metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Methyl­benzo­nitrile-1κN)-cis-tetra­kis(μ-N-phenyl­acetamidato)-1:2κ4N:O;1:2κ4O:N-dirhodium(II)(RhRh)

aDepartment of Chemistry, East Tennessee State University, PO Box 70695, Johnson City, TN 37614, USA
*Correspondence e-mail: eaglec@etsu.edu

Edited by J. T. Mague, Tulane University, USA (Received 13 June 2014; accepted 9 July 2014; online 23 July 2014)

The complex molecule of the title compound, [Rh2{N(C6H5)COCH3}4(NCC7H7)], has crystallographically-imposed mirror symmetry. The four acetamide ligands bridging the dirhodium core are arranged in a 2,2-cis manner with two N atoms and two O atoms coordinating to the unique RhII atom cis to one another. The Neq—Rh—Rh—Oeq torsion angles on the acetamide bridge are 0.75 (7) and 1.99 (9)°. The axial nitrile ligand completes the distorted octa­hedral coordination sphere of one RhII atom and shows a nonlinear coordination, with an Rh—N—C bond angle of 162.8 (5)°; the N—C bond length is 1.154 (7) Å.

Keywords: crystal structure.

Related literature

For the synthesis and structure of four related compounds, see: Lifsey et al. (1987[Lifsey, R. S., Lin, X. Q., Chavan, M. Y., Ahsan, M. Q., Kadish, K. M. & Bear, J. L. (1987). Inorg. Chem. 26, 830-836.]); Eagle et al. (2000[Eagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). J. Organomet. Chem. 596, 90-94.], 2012[Eagle, C. T., Kpogo, K. K., Zink, L. C. & Smith, A. E. (2012). Acta Cryst. E68, m877.], 2013a[Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. & Quarshie, F. (2013a). Acta Cryst. E69, m639.],b[Eagle, C. T., Quarshie, F., Ketron, M. E. & Atem-Tambe, N. (2013b). Acta Cryst. E69, m329.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh2(C8H8NO)4(C8H7N)]

  • Mr = 859.59

  • Orthorhombic, P n m a

  • a = 15.3319 (14) Å

  • b = 18.3248 (16) Å

  • c = 12.9564 (12) Å

  • V = 3640.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 223 K

  • 0.17 × 0.15 × 0.14 mm

Data collection
  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.664, Tmax = 0.873

  • 36328 measured reflections

  • 4292 independent reflections

  • 3154 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.089

  • S = 1.05

  • 4292 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2010[Rigaku (2010). CrystalStructure and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Experimental top

Synthesis and crystallization top

Approximately 10mg of cis-tetra­kis[µ-N-(phenyl)­acetamidato]-κ4N:O;κ4O:N dirhodium(II)] was dissolved in 18 mL of di­chloro­methane. 4µL of neat 3-methyl benzo­nitrile and 2µL of acetone were then added to this solution via a gas-tight syringe turning the solution from forest green to dark blue. Crystals grew over a two week period via vapor diffusion. From the structure determination compound 1 is an adduct of cis-tetra­kis[µ-N-(phenyl)­acetamidato]-κ4N:O;κ4O:N rhodium(II)] with 3-methyl benzo­nitrile in one axial site.

Refinement top

H-atoms were included in calculated positions with C—H = 0.93 - 0.96 and included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the attached atom. H-atoms attached to C24 are disordered across the mirror plane.

The second parameter on the SHELXL weighting line has a large value (7.37) which may arise from inadequacies in the absorption correction.

Results and discussion top

Previous papers report the structures of the related complexes 2,2-trans-Rh2[N(C6H5)COCH3]4·2NCC6H5 (2) (Eagle et al., 2000), 2,2-trans-Rh2[N(C9H11)COCH3]4·2NCC6H5 (3) (Eagle et al., 2012), 2,2-cis-[Rh2(N(C6H5)COCH3)4]·2NCC6H5 (4) (Eagle et al., 2013b) and 2,2-trans-Rh2[N(C6H5)COCH3]4·NCC7H7 (5) (Eagle et al., 2013a). The numbering scheme of the title compound is adopted from that of compound 2.

The axial rhodium-nitro­gen-carbon bond angle for 1, 162.8 (5)° (Fig.1) is distinctly non-linear which is different from those found in compound 2 (178.5 (5)° and 169.3 (5)°), and compound 3 (180°; imposed by space group symmetry), but similar to those found in compound 4 (167.14 (15)°) and compound 5 (166.4 (4)°). The axial carbon–nitro­gen bond length in 1 is 1.154 (7) Å which is comparable to corresponding distances found in 2 (1.135 (8) Å and 1.145 (8) Å) as well as 4 (1.135 (3) Å) and 5 (1.135 (3) Å) and slightly longer than 3 (1.106 (6) Å). The [Rh2[N(C6H5)COCH3)4] portion of compound 1 has approximate -4 symmetry with non-eclipsed Neq–Rh–Rh–Oeq torsion angles around each acetamide bridge of 0.75 (7)° or 1.99 (9)°. These can be compared to the range of 9.03° and 11.89° in 2 , 1.12 (9)° in 3, the range between 1.62 (4)° and 1.78 (4)° in 4 and 12.55 (11)° or 14.04 (8)° in 5. There are no unusually short inter­molecular distances.

The infrared absorption spectum of compound 1 showed bands at 2338 cm-1 and 2359 cm-1 attributable to carbon–nitro­gen bond stretching modes. The corresponding band for uncomplexed 3-methyl­benzo­nitrile appears at 2228 cm-1. This indicates that there is a shortening of the carbon–nitro­gen bond and a stronger σ-inter­action with the rhodium metal compared to the π-back bonding which occurs upon complexation with trans-tetra­kis[µ-N-(phenyl)­acetamidato]-κ4N:O;κ4O:N rhodium(II)].

Related literature top

For the synthesis and structure of four related compounds, see: Lifsey et al. (1987); Eagle et al. (2000, 2012, 2013a,b).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2010); cell refinement: PROCESS-AUTO (Rigaku, 2010); data reduction: PROCESS-AUTO (Rigaku, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP of the title compound with 30% probability ellipsoids. Hydrogen atoms are drawn as small spheres.
(3-Methylbenzonitrile-1κN)-cis-tetrakis(µ-N-phenylacetamidato)-1:2κ4N:O;1:2κ4O:N-dirhodium(II)(RhRh) top
Crystal data top
[Rh2(C8H8NO)4(C8H7N)]F(000) = 1744.00
Mr = 859.59Dx = 1.568 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2nCell parameters from 27167 reflections
a = 15.3319 (14) Åθ = 3.0–27.6°
b = 18.3248 (16) ŵ = 0.95 mm1
c = 12.9564 (12) ÅT = 223 K
V = 3640.2 (6) Å3Chunk, green
Z = 40.17 × 0.15 × 0.14 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
3154 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.086
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1919
Tmin = 0.664, Tmax = 0.873k = 2323
36328 measured reflectionsl = 1616
4292 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0277P)2 + 7.3733P]
where P = (Fo2 + 2Fc2)/3
4292 reflections(Δ/σ)max = 0.005
250 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Rh2(C8H8NO)4(C8H7N)]V = 3640.2 (6) Å3
Mr = 859.59Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.3319 (14) ŵ = 0.95 mm1
b = 18.3248 (16) ÅT = 223 K
c = 12.9564 (12) Å0.17 × 0.15 × 0.14 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
4292 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
3154 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.873Rint = 0.086
36328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 0.75 e Å3
4292 reflectionsΔρmin = 0.50 e Å3
250 parameters
Special details top

Geometry. Compound 1 is coordinated by 3-methyl benzonitrile to only one axial site. In compounds 2 through 4 there are no methyl groups on the benzonitrile ligand and each of them has a benzonitrile ligand attached in each axial site. Like compound 1, compound 5 is coordinated by 3-methyl benzonitrile to only one axial site, however compound 5 exists as the trans-acetamide isomer, whereas compound 1 is the cis-acetamide isomer. The predominance of σ-bonding in the rhodium-nitrogen-carbon bond system (and lower affect of π-back bonding) is the likely cause of this deviation from linearity for compound 1, which has a similar rhodium-nitrogen-carbon angle as compound 5. The packing diagram shows that two acetamide phenyl rings on the same rhodium are stacked upon each other.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.47995 (2)0.25000.52236 (3)0.02157 (11)
Rh20.32933 (2)0.25000.46954 (3)0.02139 (11)
O10.35639 (16)0.32962 (14)0.36333 (19)0.0294 (6)
O20.44972 (15)0.16995 (14)0.62786 (18)0.0254 (6)
N10.49816 (19)0.33240 (17)0.4172 (2)0.0262 (7)
N20.30842 (19)0.17003 (16)0.5753 (2)0.0237 (6)
N30.6160 (3)0.25000.5704 (4)0.0336 (11)
C10.4333 (2)0.3578 (2)0.3624 (3)0.0273 (8)
C20.4427 (3)0.4243 (2)0.2942 (3)0.0401 (10)
H2A0.49580.45010.31210.048*
H2B0.39300.45620.30430.048*
H2C0.44530.40920.22260.048*
C30.3715 (2)0.1440 (2)0.6319 (3)0.0252 (8)
C40.3608 (3)0.0811 (2)0.7052 (3)0.0342 (9)
H4A0.40900.04730.69660.041*
H4B0.30640.05620.69080.041*
H4C0.36020.09910.77560.041*
C50.5811 (2)0.3681 (2)0.4141 (3)0.0283 (8)
C60.6393 (3)0.3544 (2)0.3362 (3)0.0342 (9)
H60.62320.32310.28190.041*
C70.7218 (3)0.3860 (2)0.3363 (3)0.0386 (10)
H70.76110.37660.28220.046*
C80.7452 (3)0.4311 (2)0.4159 (4)0.0428 (11)
H80.80080.45270.41630.051*
C90.6879 (3)0.4451 (3)0.4957 (4)0.0457 (11)
H90.70470.47550.55060.055*
C100.6056 (3)0.4140 (2)0.4942 (3)0.0373 (10)
H100.56610.42400.54780.045*
C110.2218 (2)0.1406 (2)0.5787 (3)0.0270 (8)
C120.1718 (3)0.1409 (2)0.6679 (3)0.0344 (9)
H120.19440.16080.72910.041*
C130.0885 (3)0.1117 (2)0.6669 (4)0.0423 (11)
H130.05550.11120.72800.051*
C140.0535 (3)0.0835 (2)0.5780 (4)0.0464 (12)
H140.00280.06330.57840.056*
C150.1015 (3)0.0850 (2)0.4881 (4)0.0424 (11)
H150.07730.06680.42660.051*
C160.1855 (3)0.1134 (2)0.4879 (3)0.0334 (9)
H160.21800.11420.42630.040*
C170.6913 (4)0.25000.5696 (5)0.0339 (13)
C180.7854 (3)0.25000.5655 (5)0.0295 (12)
C190.8285 (4)0.25000.4693 (4)0.0331 (13)
H190.79530.25000.40830.040*
C200.9168 (4)0.25000.4626 (4)0.0356 (14)
C210.9642 (4)0.25000.5533 (4)0.0315 (13)
H211.02550.25000.55010.038*
C220.9239 (4)0.25000.6481 (4)0.0354 (14)
H220.95780.25000.70850.042*
C230.8346 (4)0.25000.6552 (4)0.0317 (13)
H230.80720.25000.72000.038*
C240.9623 (5)0.25000.3590 (5)0.0500 (18)
H24A0.92340.26970.30700.060*0.5
H24B0.97830.20040.34070.060*0.5
H24C1.01440.27990.36300.060*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.0146 (2)0.0287 (2)0.0214 (2)0.0000.00038 (16)0.000
Rh20.0151 (2)0.0283 (2)0.0207 (2)0.0000.00015 (16)0.000
O10.0226 (14)0.0381 (15)0.0275 (13)0.0035 (12)0.0011 (11)0.0101 (12)
O20.0185 (13)0.0331 (15)0.0245 (13)0.0011 (11)0.0004 (10)0.0033 (11)
N10.0205 (16)0.0297 (17)0.0284 (16)0.0020 (13)0.0027 (13)0.0021 (14)
N20.0173 (15)0.0270 (16)0.0267 (15)0.0019 (13)0.0004 (13)0.0021 (14)
N30.018 (2)0.040 (3)0.043 (3)0.0000.004 (2)0.000
C10.025 (2)0.034 (2)0.0230 (18)0.0017 (17)0.0019 (16)0.0006 (16)
C20.031 (2)0.044 (3)0.045 (2)0.004 (2)0.001 (2)0.014 (2)
C30.0210 (19)0.029 (2)0.0253 (18)0.0006 (16)0.0037 (15)0.0027 (16)
C40.029 (2)0.033 (2)0.041 (2)0.0041 (18)0.0036 (18)0.0046 (19)
C50.025 (2)0.029 (2)0.031 (2)0.0025 (16)0.0002 (16)0.0043 (17)
C60.031 (2)0.037 (2)0.034 (2)0.0065 (19)0.0060 (18)0.0054 (19)
C70.024 (2)0.040 (2)0.052 (3)0.0002 (18)0.0121 (19)0.000 (2)
C80.027 (2)0.044 (3)0.058 (3)0.008 (2)0.002 (2)0.003 (2)
C90.044 (3)0.048 (3)0.046 (3)0.014 (2)0.004 (2)0.009 (2)
C100.033 (2)0.042 (2)0.037 (2)0.0073 (19)0.0066 (18)0.004 (2)
C110.0205 (19)0.026 (2)0.034 (2)0.0012 (15)0.0014 (16)0.0012 (18)
C120.027 (2)0.037 (2)0.039 (2)0.0050 (18)0.0002 (18)0.0017 (19)
C130.028 (2)0.045 (3)0.053 (3)0.003 (2)0.010 (2)0.008 (2)
C140.021 (2)0.041 (3)0.077 (3)0.0094 (19)0.001 (2)0.007 (3)
C150.030 (2)0.038 (2)0.059 (3)0.0072 (19)0.011 (2)0.002 (2)
C160.029 (2)0.037 (2)0.034 (2)0.0027 (17)0.0006 (17)0.0021 (19)
C170.032 (3)0.030 (3)0.040 (3)0.0000.006 (3)0.000
C180.019 (3)0.030 (3)0.040 (3)0.0000.004 (2)0.000
C190.034 (3)0.035 (3)0.030 (3)0.0000.007 (3)0.000
C200.039 (3)0.032 (3)0.035 (3)0.0000.001 (3)0.000
C210.027 (3)0.035 (3)0.033 (3)0.0000.000 (2)0.000
C220.024 (3)0.048 (4)0.034 (3)0.0000.005 (2)0.000
C230.032 (3)0.040 (3)0.024 (3)0.0000.002 (2)0.000
C240.050 (4)0.067 (5)0.033 (3)0.0000.008 (3)0.000
Geometric parameters (Å, º) top
Rh1—N12.053 (3)C8—C91.380 (6)
Rh1—N1i2.053 (3)C8—H80.9400
Rh1—O2i2.058 (2)C9—C101.385 (6)
Rh1—O22.058 (2)C9—H90.9400
Rh1—N32.177 (4)C10—H100.9400
Rh1—Rh22.4086 (6)C11—C121.387 (5)
Rh2—N2i2.032 (3)C11—C161.394 (5)
Rh2—N22.032 (3)C12—C131.384 (5)
Rh2—O12.048 (2)C12—H120.9400
Rh2—O1i2.048 (2)C13—C141.371 (6)
O1—C11.288 (4)C13—H130.9400
O2—C31.290 (4)C14—C151.378 (6)
N1—C11.308 (5)C14—H140.9400
N1—C51.431 (5)C15—C161.389 (5)
N2—C31.304 (5)C15—H150.9400
N2—C111.434 (4)C16—H160.9400
N3—C171.154 (7)C17—C181.444 (8)
C1—C21.511 (5)C18—C231.385 (7)
C2—H2A0.9700C18—C191.411 (8)
C2—H2B0.9700C19—C201.356 (8)
C2—H2C0.9700C19—H190.9400
C3—C41.503 (5)C20—C211.381 (8)
C4—H4A0.9700C20—C241.513 (8)
C4—H4B0.9700C21—C221.375 (8)
C4—H4C0.9700C21—H210.9400
C5—C61.370 (5)C22—C231.372 (8)
C5—C101.387 (5)C22—H220.9400
C6—C71.392 (5)C23—H230.9400
C6—H60.9400C24—H24A0.9700
C7—C81.370 (6)C24—H24B0.9700
C7—H70.9400C24—H24C0.9700
N1—Rh1—N1i94.72 (17)C7—C6—H6119.5
N1—Rh1—O2i86.96 (11)C8—C7—C6119.3 (4)
N1i—Rh1—O2i174.72 (11)C8—C7—H7120.3
N1—Rh1—O2174.72 (11)C6—C7—H7120.3
N1i—Rh1—O286.96 (11)C7—C8—C9120.7 (4)
O2i—Rh1—O290.92 (14)C7—C8—H8119.7
N1—Rh1—N393.41 (12)C9—C8—H8119.7
N1i—Rh1—N393.41 (12)C8—C9—C10119.5 (4)
O2i—Rh1—N391.48 (11)C8—C9—H9120.2
O2—Rh1—N391.48 (11)C10—C9—H9120.2
N1—Rh1—Rh286.66 (8)C9—C10—C5120.4 (4)
N1i—Rh1—Rh286.66 (8)C9—C10—H10119.8
O2i—Rh1—Rh288.44 (7)C5—C10—H10119.8
O2—Rh1—Rh288.44 (7)C12—C11—C16118.9 (3)
N3—Rh1—Rh2179.89 (13)C12—C11—N2122.5 (3)
N2i—Rh2—N292.30 (17)C16—C11—N2118.6 (3)
N2i—Rh2—O188.36 (11)C13—C12—C11120.1 (4)
N2—Rh2—O1177.38 (11)C13—C12—H12120.0
N2i—Rh2—O1i177.38 (11)C11—C12—H12120.0
N2—Rh2—O1i88.36 (11)C14—C13—C12121.0 (4)
O1—Rh2—O1i90.86 (15)C14—C13—H13119.5
N2i—Rh2—Rh187.68 (8)C12—C13—H13119.5
N2—Rh2—Rh187.68 (8)C13—C14—C15119.6 (4)
O1—Rh2—Rh189.81 (7)C13—C14—H14120.2
O1i—Rh2—Rh189.81 (7)C15—C14—H14120.2
C1—O1—Rh2118.6 (2)C14—C15—C16120.3 (4)
C3—O2—Rh1119.9 (2)C14—C15—H15119.9
C1—N1—C5119.8 (3)C16—C15—H15119.9
C1—N1—Rh1121.3 (2)C15—C16—C11120.1 (4)
C5—N1—Rh1118.4 (2)C15—C16—H16119.9
C3—N2—C11122.2 (3)C11—C16—H16119.9
C3—N2—Rh2121.7 (2)N3—C17—C18178.5 (7)
C11—N2—Rh2116.0 (2)C23—C18—C19119.0 (5)
C17—N3—Rh1162.8 (5)C23—C18—C17120.9 (5)
O1—C1—N1123.2 (3)C19—C18—C17120.0 (5)
O1—C1—C2114.6 (3)C20—C19—C18121.6 (5)
N1—C1—C2122.2 (3)C20—C19—H19119.2
C1—C2—H2A109.5C18—C19—H19119.2
C1—C2—H2B109.5C19—C20—C21118.1 (6)
H2A—C2—H2B109.5C19—C20—C24121.1 (6)
C1—C2—H2C109.5C21—C20—C24120.8 (5)
H2A—C2—H2C109.5C22—C21—C20121.5 (5)
H2B—C2—H2C109.5C22—C21—H21119.2
O2—C3—N2122.1 (3)C20—C21—H21119.2
O2—C3—C4114.2 (3)C23—C22—C21120.6 (5)
N2—C3—C4123.7 (3)C23—C22—H22119.7
C3—C4—H4A109.5C21—C22—H22119.7
C3—C4—H4B109.5C22—C23—C18119.2 (5)
H4A—C4—H4B109.5C22—C23—H23120.4
C3—C4—H4C109.5C18—C23—H23120.4
H4A—C4—H4C109.5C20—C24—H24A109.5
H4B—C4—H4C109.5C20—C24—H24B109.5
C6—C5—C10119.1 (4)H24A—C24—H24B109.5
C6—C5—N1121.0 (4)C20—C24—H24C109.5
C10—C5—N1119.8 (3)H24A—C24—H24C109.5
C5—C6—C7121.0 (4)H24B—C24—H24C109.5
C5—C6—H6119.5
Rh2—O1—C1—N18.4 (5)N1—C5—C10—C9175.7 (4)
Rh2—O1—C1—C2170.2 (2)C3—N2—C11—C1261.3 (5)
C5—N1—C1—O1178.2 (3)Rh2—N2—C11—C12122.9 (3)
Rh1—N1—C1—O16.1 (5)C3—N2—C11—C16121.2 (4)
C5—N1—C1—C20.3 (5)Rh2—N2—C11—C1654.6 (4)
Rh1—N1—C1—C2172.4 (3)C16—C11—C12—C132.6 (6)
Rh1—O2—C3—N24.4 (5)N2—C11—C12—C13179.9 (4)
Rh1—O2—C3—C4174.4 (2)C11—C12—C13—C141.3 (7)
C11—N2—C3—O2179.1 (3)C12—C13—C14—C150.8 (7)
Rh2—N2—C3—O23.6 (5)C13—C14—C15—C161.4 (7)
C11—N2—C3—C40.4 (5)C14—C15—C16—C110.1 (6)
Rh2—N2—C3—C4175.1 (3)C12—C11—C16—C151.9 (6)
C1—N1—C5—C682.5 (5)N2—C11—C16—C15179.5 (4)
Rh1—N1—C5—C6105.1 (4)C23—C18—C19—C200.000 (1)
C1—N1—C5—C10101.5 (4)C17—C18—C19—C20180.000 (1)
Rh1—N1—C5—C1070.9 (4)C18—C19—C20—C210.000 (1)
C10—C5—C6—C70.4 (6)C18—C19—C20—C24180.000 (1)
N1—C5—C6—C7176.4 (4)C19—C20—C21—C220.000 (1)
C5—C6—C7—C80.5 (7)C24—C20—C21—C22180.000 (1)
C6—C7—C8—C90.1 (7)C20—C21—C22—C230.000 (1)
C7—C8—C9—C100.9 (7)C21—C22—C23—C180.000 (1)
C8—C9—C10—C51.1 (7)C19—C18—C23—C220.000 (1)
C6—C5—C10—C90.4 (6)C17—C18—C23—C22180.000 (1)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Rh2(C8H8NO)4(C8H7N)]
Mr859.59
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)223
a, b, c (Å)15.3319 (14), 18.3248 (16), 12.9564 (12)
V3)3640.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.17 × 0.15 × 0.14
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.664, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
36328, 4292, 3154
Rint0.086
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.089, 1.05
No. of reflections4292
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.50

Computer programs: PROCESS-AUTO (Rigaku, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

We thank Dr Lee Daniels of Rigaku Americas for his training on the Rigaku XtaLAB diffractometer and his extended help in the completion of the structural determination. Support was provided by a Start Up Grant from ETSU. We thank Johnson Matthey for their generous loan of rhodium trichloride.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. & Quarshie, F. (2013a). Acta Cryst. E69, m639.  CSD CrossRef IUCr Journals Google Scholar
First citationEagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). J. Organomet. Chem. 596, 90–94.  Web of Science CrossRef CAS Google Scholar
First citationEagle, C. T., Kpogo, K. K., Zink, L. C. & Smith, A. E. (2012). Acta Cryst. E68, m877.  CSD CrossRef IUCr Journals Google Scholar
First citationEagle, C. T., Quarshie, F., Ketron, M. E. & Atem-Tambe, N. (2013b). Acta Cryst. E69, m329.  CSD CrossRef IUCr Journals Google Scholar
First citationLifsey, R. S., Lin, X. Q., Chavan, M. Y., Ahsan, M. Q., Kadish, K. M. & Bear, J. L. (1987). Inorg. Chem. 26, 830–836.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). REQAB. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds