinheimer, E. W., Fourmigué, M. & Dunbar, K. R. (2009). J. Chem. Crystallogr. 39, 723-729.]).

[Scheme 1]

Experimental

Crystal data
  • C24H23N3O3S2

  • Mr = 465.57

  • Triclinic, [P \overline 1]

  • a = 8.040 (5) Å

  • b = 11.071 (8) Å

  • c = 12.650 (9) Å

  • α = 96.882 (13)°

  • β = 93.221 (11)°

  • γ = 96.065 (8)°

  • V = 1109.0 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 153 K

  • 0.15 × 0.07 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.830, Tmax = 1.000

  • 16304 measured reflections

  • 3899 independent reflections

  • 2670 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.168

  • S = 1.00

  • 3899 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H16⋯N3 0.98 (6) 1.64 (7) 2.569 (4) 155 (6)
C4—H4A⋯O3i 0.97 2.39 3.200 (5) 140
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. http://www.povray.org.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The multiple functionalities of the title molecule make it a promising material for a range of applications. Both benzothiadiazole and 3,4-ethylenedioxythiophene containing compounds have been utilized in a wide range of applications including photovoltaics (Sendur et al., 2010), sensors (Tanriverdi et al., 2012; Holliday et al., 2006), non-linear optics and luminescent materials (Ellinger et al., 2011).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the benzothiadiazole moeity and the thiophene ring is 23.43 (9)° and the dihedral angle between the benzothiadiazole moeity and the phenol ring is 35.45 (9)°. The geometry of the ethylenedioxythiophene moiety is similar to other ethylenedioxythiophene containing compounds reported in the literature (Mejía et al., 2010; Wong et al., 2008). In the crystal, weak C—H···O hydrogen bonds and ππ stacking interactions (centroid–centroid distance = 3.880 (3) Å) link the molecules into chains along [100] (Fig. 2). The ππ interactions involve inversion related rings containing atoms C7-C12. In addition, there are short S···S contacts (3.532 (3) Å) which link these chains forming a two-dimensional network parallel to (010) (Fig. 3). The S···S interactions compare to those observed perviously by Chen et al. (2009) and Reinheimer et al. (2009) which are in the range 3.396 (1) - 3.470 (1) Å and 3.580 (4) Å respectively. An intramolecular O—H···N hydrogen bond is also observed.

Related literature top

For related structures, see: Mejía et al. (2010); Wong et al. (2008). For the properties of 3,4-ethylenedioxythiophene and benzothiadiazole compounds, see: Sendur et al. (2010); Tanriverdi et al. (2012); Holliday et al. (2006); Ellinger et al. (2011). For the synthesis of the starting material 5-(7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)benzo[c][1,2,5]thiadiazol-4-yl)-2-hydroxybenzaldehyde, see: Dinser (2013). For previous reports of S···S interactions, see: Chen et al. (2009); Reinheimer et al. (2009).

Experimental top

The title compound was prepared by a condensation reaction between 5-(7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)benzo[c][1,2,5] thiadiazol-4-yl)-2-hydroxybenzaldehyde, prepared following Dinser (2013), and neopentylamine. The aryl aldehyde (1.41 g, 3.58 mmol) was dissolved in 120 ml of dichloromethane with the aid of sonication. To this solution was added 100 ml of ethanol followed by a concentrated solution of neopenylamine (0.24 ml, 2.05 mmol) dissolved in approximately 2 ml of ethanol. The reaction mixture was then further diluted with 98 ml of ethanol. The reaction mixture was stirred at room temperature for 5 h before the total solvent volume was reduced to approximately 100 ml by rotary evaporation at reduced pressure. Upon standing the product precipitated and was isolated by vacuum filtration. Single crystals suitable for X-ray diffraction were isolated from this sample. 1H NMR (400 MHz, CDCl3): δ 8.44 (s, 1H), 8.42 (d, 1H, J = 7.6 Hz), 8.03 (d, 1H, J = 2.4 Hz), 7.92 (dd, 1H, J = 2.2, 9.0 Hz), 7.71 (d, 1H, J = 7.6), 7.15 (d, 1H, J = 8.4 Hz), 6.60 (s, 1H), 4.44 (m, 2H), 4.34 (m, 2H), 3.42 (s, 1H), 1.03 (s, 9H). FTIR: ν = 1633 cm-1 (C=N).

Refinement top

The hydroxy H atom and the H atom bonded to C19 were refined independently with isotropic displacement parameters. All other H atoms were positioned geometrically and refined using a riding-model approximation, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 times Ueq(C) or Uiso(H) = 1.5 times Ueq(Cmethyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), POV-RAY (Cason, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure viewed along the b axis. Interactions are shown between O3 and H4a of neighboring molecules.
[Figure 3] Fig. 3. Crystal structure viewed along the a axis. Interactions are shown between S1 and S1 of neighboring molecules.
(E)-4-[7-(2,3-Dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,1,3-benzothiadiazol-4-yl]-2-[(neopentylimino)methyl]phenol top
Crystal data top
C24H23N3O3S2Z = 2
Mr = 465.57F(000) = 488
Triclinic, P1Dx = 1.394 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 8.040 (5) ÅCell parameters from 1661 reflections
b = 11.071 (8) Åθ = 2.3–31.9°
c = 12.650 (9) ŵ = 0.27 mm1
α = 96.882 (13)°T = 153 K
β = 93.221 (11)°Prism, orange
γ = 96.065 (8)°0.15 × 0.07 × 0.05 mm
V = 1109.0 (13) Å3
Data collection top
Rigaku Mercury2
diffractometer
3899 independent reflections
Radiation source: fine-focus sealed tube2670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
k = 1313
Tmin = 0.830, Tmax = 1.000l = 1515
16304 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0903P)2]
where P = (Fo2 + 2Fc2)/3
3899 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C24H23N3O3S2γ = 96.065 (8)°
Mr = 465.57V = 1109.0 (13) Å3
Triclinic, P1Z = 2
a = 8.040 (5) ÅMo Kα radiation
b = 11.071 (8) ŵ = 0.27 mm1
c = 12.650 (9) ÅT = 153 K
α = 96.882 (13)°0.15 × 0.07 × 0.05 mm
β = 93.221 (11)°
Data collection top
Rigaku Mercury2
diffractometer
3899 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
2670 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 1.000Rint = 0.100
16304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.26 e Å3
3899 reflectionsΔρmin = 0.30 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50615 (13)0.46796 (9)0.86018 (8)0.0338 (3)
S20.60437 (14)0.82607 (9)0.72634 (8)0.0357 (3)
O10.3551 (3)0.1211 (2)0.8028 (2)0.0355 (7)
O31.2110 (3)0.8933 (2)0.2468 (2)0.0313 (6)
N31.1173 (4)0.7203 (3)0.0944 (2)0.0275 (7)
N20.7150 (4)0.8099 (3)0.6241 (2)0.0282 (7)
N10.5568 (4)0.6858 (3)0.7444 (2)0.0300 (8)
C130.9076 (4)0.7017 (3)0.4432 (3)0.0238 (8)
C120.6283 (4)0.6169 (3)0.6687 (3)0.0234 (8)
C171.0179 (4)0.7185 (3)0.2689 (3)0.0234 (8)
C100.8047 (4)0.6320 (3)0.5124 (3)0.0232 (8)
C60.5350 (4)0.4111 (3)0.7290 (3)0.0244 (8)
C110.7204 (4)0.6888 (3)0.5992 (3)0.0233 (8)
C40.4350 (5)0.0899 (3)0.6203 (3)0.0283 (9)
H4A0.53430.05410.64240.034*
H4B0.39570.05030.54950.034*
C180.9175 (4)0.6575 (3)0.3365 (3)0.0266 (8)
H180.85440.58400.30910.032*
C10.4257 (5)0.3276 (3)0.8895 (3)0.0316 (9)
H10.39210.31260.95630.038*
C161.1143 (4)0.8288 (3)0.3098 (3)0.0246 (8)
C70.6171 (4)0.4855 (3)0.6544 (3)0.0222 (8)
C30.3020 (5)0.0654 (3)0.6958 (3)0.0321 (9)
H3A0.20050.09750.67210.039*
H3B0.27660.02230.69530.039*
C20.4171 (4)0.2411 (3)0.8038 (3)0.0267 (8)
C90.7834 (4)0.5067 (3)0.5003 (3)0.0271 (9)
H90.83170.46580.44340.033*
C151.1051 (4)0.8750 (3)0.4161 (3)0.0269 (9)
H151.16700.94900.44340.032*
C201.1119 (5)0.6696 (3)0.0180 (3)0.0324 (9)
H20A1.01310.61060.03490.039*
H20B1.20960.62670.03010.039*
C80.6936 (4)0.4353 (3)0.5676 (3)0.0263 (8)
H80.68560.35050.55290.032*
C50.4799 (4)0.2883 (3)0.7122 (3)0.0223 (8)
C141.0056 (4)0.8128 (3)0.4820 (3)0.0248 (8)
H141.00330.84480.55320.030*
C191.0201 (5)0.6693 (3)0.1565 (3)0.0269 (9)
O20.4793 (3)0.2186 (2)0.61587 (19)0.0285 (6)
C221.1032 (6)0.7054 (4)0.2067 (3)0.0497 (12)
H22A1.20230.66510.21610.075*
H22B1.09840.76540.25540.075*
H22C1.00590.64610.22060.075*
C211.1078 (5)0.7685 (4)0.0920 (3)0.0395 (10)
C231.2670 (7)0.8590 (4)0.0682 (4)0.0610 (15)
H23A1.36360.81630.07950.091*
H23B1.27200.89630.00460.091*
H23C1.26500.92130.11490.091*
C240.9523 (7)0.8333 (5)0.0752 (4)0.0657 (15)
H24A0.95000.89640.12090.099*
H24B0.95440.86910.00210.099*
H24C0.85410.77540.09190.099*
H190.946 (4)0.594 (4)0.131 (3)0.030 (10)*
H161.202 (7)0.837 (6)0.180 (5)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0488 (6)0.0254 (6)0.0260 (6)0.0024 (5)0.0096 (5)0.0012 (4)
S20.0518 (7)0.0221 (5)0.0359 (6)0.0065 (5)0.0179 (5)0.0056 (4)
O10.0512 (17)0.0247 (15)0.0291 (15)0.0056 (13)0.0027 (13)0.0064 (12)
O30.0327 (14)0.0299 (15)0.0296 (15)0.0076 (12)0.0082 (12)0.0044 (12)
N30.0350 (17)0.0238 (17)0.0247 (17)0.0027 (14)0.0082 (14)0.0045 (14)
N20.0361 (18)0.0239 (17)0.0261 (18)0.0049 (14)0.0092 (14)0.0044 (14)
N10.0374 (18)0.0250 (17)0.0292 (18)0.0056 (14)0.0108 (15)0.0044 (14)
C130.0249 (19)0.0203 (19)0.027 (2)0.0017 (15)0.0036 (16)0.0043 (16)
C120.0226 (18)0.023 (2)0.025 (2)0.0034 (15)0.0001 (16)0.0063 (16)
C170.0268 (19)0.0218 (19)0.0216 (19)0.0042 (15)0.0018 (16)0.0014 (15)
C100.0228 (18)0.023 (2)0.024 (2)0.0024 (15)0.0042 (15)0.0050 (16)
C60.0288 (19)0.023 (2)0.023 (2)0.0062 (16)0.0048 (16)0.0049 (15)
C110.0264 (19)0.0202 (19)0.0238 (19)0.0038 (15)0.0017 (16)0.0042 (15)
C40.033 (2)0.0195 (19)0.031 (2)0.0030 (16)0.0007 (17)0.0024 (16)
C180.0257 (19)0.021 (2)0.033 (2)0.0017 (16)0.0057 (17)0.0041 (16)
C10.041 (2)0.032 (2)0.022 (2)0.0002 (18)0.0082 (17)0.0071 (17)
C160.0185 (17)0.028 (2)0.029 (2)0.0018 (15)0.0062 (15)0.0071 (16)
C70.0220 (18)0.0224 (19)0.0229 (19)0.0021 (15)0.0028 (15)0.0056 (15)
C30.036 (2)0.025 (2)0.035 (2)0.0021 (17)0.0007 (18)0.0065 (17)
C20.031 (2)0.024 (2)0.026 (2)0.0004 (16)0.0069 (16)0.0071 (16)
C90.033 (2)0.026 (2)0.023 (2)0.0038 (17)0.0101 (16)0.0018 (16)
C150.0237 (19)0.023 (2)0.032 (2)0.0043 (16)0.0007 (16)0.0013 (16)
C200.042 (2)0.028 (2)0.028 (2)0.0037 (18)0.0107 (18)0.0045 (17)
C80.031 (2)0.0170 (19)0.032 (2)0.0043 (16)0.0066 (17)0.0046 (16)
C50.0263 (18)0.0205 (19)0.0192 (19)0.0022 (15)0.0007 (15)0.0003 (15)
C140.0256 (19)0.024 (2)0.024 (2)0.0002 (16)0.0008 (16)0.0037 (16)
C190.035 (2)0.021 (2)0.025 (2)0.0041 (17)0.0053 (17)0.0015 (16)
O20.0390 (15)0.0207 (13)0.0248 (14)0.0011 (11)0.0063 (12)0.0003 (11)
C220.071 (3)0.052 (3)0.025 (2)0.003 (2)0.002 (2)0.010 (2)
C210.054 (3)0.038 (3)0.027 (2)0.005 (2)0.003 (2)0.0107 (19)
C230.091 (4)0.047 (3)0.041 (3)0.023 (3)0.011 (3)0.013 (2)
C240.085 (4)0.063 (4)0.058 (3)0.039 (3)0.002 (3)0.018 (3)
Geometric parameters (Å, º) top
S1—C11.710 (4)C1—H10.9300
S1—C61.740 (4)C16—C151.389 (5)
S2—N11.606 (3)C7—C81.376 (5)
S2—N21.613 (3)C3—H3A0.9700
O1—C21.367 (4)C3—H3B0.9700
O1—C31.440 (5)C2—C51.424 (5)
O3—C161.356 (4)C9—C81.408 (5)
O3—H160.98 (6)C9—H90.9300
N3—C191.276 (5)C15—C141.380 (5)
N3—C201.461 (5)C15—H150.9300
N2—C111.346 (5)C20—C211.525 (5)
N1—C121.345 (5)C20—H20A0.9700
C13—C181.389 (5)C20—H20B0.9700
C13—C141.408 (5)C8—H80.9300
C13—C101.468 (5)C5—O21.362 (4)
C12—C71.437 (5)C14—H140.9300
C12—C111.439 (5)C19—H190.98 (4)
C17—C181.394 (5)C22—C211.530 (6)
C17—C161.401 (5)C22—H22A0.9600
C17—C191.462 (5)C22—H22B0.9600
C10—C91.368 (5)C22—H22C0.9600
C10—C111.438 (5)C21—C241.519 (6)
C6—C51.372 (5)C21—C231.532 (6)
C6—C71.466 (5)C23—H23A0.9600
C4—O21.439 (4)C23—H23B0.9600
C4—C31.498 (5)C23—H23C0.9600
C4—H4A0.9700C24—H24A0.9600
C4—H4B0.9700C24—H24B0.9600
C18—H180.9300C24—H24C0.9600
C1—C21.351 (5)
C1—S1—C692.66 (18)O1—C2—C5122.6 (3)
N1—S2—N2100.98 (16)C10—C9—C8124.8 (3)
C2—O1—C3110.9 (3)C10—C9—H9117.6
C16—O3—H16102 (4)C8—C9—H9117.6
C19—N3—C20119.5 (3)C14—C15—C16121.1 (3)
C11—N2—S2106.5 (2)C14—C15—H15119.5
C12—N1—S2106.8 (2)C16—C15—H15119.5
C18—C13—C14116.9 (3)N3—C20—C21112.1 (3)
C18—C13—C10120.8 (3)N3—C20—H20A109.2
C14—C13—C10122.2 (3)C21—C20—H20A109.2
N1—C12—C7125.8 (3)N3—C20—H20B109.2
N1—C12—C11112.9 (3)C21—C20—H20B109.2
C7—C12—C11121.4 (3)H20A—C20—H20B107.9
C18—C17—C16118.9 (3)C7—C8—C9122.9 (3)
C18—C17—C19120.4 (3)C7—C8—H8118.6
C16—C17—C19120.6 (3)C9—C8—H8118.6
C9—C10—C11114.4 (3)O2—C5—C6123.3 (3)
C9—C10—C13122.4 (3)O2—C5—C2122.8 (3)
C11—C10—C13123.2 (3)C6—C5—C2113.8 (3)
C5—C6—C7127.6 (3)C15—C14—C13121.2 (3)
C5—C6—S1109.2 (3)C15—C14—H14119.4
C7—C6—S1123.1 (3)C13—C14—H14119.4
N2—C11—C10125.8 (3)N3—C19—C17121.5 (3)
N2—C11—C12112.8 (3)N3—C19—H19121 (2)
C10—C11—C12121.3 (3)C17—C19—H19118 (2)
O2—C4—C3112.8 (3)C5—O2—C4113.3 (3)
O2—C4—H4A109.0C21—C22—H22A109.5
C3—C4—H4A109.0C21—C22—H22B109.5
O2—C4—H4B109.0H22A—C22—H22B109.5
C3—C4—H4B109.0C21—C22—H22C109.5
H4A—C4—H4B107.8H22A—C22—H22C109.5
C13—C18—C17122.8 (3)H22B—C22—H22C109.5
C13—C18—H18118.6C24—C21—C20109.2 (4)
C17—C18—H18118.6C24—C21—C23110.8 (4)
C2—C1—S1111.8 (3)C20—C21—C23109.3 (4)
C2—C1—H1124.1C24—C21—C22110.5 (4)
S1—C1—H1124.1C20—C21—C22107.6 (3)
O3—C16—C15119.6 (3)C23—C21—C22109.5 (4)
O3—C16—C17121.3 (3)C21—C23—H23A109.5
C15—C16—C17119.1 (3)C21—C23—H23B109.5
C8—C7—C12115.1 (3)H23A—C23—H23B109.5
C8—C7—C6122.6 (3)C21—C23—H23C109.5
C12—C7—C6122.2 (3)H23A—C23—H23C109.5
O1—C3—C4111.3 (3)H23B—C23—H23C109.5
O1—C3—H3A109.4C21—C24—H24A109.5
C4—C3—H3A109.4C21—C24—H24B109.5
O1—C3—H3B109.4H24A—C24—H24B109.5
C4—C3—H3B109.4C21—C24—H24C109.5
H3A—C3—H3B108.0H24A—C24—H24C109.5
C1—C2—O1124.9 (3)H24B—C24—H24C109.5
C1—C2—C5112.5 (3)
N1—S2—N2—C110.4 (3)S1—C6—C7—C1222.0 (5)
N2—S2—N1—C120.2 (3)C2—O1—C3—C449.4 (4)
S2—N1—C12—C7179.5 (3)O2—C4—C3—O159.5 (4)
S2—N1—C12—C110.1 (4)S1—C1—C2—O1178.6 (3)
C18—C13—C10—C933.4 (5)S1—C1—C2—C51.2 (4)
C14—C13—C10—C9144.0 (4)C3—O1—C2—C1157.4 (4)
C18—C13—C10—C11147.7 (3)C3—O1—C2—C522.4 (5)
C14—C13—C10—C1135.0 (5)C11—C10—C9—C82.5 (5)
C1—S1—C6—C51.0 (3)C13—C10—C9—C8176.5 (3)
C1—S1—C6—C7175.1 (3)O3—C16—C15—C14178.8 (3)
S2—N2—C11—C10179.5 (3)C17—C16—C15—C141.3 (5)
S2—N2—C11—C120.5 (4)C19—N3—C20—C21133.7 (4)
C9—C10—C11—N2176.4 (3)C12—C7—C8—C92.9 (5)
C13—C10—C11—N24.6 (6)C6—C7—C8—C9175.1 (3)
C9—C10—C11—C122.5 (5)C10—C9—C8—C70.2 (6)
C13—C10—C11—C12176.5 (3)C7—C6—C5—O27.0 (6)
N1—C12—C11—N20.4 (4)S1—C6—C5—O2177.2 (3)
C7—C12—C11—N2179.2 (3)C7—C6—C5—C2175.3 (3)
N1—C12—C11—C10179.4 (3)S1—C6—C5—C20.5 (4)
C7—C12—C11—C100.2 (5)C1—C2—C5—O2178.1 (3)
C14—C13—C18—C170.3 (5)O1—C2—C5—O21.7 (6)
C10—C13—C18—C17177.8 (3)C1—C2—C5—C60.4 (5)
C16—C17—C18—C130.5 (5)O1—C2—C5—C6179.4 (3)
C19—C17—C18—C13178.4 (3)C16—C15—C14—C131.2 (5)
C6—S1—C1—C21.3 (3)C18—C13—C14—C150.7 (5)
C18—C17—C16—O3178.4 (3)C10—C13—C14—C15178.1 (3)
C19—C17—C16—O30.5 (5)C20—N3—C19—C17178.4 (3)
C18—C17—C16—C150.9 (5)C18—C17—C19—N3176.4 (3)
C19—C17—C16—C15177.9 (3)C16—C17—C19—N34.7 (5)
N1—C12—C7—C8176.7 (3)C6—C5—O2—C4173.0 (3)
C11—C12—C7—C82.8 (5)C2—C5—O2—C49.5 (5)
N1—C12—C7—C65.3 (5)C3—C4—O2—C537.3 (4)
C11—C12—C7—C6175.2 (3)N3—C20—C21—C2460.4 (5)
C5—C6—C7—C819.5 (6)N3—C20—C21—C2361.0 (5)
S1—C6—C7—C8155.9 (3)N3—C20—C21—C22179.7 (3)
C5—C6—C7—C12162.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H16···N30.98 (6)1.64 (7)2.569 (4)155 (6)
C4—H4A···O3i0.972.393.200 (5)140
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H16···N30.98 (6)1.64 (7)2.569 (4)155 (6)
C4—H4A···O3i0.972.393.200 (5)140
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The data were collected using instrumentation purchased with funds provided by the National Science Foundation (grant No. CHE-0741973). The Welch Foundation (grant No. F-1631) and the National Science Foundation (grant No. CHE-0847763) are acknowledged for financial support of this research.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. http://www.povray.org.  Google Scholar
First citationChen, H.-F., Fang, Q., Yu, W.-T., Batsanov, A. S. & Howard, J. A. K. (2009). Acta Cryst. C65, o198–o201.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDinser, J. A. (2013). MA thesis, The University of Texas at Austin, USA.  Google Scholar
First citationEllinger, S., Graham, K. R., Shi, P., Farley, R. T., Steckler, T. T., Brookins, R. N., Taranekar, P., Mei, J., Padiha, L. A., Ensley, T. R., Hu, H., Webster, S., Hagan, D. J., Van Stryland, E. W., Schanze, K. S. & Reynolds, J. R. (2011). Chem. Mater. 23, 3805–3817.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHolliday, B. J., Stanford, T. B. & Swager, T. M. (2006). Chem. Mater. 18, 5649–5651.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMejía, M. L., Rivers, J. H., Swingle, S. F., Lu, Z., Yang, X.-P., Findlater, M., Reeske, G. & Holliday, B. J. (2010). Main Group Chem. 9, 167–191.  Google Scholar
First citationReinheimer, E. W., Fourmigué, M. & Dunbar, K. R. (2009). J. Chem. Crystallogr. 39, 723–729.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSendur, M., Balan, A., Baran, D., Karabay, B. & Toppare, L. (2010). Org. Electron. 11, 1877–1885.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanriverdi, S., Tuncagil, S. & Toppare, L. (2012). J. Macromol. Sci. Pure Appl. Chem. 49, 185–190.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, W.-Y., Wang, X., Zhang, H.-L., Cheung, K.-Y., Fung, M.-K., Djurišić, A. B. & Chan, W.-K. (2008). J. Organomet. Chem. 693, 3603–3612.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o848-o849
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds